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Abstract. Discontinuous Galerkin time discretizations are combined with the mixed finite element and
continuous finite element methods to solve the miscible displacement problem. Stable schemes of arbitrary
order in space and time are obtained. Under minimal regularity assumptions on the data, convergence of
the scheme is proved by using compactness results for functions that may be discontinuous in time.
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1. Introduction. In the tertiary oil recovery process a polymeric solvent mixes with
the trapped oil in the reservoir and the fluid mixture is forced out of the reservoir. The
resulting flow problem is characterized by the miscible displacement equations for which
the flow is of Darcy type, i.e. the fluid velocity u is proportional to the gradient of the
fluid pressure ϕ, and the velocity satisfies the continuity equation in a bounded domain
Ω ⊂ Rd, d = 2, 3, over a time interval (0, T ):

u = −K(c)∇ϕ, in Ω× (0, T ), (1.1)

div(u) = f, in Ω× (0, T ). (1.2)

The matrix K(c) depends on the solvent concentration c and the spatial variable x. For
readability we only write explicitely the dependence on c.

K(c) =
1

µ(c)
k(x).

The permeability matrix k measures the resistance of the porous medium to the flow and
it may vary rapidly in space. The fluid viscosity µ(c) is a nonlinear function of the solvent
concentration and usually follows a quarter-power mixing law [13].

The balance of mass for the solvent gives the following transport equation for the concen-
tration,

φct − div
(
D(u)∇c− uc

)
= g, in Ω× (0, T ). (1.3)

The porosity φ denotes the fraction of volume available for flow. The matrix D(u) is a
diffusion-dispersion tensor given by the semi-empirical relation

D(u) = φdmI + |u|
(
αlE(u) + αt(I − E(u))

)
, (1.4)
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where E(u) = uuT/|u|2 and |u| is the Euclidean norm of u. The coefficients are the
molecular diffusion dm, the longitudinal dispersivity αl and the transverse dispersivity αt
and may depend upon space. This important problem is particularly interesting in the
case where the solvent viscosity is higher than the resident fluid viscosity, which leads to
fingering phenomena.

The problem (1.1)-(1.3) is completed by an initial concentration c0 defined in Ω and by
boundary conditions prescribed below.

In this work, we analyze a class of numerical schemes for the solution of this system
which employ mixed finite elements for the Darcy system, classical Galerkin methodology
for the concentration equation, and use discontinuous Galerkin (DG) time discretizations.
This class admits schemes of arbitrarily high order in space and time, and we establish
convergence when (i) the coefficients k, φ, dm, αl and αt are not smooth, (ii) the diffusion-
dispersion matrix D(u) is unbounded, and (iii) no maximum principle is available for the
numerical solutions. To our knowledge, this paper presents the first high order in time
stepping schemes for solving the miscible displacement equation. In addition, convergence
is proved via a compactness argument which requires minimal assumptions on the data.
Convergence of the numerical schemes establishes existence of (weak) solutions.

Bounds upon the concentration follow from a delicate coupling of the flow and concentra-
tion equations which motivates the mixed formulation and time DG stepping considered
here. Monotonicity of the elliptic term −div(D(u)∇c− cu) is also essential, and since the
diffusion matrix D(u) is unbounded, care is required to guarantee that higher order time
stepping schemes inherit this monotonicity.

1.1. Related Results. Systems containing an elliptic equation for the pressure cou-
pled with a convection-dominated parabolic equation for the concentration of the solvent
appear ubiquitously in reservoir modeling [4, 9]. Existence of the weak solutions to equa-
tions (1.1)–(1.3) can be found in [5, 12]; however, under the minimal regularity assumed
here uniqueness is not guaranteed.

There exist many works in the literature that introduce numerical approximations of the
miscible displacement and prove convergence of the scheme by deriving error estimates
between the strong and numerical solutions and by assuming enough regularity for the
strong solution. In all cases, the time discretization is a variant of Euler’s method that
is first order in time. Several discretizations in space have been studied. For instance, in
[11, 10, 4], a Galerkin approach for both pressure and concentration is combined with a first
order in time discretization. In [16], a sequential backward-difference time-stepping scheme
is defined that approximates the pressure by a Galerkin method and the concentration
by a combination of a Galerkin method and a method of characteristics. Discontinuous
Galerkin methods in space have been analyzed in [8]. Mixed methods combined with finite
volume methods for a similar problem are analyzed in [14]. In the references given above,
boundedness of the diffusion tensor is assumed, and error estimates are derived under
sufficient smoothness of the strong solution. If the diffusion tensor is not assumed to be
bounded, a more careful analysis has to be done. In [18], a cut-off operator is employed with
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a first order in time scheme and discontinuous Galerkin in space. Convergence is obtained
by deriving error estimates. In [7], an induction argument is used to simultaneously derive
error estimates and L∞ bounds (needed to control the nonlinear terms) for a mixed method
combined with a continuous finite element method and an implicit Euler method.

In practice, the solution is not smooth and it is crucial to be able to prove convergence of the
numerical scheme under minimal regularity assumptions upon the data and exact solution.
Recently Bartels et. al. [1] addresses this issue by obtaining convergence of the discrete
solution by an application of the Aubin-Lions compactness result. The scheme in [1] uses
an implicit first order Euler method combined with a mixed method and discontinuous
Galerkin method in space; boundedness of the diffusion tensor is not assumed.

The importance of our paper is based on the following:

• Convergence of the numerical solution is obtained under minimal regularity assump-
tions on the data using a generalization of the Aubin-Lions compactness theorem.
The Aubin-Lions theorem is not applicable since the numerical approximations are
discontinuities in time.

• High order discontinuous Galerkin time discretizations are employed. To our knowl-
edge, this is the first high order in time scheme analyzed for the miscible displace-
ment problem.

• Diffusion tensor D(u) may be unbounded.
• Coefficients k, φ, dm, αl and αt may be discontinuous.

The rest of the section introduces some notation and the weak formulation. Our numerical
schemes are introduced in Section 2. Convergence is obtained for the low order in time
scheme in Section 3 and for the high order in time scheme in Section 4. Conclusions follow.

1.2. Notation. Standard notation is used for the Lebesgue Lp(Ω) spaces, the Sobolev
spaces W k,p(Ω) and Hk(Ω) = W k,2(Ω), and the Bochner spaces L2[0, T ;W k,p(Ω)] and
H1[0, T ;W k,p(Ω)]. The inner-product on L2(Ω) is denoted by (·, ·). Recall that

H(Ω; div) = {v ∈ L2(Ω)d : div(v) ∈ L2(Ω)}

and it is a Hilbert space with norm

‖v‖H(Ω;div) =
(
‖v‖2

L2(Ω) + ‖div(v)‖2
L2(Ω)

)1/2
,

and inner-product
(v, w)H(Ω;div) = (v, w) + (div(v), div(w)).

If Γ ⊂ ∂Ω, then (q, u)Γ denotes the duality pairing between q ∈ H−1/2(Γ) and u ∈ H1/2(Γ).
We write X ↪→ Y to designate the embedding of a normed space X in a normed space
Y and if the embedding is compact we write X ↪→→ Y . The dual of a Banach space X is
denoted as X ′.

We recall that if U ⊂ Lp[θ, T − θ;H] is (pre) compact for all θ ∈ (0, 1) and bounded
in Lr[0, T ;H] with r > p, then it is (pre) compact in Lq[0, T ;H] for all 1 ≤ q < r. If
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B0 ↪→ B1 ↪→ B2 are Banach spaces with ‖u‖B1 ≤ M‖u‖θB0
‖u‖1−θ

B2
for some θ ∈ (0, 1), then

a bounded subset of B0 which is compact in B2 is also compact in B1.

For any subset O ⊂ Rd, the space P`(O) is the space of polynomials of degree less than
or equal to ` on O. For any real numbers a < b and functional space H, the space of
continuous functions from [a, b] to H is denoted by C[a, b;H], and P`[a, b;H] is defined as

P`[a, b;H] = {
∑̀
i=0

tivi : t ∈ [a, b], vi ∈ H, i = 0, . . . , l}.

Throughout the paper, we denote generic positive constants by M and m (to avoid conflicts
with the concentration c = c(x, t)).

We assume the boundary of the domain is partitioned as follows:

∂Ω = ΓD ∪ ΓN = Γin ∪ Γout, with ΓD ∩ ΓN = ∅ = Γin ∩ Γout.

The vector n denotes a unit normal vector outward to ∂Ω. Dirichlet and Neumann condi-
tions for the pressure are imposed on ΓD and ΓN respectively;

ϕ = ϕD, on ΓD, and u · n = uN · n, on ΓN.

If |ΓD| = 0, then compatibility conditions on the data and pressure are required;∫
∂Ω

uN · n =

∫
Ω

f, and

∫
Ω

ϕ = 0.

These conditions are implicitly assumed below when this is the case. Dirichlet and Robin
conditions for the concentration are imposed upon Γin and Γout respectively;

c = cin on Γin, and (−cu +D(u)∇c) · n = qout on Γout.

In many situations it is natural to select the boundary partition Γin ∪ Γout for the concen-
tration to correspond to the inflow and outflow portions of the boundary for the velocity
field u. If ΓN 6= ∂Ω the partition becomes time dependent and implicit, and the natural
spaces to pose the concentration are also time dependent. This results in an additional
layer of technical issues in the analysis, many of which are routine. In order to circumvent
these technicalities we assume that the partition Γin ∪ Γout is independent of time, and
ΓD ∩ Γout = ∅. The boundary conditions considered here suffice for the common situa-
tion where the concentration or its flux are specified in the “far field” where the flow is
quiescent.

1.3. Weak Formulation. The weak formulation of the problem is posed in the fol-
lowing function spaces.

U = {v ∈ H(Ω; div) | v · n|ΓN
= 0}, P = L2(Ω), C = {d ∈ H1(Ω) | d|Γin

= 0}.
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We consider the following weak problem: find u−uN ∈ L∞(0, T ;U), ϕ ∈ L∞(0, T, P ), and
c− cin ∈ L2(0, T ;C), such that

D(u)1/2∇c ∈ L2(0, T ;L2(Ω))

and ∫ T

0

((
K−1(c)u,v

)
− (ϕ, div(v))

)
= −

∫ T

0

(ϕD,v · n)ΓD∫ T

0

(div(u), ψ) =

∫ T

0

(f, ψ)

for all (v, ψ) ∈ L1[0, T ;U ]× L1[0, T ;P ], and∫ T

0

(
−(φc, dt) +

(
−cu +D(u)∇c,∇d

))
= (φc0, d(0)) +

∫ T

0

(g, d) +

∫ T

0

(qout, d)Γout ,

for all
d ∈

{
d ∈ L4[0, T ;C ∩W 1,4(Ω)] ∩H1[0, T ;C ′] | d(T ) = 0

}
.

The condition d ∈ L4[0, T ;W 1,4(Ω)] on the test function is technical, and is needed since
D(u) is not bounded. It will be shown that D(u)∇c belongs to L4/3(Ω) in which case it is
natural to require d ∈ W 1,4(Ω).

Weak solutions will exist when the domain and data are assumed to satisfy the following.

Assumption 1.1. The domain Ω ⊂ Rd is bounded and Lipschitz.

1. f ∈ L1[0, T ;L∞(Ω)] ∩ L2[0, T ;L2(Ω)].
2. uN is the trace of a function in L2[0, T ;H(Ω; div)] with divergence in L1[0, T ;L∞(Ω)].
3. ϕD ∈ L2[0, T ;H1/2(ΓD)].
4. g ∈ L2[0, T ;C ′] .
5. qout ∈ L2[0, T ;H−1/2(Γout)].
6. cin is the trace on Γin of a function in L2[0, T ;H1(Ω) ∩W 1,4(Ω)].
7. c0 ∈ L2(Ω).

The following structural hypotheses will be assumed for the coefficients.

Assumption 1.2.

1. There exist constants 0 < φ0 < φ1 such that the porosity φ ∈ L∞(Ω) satisfies
φ0 ≤ φ(x) ≤ φ1, x ∈ Ω.

2. The matrix K : Ω× R → Rd×d is symmetric, Caratheodory (i.e. measurable in the
first argument and continuous in the second), and uniformly bounded and elliptic.
In particular, there exist constants 0 < k0 < k1 such that

k0|ξ|2 ≤ ξTK(x, α)ξ ≤ k1|ξ|2, ξ ∈ Rd, α ∈ R, x ∈ Ω.

3. The coefficients in the matrix D(u) of (1.4) satisfy

d0 ≤ dm(x) ≤ d1, 0 ≤ αl(x), αt(x) ≤ d1, x ∈ Ω

for some constants 0 < d0 < d1. The matrix D(u) is not assumed to be bounded.
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Remark: In the case uN = 0 and cin = 0, one can show that the weak solutions

c ∈ L∞[0, T ;L2(Ω)] ∩ L2[0, T ;H1(Ω)] and D(u)1/2∇c ∈ L2[0, T ;L2(Ω)], (1.5)

and that they are bounded by a constant that depends on ‖c0‖L2(Ω), ‖f‖L1[0,T ;L∞(Ω)],
‖g‖L2[0,T ;L2(Ω)], ‖qout‖L2[0,T ;H−1/2(Ω)], and the constants d0, d1. The concentration can be
bounded in L∞(Ω) using the maximum principle [5]; however, the numerical solution ob-
tained with higher order numerical schemes will not inherit such bounds. This makes the
analysis challenging.

The following lemma shows that the diffusion matrix D(u) and its square root are Lipschitz
continuous in u. We remind the reader that E(u) = uTy/|u|2.
Lemma 1.3. Let D(u) be defined by (1.4). Then

• the matrix D(u) is symmetric and positive definite with eigenvalues in the interval

[dm + |u|min(αl, αt), dm + |u|max(αl, αt)].

• the function D(.) is Lipschitz with constant of the form M(αt + |αl − αt|).
• the positive square root of D(u) is

D1/2(u) = (dm + αl|u|)1/2E(u) + (dm + αt|u|)1/2 (I − E(u)),

which is Lipschitz with constant of the form M(αl + αt)(d
−1/2
m + d

−3/2
m ).

• there is a constant M > 0 that only depends on dm, αl, αt such that

ξTD(u)ξ ≤M(1 + |u|)|ξ|2, ξ ∈ Rd. (1.6)

Proof. For brevity we write E for E(u) = uuT/|u|2. By construction E and (I − E) are
projection matrices, so they are non-negative definite, symmetric, and have unit norms.
Thus, for all v ∈ Rd

(dm + |u|min(αl, αt))v
Tv ≤ vTD(u)v ≤ (dm + |u|max(αl, αt))v

Tv. (1.7)

To verify that D(u) is Lipschitz, write

D(u) = (dm + αt|u|) I + (αl − αt) |u|E = (dm + αt|u|) I + (αl − αt) (uuT )/|u|.

Let δik denote the Kronecker delta. The calculations

∂

∂uk
|u| = uk

|u|
, and

∂

∂uk

(uiuj
|u|
)

=
δikuj
|u|

+
uiδjk
|u|

− uiujuk
|u|3

,

show that the derivative of D(u) is bounded, so |D(u)−D(v)| ≤M |u− v| for u,v ∈ Rd.
Writing I = (I − E) + E shows

D(u) = (dm + αl|u|)E + (dm + αt|u|)(I − E).
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Since E2 = E, (I − E)2 = I − E and (I − E)E = 0, direct computation shows

D1/2(u) = (dm + αl|u|)1/2E + (dm + αt|u|)1/2(I − E).

To verify that this is a Lipschitz function of u, write

D1/2(u) = (dm + αt|u|)1/2I +
(
(dm + αl|u|)1/2 − (dm + αt|u|)1/2

)
E

= (dm + αt|u|)1/2I +

(
(αl − αt)

(dm + αl|u|)1/2 + (dm + αt|u|)1/2

)
|u|E.

Since the derivative
∂

∂uk
(dm + α|u|)1/2 =

α

2(dm + α|u|)1/2

uk
|u|

is bounded, it follows that the coefficients of I and |u|E = uuT/|u| in the formula for
D1/2(u), and hence D(u)1/2 itself, are Lipschitz. The result (1.6) is immediate.

2. Numerical Scheme. Let {Th}h>0 be a regular family of triangulations of Ω and
let RTk(Th) denote the space of Raviart-Thomas elements of order k ≥ 0, i.e.

RTk(Th) = {u ∈ H(div; Ω) | u|K ∈ Pk(K) + xPk(K), K ∈ Th}.

Define the finite-dimensional subspaces

Uh = RTk(Th) ∩ U
Ph = {ψh ∈ P | ψh|K ∈ Pk(K), K ∈ Th}
Ch = {ch ∈ C | ch|K ∈ Pk(K), K ∈ Th}.

While it is not necessary to let Ch have the same degree polynomials as the other two spaces,
there is no reason not to. Also, for definiteness we assume Th is a simplicial mesh; however,
any of the classical mixed finite element spaces suffices. For example, on a quadrilateral
mesh the BDFMk(Th) spaces for the velocity and corresponding tensor product spaces for
the pressure and concentration may be utilized [2].

Let 0 = t0 < t1 < . . . < tN = T be a partition, and let ∆t = maxi=1,...,N(ti − ti−1).

The following assumptions are made for the analysis of the numerical scheme.

Assumption 2.1.

1. The partition is quasi-uniform, i.e. there exists θ ∈ (0, 1] such that

θ∆t ≤ min
1≤n≤N

(tn − tn−1). (2.1)

2. To simplify the exposition it is assumed that the Dirichlet data is homogeneous;
namely, uN = 0 and cin = 0.

3. We assume that the partition Γin ∪ Γout is independent of time, and ΓD ∩ Γout = ∅.
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4. The approximation of the initial concentration c0 is denoted by c0h− and it is equal
to the orthogonal projection of c0 in Ch with respect to a weighted L2 inner product:

∀dh ∈ Ch, (c0h−, φdh) = (c0, φdh).

Remark 2.2. Nonhomogeneous data may be accommodated using the usual translation
argument provided div(uN) and f have the same regularity, and

cin ∈ H1[0, T ;H−1
φ (Ω)] ∩ L∞[0, T ;W 1,4(Ω)], where ‖cin‖H−1

φ (Ω) = sup
d∈H1(Ω)

(φcin, d)L2(Ω)

‖d‖H1(Ω)

is the dual norm when the pivot space is taken to have the weighted L2(Ω) inner product.

Fix an integer ` ≥ 0. For any function d such that d|[tn−1,tn] ∈ P`[tn−1, tn, C], define

dn− = lim
ε↓0

d(tn − ε, ·), dn+ = lim
ε↓0

d(tn + ε, ·), [dn] = dn+ − dn−.

We consider approximate solutions of equations (1.1)-(1.3) satisfying

uh ∈ P`[tn−1, tn, Uh], ϕh ∈ P`[tn−1, tn, Ph], ch ∈ P`[tn−1, tn, Ch],

and ∫ tn

tn−1

(
(K−1(ch)uh,vh)− (ϕh, div(vh))

)
= −

∫ tn

tn−1

(ϕD,vh · n)ΓD
, (2.2)∫ tn

tn−1

(div(uh), ψh) =

∫ tn

tn−1

(f, ψh), (2.3)

and for ` = 0 or ` = 1∫ tn

tn−1

(
(φcht, dh)+(−chuh+D(uh)∇ch,∇dh)

)
+([cn−1

h ], φdn−1
h+ ) =

∫ tn

tn−1

(
(g, dh)+(qout, dh)Γout

)
,

(2.4)
for all vh ∈ P`[tn−1, tn, Uh], ψh ∈ P`[tn−1, tn, Ph], dh ∈ P`[tn−1, tn, Ch]. Equation (2.4) is
used for the low order in time schemes (` ≤ 1).

For the high order scheme (` > 1), a quadrature rule Qn : C[tn−1, tn] → R is used to
evaluate the nonlinear term and equation (2.4) is replaced by∫ tn

tn−1

(φcht, dh)+Q
n
(
(−chuh+D(uh)∇ch,∇dh)

)
+([cn−1

h ], φdn−1
h+ ) =

∫ tn

tn−1

(
(g, dh)+(qout, dh)Γout

)
.

The construction of a quadrature rule which preserves the formal high order accuracy and
inherits the stability of the continuous problem is given in Section 4 below.

Existence of solutions to the discrete problem with sufficiently small time steps follows
from Brouwer’s fixed point theorem [17, Proposition II.2.1] and the stability estimates
established below.
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3. Convergence of the Numerical Scheme. In this section convergence of the
numerical scheme is established. The first step is to show that the numerical schemes
inherit the natural energy estimates of the underlying equations. Low order time stepping
schemes inherit these estimates directly and the higher order schemes which use quadrature
to evaluate the nonlinear terms are also stable. The second step is to establish sufficient
compactness of the concentrations to allow passage to the limit in the nonlinear terms. Our
main results are Theorem 3.10 and Theorem 3.11. The modifications required to establish
stability and compactness of the concentrations for the higher order schemes are technical
but routine, so for this reason are postponed until Section 4 (see Theorem 4.4).

Throughout this section it is assumed that the discrete solutions are computed using a
quasi-regular family of triangulations of Ω and that the temporal partition satisfies (2.1).

3.1. Stability of the Pressure and the Velocity. In this section energy estimates
are used to establish stability of the numerical scheme (2.2)-(2.4). Bounds on the discrete
pressure and velocity can be established independently of the concentration. Stability of
the low order (` ≤ 1) DG time stepping scheme for the concentration then follow.

Lemma 3.1. There exists a constant M > 0 independent of h and ∆t such that solutions
of the numerical scheme (2.2)-(2.3) satisfy the following bounds.

1. If 1 ≤ p, q ≤ ∞ and f ∈ Lp[0, T ;Lq(Ω)], then

‖div(uh)‖Lp[0,T ;Lq(Ω)] ≤M‖f‖Lp[0,T ;Lq(Ω)].

2. If 1 ≤ p ≤ ∞, f ∈ Lp[0, T ;L2(Ω)], and ϕD ∈ Lp[0, T ;H1/2(ΓD)], then

‖uh‖Lp[0,T ;H(Ω;div)] + ‖ϕh‖Lp[0,T ;L2(Ω)] ≤M
(
‖f‖Lp[0,T ;L2(Ω)] + ‖ϕD‖Lp[0,T ;H1/2(ΓD)]

)
.

The proof of the lemma uses the following two well known properties of the discrete spaces
being utilized [3, 15]. Recall that if ΓN = ∂Ω then we assume additionally that the average
of functions in Ph vanish.

Lemma 3.2. There exists a constant m > 0 depending only upon Ω such that

sup
uh∈Uh

∫
Ω
ph div(uh)

‖uh‖H(Ω;div)

≥ m‖ph‖L2(Ω), ph ∈ Ph.

In particular, if Zh = {uh ∈ Uh | div(uh) = 0} and Uh = Zh ⊕ Z⊥h is the orthogonal
decomposition, then there exists a linear operator Lh : Ph → Z⊥h with ‖Lh‖L(Ph,Uh) ≤ 1
such that

m‖ph‖2
L2(Ω) ≤

∫
Ω

ph div(Lh(ph)), ph ∈ Ph,

and if uh ∈ Z⊥h then m‖uh‖H(Ω;div) ≤ ‖div(uh)‖L2(Ω).

The following lemma follows from an elementary scaling (parent element) calculation.
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Lemma 3.3. Let V be a linear space and (., .)V be a (semi) inner product on V ; w ≥ 0
be a non-zero element of L1(0, 1); and 0 < a < b. Then there exists a constant M` > 0,
depending only upon ` and w, such that for all u ∈ P`[a, b;V ]

‖u‖Lp[a,b;V ] ≤ (b− a)1/p−1/2

(
M`

∫ b

a

w((t− a)/(b− a))‖u(t)‖2
V dt

)1/2

, 1 ≤ p ≤ ∞.

In particular, if 1/p+ 1/p′ = 1 then

‖u‖Lp[a,b;V ]‖u‖Lp′ [a,b;V ] ≤M`

∫ b

a

w((t− a)/(b− a))‖u(t)‖2
V dt.

Proof of Lemma 3.1: For each K ∈ Th and 1 ≤ n ≤ N let Πh : L2((tn−1, tn) × K) →
P`[tn−1, tn,Pk(K)] denote the L2 projection. A parent element calculation shows that
there exists a constant M > 0 depending only upon the parent element such that

‖Πhf‖Lp[tn−1,tn;Lq(K)] ≤M‖f‖Lp[tn−1,tn;Lq(K)], 1 ≤ p, q ≤ ∞. (3.1)

Since div(uh) ∈ Ph it follows from (2.3) that

div(uh) = Πh(f), (3.2)

and the first estimate follows.

Next, let Zh ⊂ Uh be the kernel of the discrete divergence introduced in Lemma 3.2 and let
Uh = Zh⊕Z⊥h denote the orthogonal decomposition. Let uh = zh+u⊥h be the decomposition
of uh. Since the decomposition is independent of time it follows that each of zh and u⊥h
are in P`[tn−1, tn, Uh]. From Lemma 3.2 we find

M‖u⊥h ‖H(Ω;div) ≤ ‖div(u⊥h )‖L2(Ω) = ‖div(uh)‖L2(Ω),

and since div(uh) = Πh(f) it follows that

‖u⊥h ‖Lp[tn−1,tn;H(Ω;div)] ≤M‖div(uh)‖Lp[tn−1,tn;L2(Ω)] ≤M‖f‖Lp[tn−1,tn;L2(Ω)]. (3.3)

To estimate zh select it to be the test function in equation (2.2) to get∫ tn

tn−1

(K−1(ch)(zh + u⊥h ), zh) =

∫ tn

tn−1

(K−1(ch)uh, zh) =

∫ tn

tn−1

−(ϕD, zh · n)ΓD
.

Upon recalling that ‖zh‖H(Ω;div) = ‖zh‖L2(Ω) and the assumptions on K, it follows that

‖zh‖2
L2[tn−1,tn;H(Ω;div)] ≤M

∫ tn

tn−1

(K−1(ch)zh, zh)

≤M

∫ tn

tn−1

∣∣(K−1(ch)u
⊥
h , zh) + (ϕD, zh.n)ΓD

∣∣
≤M‖zh‖Lp′ [tn−1,tn;H(Ω;div)]

(
‖u⊥h ‖Lp[tn−1,tn;L2(Ω)] + ‖ϕD‖Lp[tn−1,tn;H1/2(ΓD)]

)
,
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where the trace theorem on H(Ω; div) was used in the last line and 1/p + 1/p′ = 1. The
bound (3.3) and Lemma 3.3 (with weight w ≡ 1) then show

‖zh‖Lp[tn−1,tn;H(Ω;div)] ≤M
(
‖f‖Lp[tn−1,tn;L2(Ω)] + ‖ϕD‖Lp[tn−1,tn;H1/2(ΓD)]

)
,

from which the bound on ‖uh‖Lp[tn−1,tn;H(Ω;div)] follows.

Since the operator Lh : Ph → Z⊥h in Lemma 3.2 is independent of time, it follows that
Lh(ϕh) ∈ P`[tn−1, tn, Uh]. We may then set vh = Lh(ϕh) in (2.2) to find

M

∫ tn

tn−1

‖ϕh‖2
L2(Ω) ≤

∫ tn

tn−1

(ϕh, div(Lh(ϕh))) =

∫ tn

tn−1

(
(K−1(ch)uh, Lh(ϕh))+(ϕD, Lh(ϕh))ΓD

)
.

Using the trace theorem, the assumptions on K, and Lemma 3.3 it follows that

‖ϕh‖Lp[tn−1,tn;L2(Ω)] ≤M
(
‖uh‖Lp[tn−1,tn;L2(Ω)] + ‖ϕD‖Lp[tn−1,tn;H1/2(ΓD)]

)
≤M

(
‖f‖Lp[tn−1,tn;L2(Ω)] + ‖ϕD‖Lp[tn−1,tn;H1/2(ΓD)]

)
.

�

3.2. Stability of the Concentration in the Case ` ≤ 1. Next we derive a priori
bounds for the discrete concentration computed using the low order DG time stepping
schemes, ` = 0 and ` = 1. The following discrete Gronwall inequality will be required.

Lemma 3.4. Let {τ i}Ni=1 ⊂ [0, 1), and {ai}Ni=0, {bi}Ni=1, and {f i}Ni=1 be subsets of [0,∞). If

(1− τn)an + bn ≤ an−1 + fn, n = 1, 2, . . . N,

then

aN +
N∑
n=1

bn∏N
i=n(1− τ i)

≤ a0∏N
i=1(1− τ i)

+
N∑
n=1

fn∏N
i=n(1− τ i)

.

In particular, if max
1≤i≤N

τ i ≤ λ < 1 and tN ≡
∑N

i=1 τi then

aN +
N∑
n=1

bn ≤ et
N

1− λ2

(
a0 +

N∑
n=1

fn

)
.

Lemma 3.5 (Stability of low order schemes). Let the data and coefficients satisfy Assump-
tions 1.1 and 1.2 respectively. Then there exist positive constants λ = λ(‖f‖L1[0,T ;L∞(Ω)])
and M , independent of h and ∆t, such that the concentrations computed using the low
order DG time stepping schemes, ` = 0 or ` = 1 in (2.4), satisfy

max
1≤n≤N

‖φ1/2cnh−‖2
L2(Ω) +

N∑
i=1

‖[φ1/2cn−1
h ]‖2

L2(Ω) +

∫ T

0

(D(uh)∇ch,∇ch)

≤M exp(M‖f‖L1[0,tn,L∞(Ω)])
(
‖φ1/2c0‖2

L2(Ω) + ‖g‖2
L2[0,T ;C′] + ‖qout‖2

L2(0,T ;H−1/2(Γout)

)
,

(3.4)
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provided λ∆t < 1. In particular,

‖ch‖L∞[0,T ;L2(Ω)], ‖ch‖L2[0,T ;H1(Ω)], and ‖D(uh)
1/2∇ch‖L2[0,T ;L2(Ω)]

are bounded independently of h and ∆t.

Proof. For readability we use the notation cn− = cnh− and similarly cn+ = cnh+. Set dh = ch
in equation (2.4) to obtain

1

2
‖φ1/2cn−‖2

L2(Ω) +
1

2
‖φ1/2cn−1

+ ‖2
L2(Ω) − (cn−1

− , φcn−1
+ ) +

∫ tn

tn−1

(D(uh)∇ch,∇ch)

=
1

2

∫ tn

tn−1

(
− (div(uh), c

2
h) + (uh · n, c2h)∂Ω

)
+

∫ tn

tn−1

(g, ch) +

∫ tn

tn−1

(qout, ch)Γout .

The first three terms on the left may be rewritten as

‖φ1/2cn−‖2
L2(Ω)+‖φ1/2cn−1

+ ‖2
L2(Ω)−2(cn−1

− , φcn−1
+ ) = ‖φ1/2cn−‖2

L2(Ω)+‖[φ1/2cn−1]‖2
L2(Ω)−‖φ1/2cn−1

− ‖2
L2(Ω).

Using the fact that uh · n = 0 on ΓN and ch = 0 on Γin ⊃ ΓD we obtain

1

2
‖φ1/2cn−‖2

L2(Ω) +
1

2
‖[φ1/2cn−1]‖2

L2(Ω) +

∫ tn

tn−1

(D(uh)∇ch,∇ch)

=
1

2
‖φ1/2cn−1

− ‖2
L2(Ω) −

1

2

∫ tn

tn−1

(div(uh), c
2
h) +

∫ tn

tn−1

(g, ch) +

∫ tn

tn−1

(qout, ch)Γout . (3.5)

Next, let Πh : L2[tn−1, tn;L2(Ω)] → P`[tn−1, tn;Ph] be the L2 projection. We may use
equation (3.2) to simplify the term involving div(uh),∫ tn

tn−1

(div(uh), c
2
h) =

∫ tn

tn−1

(div(uh),Πh(c
2
h)) =

∫ tn

tn−1

(Πh(f),Πh(c
2
h)) =

∫ tn

tn−1

(Πh(f), c2h).

Therefore (3.5) becomes

‖φ1/2cn−‖2
L2(Ω) + ‖[φ1/2cn−1]‖2

L2(Ω) + 2

∫ tn

tn−1

(D(uh)∇ch,∇ch)

= ‖φ1/2cn−1
− ‖2

L2(Ω) +

∫ tn

tn−1

(
2(g, ch) + 2(qout, ch)Γout − (Πh(f), c2h)

)
≤ ‖φ1/2cn−1

− ‖2
L2(Ω) +

∫ tn

tn−1

{
M‖g‖C′‖ch‖H1(Ω)

+M‖qout‖H−1/2(Γout)‖ch‖H1(Ω) + ‖Πh(f)‖L∞(Ω)‖ch‖2
L2(Ω)

}
.

Equation (1.7) shows ‖∇ch‖L2(Ω) ≤ d
−1/2
m ‖D(uh)

1/2∇ch‖L2(Ω), and using Poincaré’s inequal-
ity it follows that

‖φ1/2cn−‖2
L2(Ω) + ‖[φ1/2cn−1]‖2

L2(Ω) +

∫ tn

tn−1

(D(uh)∇ch,∇ch) ≤ ‖φ1/2cn−1
− ‖2

L2(Ω)

+M
(
‖g‖2

L2[tn−1,tn;C′] + ‖qout‖2
L2[tn−1,tn;H−1/2(Γout)]

)
+

∫ tn

tn−1

‖Πh(f)‖L∞(Ω)‖ch‖2
L2(Ω).
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If ` = 0, then ch is piecewise constant and equal to cn− on the interval (tn−1, tn) and∫ tn

tn−1

‖Πh(f)‖L∞(Ω)‖ch‖2
L2(Ω) = ‖cn−‖2

L2(Ω)

∫ tn

tn−1

‖Πh(f)‖L∞(Ω) = M‖cn−‖2
L2(Ω)

∫ tn

tn−1

‖f‖L∞(Ω).

When ` = 1 write

ch(t)|[tn−1,tn] =
t− tn−1

tn − tn−1
cn− +

tn − t

tn − tn−1
cn−1
+ .

Then

‖ch‖2
L2(Ω) ≤

t− tn−1

tn − tn−1
‖cn−‖2

L2(Ω) +
tn − t

tn − tn−1
‖cn−1

+ ‖2
L2(Ω)

and∫ tn

tn−1

‖Πh(f)‖L∞(Ω)‖ch‖2
L2(Ω) ≤M

(
‖cn−‖2

L2(Ω) + ‖cn−1
+ ‖2

L2(Ω)

)∫ tn

tn−1

‖f‖L∞(Ω)

≤M
(
‖cn−‖2

L2(Ω) + ‖[cn−1]‖2
L2(Ω) + ‖cn−1

− ‖2
L2(Ω)

)∫ tn

tn−1

‖f‖L∞(Ω).

Since ‖ch‖2
L2(Ω) ≤ (1/φ0)‖φ1/2ch‖2

L2(Ω), it follows that if ` = 0 or ` = 1 then

(1− λn)‖φ1/2cn−‖2
L2(Ω) + (1− λn)‖[φ1/2cn−1]‖2

L2(Ω) +

∫ tn

tn−1

(D(uh)∇ch,∇ch)

≤ (1 + λn)‖φ1/2cn−1
− ‖2

L2(Ω) +M
(
‖g‖2

L2(tn−1,tn;C′) + ‖qout‖2
L2(tn−1,tn;H−1/2(Γout))

)
where

λn = (M/φ0)

∫ tn

tn−1

‖f‖L∞(Ω).

Since f ∈ L1[0, T ;L∞(Ω)] it follows that there exists λ > 0 such that |t− s| < 1/λ implies∫ t

s

‖f‖L∞(Ω) ≤ φ0/2M.

In particular, λn < 1/2 when λ∆t < 1 and application of the discrete Gronwall inequality
establishes the Lemma.

3.3. Compactness of the Concentration. Compactness of solutions to evolution
equations is frequently established using the Lions Aubin Theorem [17]. However, this
theorem is not applicable to discontinuous solutions since their time derivatives are not
integrable. To circumvent this difficulty we will use the following theorem.

Theorem 3.6. Let H be a Hilbert space with inner-product (·, ·)H and V and W be Banach
spaces equipped with norms ‖ · ‖V and ‖ · ‖W . Assume that

W ↪→ V ↪→→ H ↪→ W ′

13



are dense embeddings with V compactly embedded in H. Let ` ≥ 0 be an integer and h > 0
be a (mesh) parameter. For each h, let Wh ⊂ W be a closed subspace and 0 = t0h < t1h <
. . . < tNh = T be a uniform partition of [0, T ]. Let Πh : H → Wh denote the orthogonal
projection, and assume that its restriction to W is stable in the sense that there exists a
constant M > 0 independent of h such that ‖Πhw‖W ≤M‖w‖W for w ∈ W .

Fix 1 < p <∞, 1 ≤ q <∞ with 1/p+ 1/q ≥ 1 and assume that

1. For each h > 0, wh ∈ {wh ∈ Lp[0, T ;W ] | wh|(tn−1
h ,tn)h

∈ P`(tn−1
h , tnh;Wh)} and on

each interval satisfies

∀zh ∈ P`(tn−1
h , tnh;Wh),

∫ tnh

tn−1
h

(wht, zh)H + (wn−1
h+ − wn−1

h− , zn−1
h+ )H =

∫ tnh

tn−1
h

Fh(zh).

2. The sequence {wh}h>0 is bounded in Lp[0, T ;V ].
3. For each h > 0, Fh ∈ Lq[0, T ;W ′

h] and {‖Fh‖Lq [0,T ;W ′
h]}h>0 ⊂ R bounded.

Then the set {wh}h>0 is precompact in Lp[0, T ;H] ∩ Lr[0, T ;W ′] for each 1 ≤ r <∞.

Remarks:

1. This theorem is a variation of [19, Theorem 3.1] and the proof is sketched at the
end of this section.

2. The restriction in [19] to uniform partitions of [0, T ] was made to simplify the proof
and can be relaxed to “quasi uniform” as defined in (2.1).

3. The requirement that Fh ∈ Lq[0, T ;W ′
h] is not sharp since the DG time stepping

scheme only requires Fh to act on piecewise polynomials.

We now establish compactness of the numerical approximations of solutions to the concen-
tration equation.

Theorem 3.7. Let the data and coefficients satisfy Assumptions 1.1 and 1.2 respectively
and suppose that the maximal time step ∆t tends to zero with the mesh parameter. Then
the concentrations {ch}h>0 computed using (2.2)–(2.4) with ` = 0 or ` = 1 are precompact
in L2[0, T ;L2(Ω)] ∩ Lr[0, T ; (C ∩W 1,4(Ω))′] for any 1 ≤ r <∞.

Proof. We apply Theorem 3.6 with parameters p = 2, q = 1, and spaces H = L2(Ω),
V = C ⊂ H1(Ω), W = C ∩ W 1,4(Ω) and Wh = Ch. To verify the assumptions of the
theorem, let the weighted inner-product on H = L2(Ω) be (v, d)H = (φv, d) and define
Fh ∈ L1[0, T ;W ′

h] by

∀dh ∈ P`[tn−1, tn, Ch], Fh(dh) = (g, dh) + (chuh −D(uh)∇ch,∇dh) + (qout, dh)Γout .

With this notation, the discrete weak statement (2.4) for the concentration takes the form
assumed in Theorem 3.6;∫ tn

tn−1

(cht, dh)H + ([cn−1
h ], dn−1

h+ )H =

∫ tn

tn−1

Fh(dh).

Lemma 3.5 shows that Assumption 2 of Theorem 3.6 is satisfied. To establish the third
assumption of the theorem we show each term in the definition of Fh is bounded in

14



L1[0, T ;W ′
h]. The terms containing the data are bounded as∫ T

0

|(g, dh) + (qout, dh)Γout | ≤ (‖g‖L1[0,T ;C′] + ‖qout‖L1(0,T ;H−1/2(Γout)))‖dh‖L∞[0,T ;H1(Ω)].

The second term in the definition of Fh is bounded using the Sobolev embedding H1(Ω) ↪→
L4(Ω), ∫ T

0

(chuh,∇dh) ≤
∫ T

0

‖ch‖L4(Ω)‖uh‖L2(Ω)‖∇dh‖L4(Ω)

≤M

∫ T

0

‖ch‖H1(Ω)‖uh‖L2(Ω)‖∇dh‖L4(Ω)

≤M‖ch‖L2[0,T ;H1(Ω)]‖uh‖L2[0,T ;L2(Ω)]‖∇dh‖L∞[0,T ;L4(Ω)],

and the third term is bounded by using (1.6),∫ T

0

(D(uh)∇ch,∇dh) ≤
∫ T

0

‖D1/2(uh)∇ch‖L2(Ω)‖D1/2(uh)∇dh‖L2(Ω)

≤M

∫ T

0

‖D1/2(uh)∇ch‖L2(Ω)

(
‖∇dh‖L2(Ω) + ‖uh‖1/2

L2(Ω)‖∇dh‖L4(Ω)

)
≤M‖D1/2(uh)∇ch‖L2[0,T ;L2(Ω)] ×(

‖∇dh‖L2[0,T ;L2(Ω)] + ‖uh‖1/2

L2[0,T ;L2(Ω)]‖∇dh‖L4[0,T ;L4(Ω)]

)
.

Then

‖Fh‖L1[0,T ;W ′
h] ≤M

(
‖g‖L1[0,T ;C′] + ‖uh‖L2[0,T ;L2(Ω)]‖ch‖L2[0,T ;H1(Ω)]

+ ‖D1/2(uh)∇ch‖L2[0,T ;L2(Ω)](1 + ‖uh‖1/2

L2[0,T ;L2(Ω)]) + ‖qout‖L1[0,T ;H−1/2(Γout)]

)
.

This result, combined with Lemma 3.1 and Lemma 3.5, establishes Assumption 3 of The-
orem 3.6. The theorem then shows that the concentrations {ch}h>0 are precompact in
L2(0, T ;L2(Ω)) ∩ Lr(0, T ;W ′) for each 1 ≤ r <∞.

Remark 3.8. Since W 1,4(Ω) ↪→ Hs(Ω) for s = 1 + d/4 it follows that (C ∩W 1,4(Ω))′ ↪→
H−s. Interpolating between the inclusions H1(Ω) ↪→ L2(Ω) ≡ H0(Ω) ↪→ H−s then shows

‖ch‖L2(Ω) ≤ ‖ch‖θH1(Ω)‖ch‖1−θ
H−s ≤M‖ch‖θH1(Ω)‖ch‖1−θ

(C∩W 1,4(Ω))′ , 0 = θ − s(1− θ),

or θ = s/(1 + s) = (4 + d)/(8 + d). If q < 2(8 + d)/(4 + d) then qθ < 2, and Holder’s
inequality shows

‖ch‖Lq [0,T ;L2(Ω)] ≤M‖ch‖θL2[0,T ;H1(Ω)]‖ch‖1−θ
Lr[0,T ;(C∩W 1,4(Ω))′], r = 2q(1− θ)/(2− qθ).

It follows that {ch}h>0 is precompact in Lq[0, T ;L2(Ω)] for q < 22/7 in three dimensions
and q < 10/3 in two dimensions.
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3.3.1. Proof of Theorem 3.6. We begin with the following lemma which establishes
the crucial equicontinuity property required for compactness.

Lemma 3.9 (Equicontinuity). Let H be a Hilbert space with inner-product (·, ·)H , W be a
Banach space, and W ↪→ H ↪→ W ′ be dense embeddings. Let 0 = t0 < t1 < . . . < tN = T
be a uniform partition of [0, T ], Wh ⊂ W be a subspace, and ` ≥ 0. Fix 1 ≤ p, q <∞ with
1/p+ 1/q ≥ 1 and assume that wh|(tn−1,tn) ∈ P`[tn−1, tn;Wh] and∫ tn

tn−1

(wht, vh)H + (wn−1
h+ − wn−1

h− , vn−1
h+ )H =

∫ tn

tn−1

Fh(vh),

for all vh ∈ P`(tn−1, tn;Wh), where Fh ∈ Lq[0, T ;W ′
h].

Then for all 0 ≤ δ ≤ T there exists a constant M(`) > 0 such that

sup
vh∈Lp[δ,T ;Wh]

∫ T
δ

(wh(t)− wh(t− δ), vh)H dt

‖vh‖Lp[δ,T ;W ]

≤M(`)‖F‖Lq [0,T ;W ′
h] max(

T

N
, δ)1/q′δ1/p′ ,

where p′ and q′ are the dual exponents to p and q respectively.

This is a variation of [19, Lemma 3.3] and the proof, which we omit, follows as in [19] with
minor modification. Granted this technical lemma, we now prove Theorem 3.6.

Proof of Theorem 3.6. Since wh(t) ∈ Wh, Lemma 3.9 and the bound upon ‖Πh‖L(W,Wh)

can be combined to show(∫ T

δ

‖wh(t)− wh(t− δ)‖p
′

W ′ dt
)1/p′

= sup
v∈Lp[δ,T ;W ]

∫ T
δ

(wh(t)− wh(t− δ), v)H dt

‖v‖Lp[δ,T ;W ]

= sup
v∈Lp[δ,T ;W ]

∫ T
δ

(wh(t)− wh(t− δ),Πh(v))H dt

‖Πh(v)‖Lp[δ,T ;W ]

×
‖Πh(v)‖Lp[δ,T ;W ]

‖v‖Lp[δ,T ;W ]

≤M(`)‖F‖Lq [0,T ;W ′
h] max(

T

N
, δ)1/q′δ1/p′ .

By assumption p > 1, so p′ < ∞, and it follows that {wh}h>0 is equicontinuous in
Lp

′
[0, T ;W ′] and bounded in Lp[0, T ;V ], so compact in Lp

′
[θ, T − θ,W ′] for any fixed

0 < θ < T/2, [19, Theorem 3.2].

Next, since {wh}h>0 is uniformly equicontinuous in the sense that∫ T

δ

‖wh(t)− wh(t− δ)‖p
′

W ′ dt ≤Mδα,

with parameter α = 1, it follows [19, Lemma 3.4] that {wh}h>0 is bounded in Lr[0, T ;W ′]
for any 1 ≤ r <∞, and hence is compact in Lr[0, T ;W ′] for all 1 ≤ r <∞.

To establish compactness of {wh}h>0 in Lp[0, T ;H] recall [17] that V ↪→→ H ↪→ W ′ implies
that for all ε > 0 there exists M(ε) > 0 such that

‖wh(t)‖H ≤ ε‖wh(t)‖V +M(ε)‖wh(t)‖W ′ ,
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so
‖wh‖Lp[0,T ;H] ≤ ε‖wh‖Lp[0,T ;V ] +M(ε)‖wh‖Lp[0,T ;W ′].

Since {wh}h>0 is bounded in Lp[0, T ;V ] and compact in Lp[0, T ;W ′] it follows that it is
also compact in Lp[0, T ;H]. �

3.4. Convergence of the Velocity and Pressure. Theorem 3.7 allows passage to a
subsequence for which the concentrations converge in L2[0, T ;L2(Ω)] and, upon passing to
a further subsequence if necessary, at almost every (t, x) ∈ (0, T )×Ω. The same is also true
for the higher order schemes, and in this section we show that this is sufficient to establish
(strong) convergence of the numerical approximations of the velocity and pressure.

Theorem 3.10. Let the data and coefficients satisfy Assumptions 1.1 and 1.2 respectively
and suppose that the maximal time step ∆t tends to zero with the mesh parameter. Sup-
pose that the sequence {ch}h>0 ⊂ L2[0, T ;L2(Ω)] converges pointwise almost everywhere
to c ∈ L2[0, T ;L2(Ω)], then the velocity and pressure computed using scheme (2.2)–(2.3)
over a regular family of meshes converge strongly in L2[0, T ;H(Ω; div)] and L2[0, T ;L2(Ω)]
respectively.

Proof. Let U = L2[0, T ;U ] and P = L2[0, T ;L2(Ω)] and denote the finite element subspaces
by

Uh = {uh ∈ U | uh|(tn−1,tn) ∈ P`[tn−1, tn;Uh]}, and

Ph = {ph ∈ P | ph|(tn−1,tn) ∈ P`[tn−1, tn;Ph]}.

Lemma 3.1 shows that the numerical approximations {(uh, ϕh)}h>0 are bounded in U×P,
so we may pass to a subsequence for which (uh, ϕh) converges weakly to a pair (u, ϕ) in
U × P. Also, we remark that since µ(.) takes values in a compact set, it follows from the
dominated convergence theorem that µ(ch) → µ(c) in Lr[0, T ;Lr(Ω)] for each 1 ≤ r <∞.

To show that the weak limits satisfy the limiting equation, fix (v, ψ) ∈ C∞([0, T ] × Ω̄) ∩
(U×P). Classical approximation theory shows that exists a sequence ((vh, ψh))h ⊂ Uh×Ph
such that (vh, ψh) → (v, ψ) in W 1,∞((0, T )×Ω). In this situation we may pass to the limit
term-by term in equations (2.2) and (2.3) to show that∫ T

0

((K−1(c)u,v)− (ϕ, div(v))) = −
∫ T

0

(ϕD,v · n)ΓD
,∫ T

0

(div(u), ψ) =

∫ T

0

(f, ψ).

Since C∞([0, T ]× Ω̄) ∩ (U× P) is dense in U× P, it follows that (u, ϕ) is a weak solution
of the mixed problem.

In order to establish strong convergence we introduce some notation to facilitate the use
of abstract linear theory. For c ∈ L2[0, T ;L2(Ω)] fixed, let b(., .; c) : (U × P)2 → R be the
bilinear form

b((u, ϕ), (v, ψ); c) =

∫ T

0

(
(K−1(c)u,v)− (ϕ, div(v)) + (ψ, div(u))

)
.

17



Lemma 3.1 shows that b(., .; c) is coercive on Uh × Ph when K satisfies Assumption 1.2.
Clearly, b(·, ·; c) is also continuous. Under these hypotheses, the Second Strang Lemma [6]
states that

‖(u− uh, ϕ− ϕh)‖U×P ≤ inf
(vh,ψh)∈Uh×Ph

‖(u− vh, ϕ− ψh)‖U×P

+ sup
(vh,ψh)∈Uh×Ph

|b((u, ϕ), (vh, ψh); c)− b((u, ϕ), (vh, ψh); ch)|
‖(vh, ψh)‖U×P

.

The consistency error takes the form

b((u, ϕ), (vh, ψh); c)− b((u, ϕ), (vh, ψh); ch) =

∫ T

0

(
(K−1(c)−K−1(ch))u,vh

)
,

so

‖(u− uh, ϕ− ϕh)‖U×P ≤ inf
(vh,ψh)∈Uh×Ph

‖(u− vh, ϕ− ψh)‖U×P+‖(K−1(c)−K−1(ch))u‖L2[0,T ;L2(Ω)].

The assumptions on K(.) guarantee that |K−1(ch)u|2 converges pointwise to |K−1(c)u|2,
and since K−1(.) takes values in a compact set it follows that |K−1(ch)u|2 ≤M |u|2. Appli-
cation of the dominated convergence theorem shows K−1(ch)u → K−1(c)u in L2[0, T ;L2(Ω)],
and strong convergence of the velocity and pressure follows.

3.5. Convergence of the Concentration. The compactness properties of the dis-
crete solutions to the concentration were sufficient to prove strong convergence of the ve-
locity and pressure. We now complete the “bootstrap” argument by showing that this, in
turn, is sufficient to establish convergence of the discrete concentrations to a weak solution
of equation (1.3).

Theorem 3.11. Let the data satisfy Assumptions 1.1, 1.2 and 2.1 and suppose that
the maximal time step ∆t tends to zero with the mesh parameter. Then upon passage
to a subsequence, the concentrations computed using scheme (2.2)–(2.4) over a regular
family of meshes with ` = 0 or ` = 1 converge strongly in L2[0, T ;L2(Ω)] and weakly in
L2[0, T ;H1(Ω)] to a weak solution c of the concentration equation. In particular the triple
(uh, ϕh, ch) converges to a weak solution of equations (1.1)-(1.3).

Proof. Theorems 3.7, 3.10 and Lemma 3.5 allow passage to a subsequence for which the ve-
locity and pressure converge strongly in L2[0, T ;H(Ω; div)] and L2[0, T ;L2(Ω)] respectively
to u and ϕ, and

ch → c strongly in L2[0, T ;L2(Ω)],

ch ⇀ c weakly in L2[0, T ;H1(Ω)],

D(uh)
1/2∇ch ⇀ η weakly in L2[0, T ;L2(Ω)].

Since D(·) has linear growth and is continuous, the mapping u 7→ D(u) is strongly contin-

uous from L2[0, T ;L2(Ω)]
d

to L2[0, T ;L2(Ω)]
d×d

. It follows that the subsequence (D(uh))h
converges to D(u) strongly in L2[0, T ;L2(Ω)]

d×d
; in particular, η = D(u)1/2∇c.
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Let Ch ⊂ L2[0, T ;C] denote the space of test functions for the numerical approximations
of the concentration,

Ch = {dh ∈ L2[0, T ;C] | dh|(tn−1,tn) ∈ P`[tn−1, tn;Ch]}.

If dh ∈ Ch ∩ C[0, T ;L2(Ω)] and dh(T ) = 0, then integrating the temporal term in (2.4) by
parts and summing shows∫ T

0

{
−(ch, dht)H+(−chuh+D(uh)∇ch,∇dh)

}
= (c0h−, dh(0))H+

∫ T

0

{
(g, dh)+(qout, dh)Γout

}
.

Let d ∈ C∞[0, T ;C∞(Ω̄) ∩ C] and d(T ) = 0. Classical approximation theory guarantees
the existence of a sequence {dh}h ⊂ Ch ∩ C0[0, T ;L2(Ω)] with dh(T ) = 0, that converges
to d in W 1,∞((0, T )× Ω) as h tends to zero. We claim that we can then pass to the limit
term by term in equation (3.5). Indeed, the right hand side is linear in dh, and all but the
third term on the left is a product of weakly and strongly converging terms. The third
term also converges since it may be rewritten as∫ T

0

(D(uh)∇ch,∇dh) =

∫ T

0

(∇ch, D(uh)∇dh),

which is now a product of functions converging weakly and strongly in L2[0, T ;L2(Ω)]
respectively.

It follows that the limit (c,u) satisfies∫ T

0

{
− (c, dt) + (−cu +D(u)∇c,∇d)

}
= (c(0), d(0))H +

∫ T

0

{
(g, d) + (qout, d)Γout

}
,

for all smooth d in L2[0, T ;C] vanishing at T . As functions of d, all but the third term on the
left are continuous for d ∈ L2[0, T ;C] ∩H1[0, T ;C ′]. If additionally d ∈ L4[0, T ;W 1,4(Ω)]
then D(u)1/2∇d ∈ L2[0, T ;L2(Ω)], and the third term will be integrable since D(u)1/2∇c ∈
L2[0, T ;L2(Ω)]. Since the smooth functions are dense in L2[0, T ;C] ∩ L4[0, T ;W 1,4(Ω)] ∩
H1[0, T ;C ′] it follows that the triple (u, ϕ, c) is a weak solution of equations (1.1)-(1.3).

4. Higher Order Schemes. We propose a higher order time stepping scheme that
computes an approximation (uh, ϕh) of the velocity and pressure using (2.2)-(2.3) and an
approximation of the concentration ch satisfying the following equation:∫ tn

tn−1

(φcht, dh) +Qn (−chuh +D(uh)∇ch,∇dh) (4.1)

+ (cn−1
h+ − cn−1

h− , φdn−1
h+ ) =

∫ tn

tn−1

(
(g, dh) + (qout, dh)Γout

)
.

This equation was obtained by modifying the low order scheme for the concentration by
using a quadrature rule Qn to evaluate the nonlinear terms. The quadrature rule takes the
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general form

Qn(f) = ∆tn
∑̀
i=0

wif(tn−1 + ξi∆t
n),

where ∆tn = tn−1−tn, ξi ∈ [0, 1), and the weights wi are positive numbers. The quadrature
rule, introduced below, has ξ0 = 0 as a quadrature point, and will be exact on P2`(0, 1) so
that the DG time stepping scheme will have formal order ` + 1. The quadrature scheme
is chosen to preserve the monotonicity of the elliptic term. Since this term is unbounded,
non-monotone approximations of this term cannot be accommodated.

4.1. Radau Quadrature. To bound the jump terms in the DG time stepping scheme
we need to select a test function dh satisfying dn−1

h+ = cn−1
h+ , and to facilitate this a Radau

scheme with a quadrature point at the left hand end of the interval is utilized. For com-
pleteness, we now recall the Radau quadrature rule on the interval [0, 1].

Let {pi}`i=0 be the polynomials on (0, 1) with deg(pi) = i which are orthonormal with
respect to the inner product

(f, g) =

∫ 1

0

f(ξ)g(ξ) ξ dξ.

Define the quadrature points {ξi}`i=0 to be the roots of ξp`(ξ) and select the weights wi so
that the quadrature rule

Q(f) =
∑̀
i=0

wif(ξi),

is exact on P`(0, 1). This Radau scheme has positive weights and is exact on P2`(0, 1).

Example: If ` = 1 then ξ0 = 0, ξ1 = 2/3 with weights w0 = 1/4 and w1 = 3/4. If ` = 2
then

ξ0 = 0, ξ1 = 4/9 +
√

6/36, ξ2 = 4/9−
√

6/36,

w0 = 1/9, w1 = 3/5−
√

6/10, w2 = 3/5 +
√

6/10.

Let Φi ∈ P`(0, 1) denote the Lagrange interpolation functions satisfying Φi(ξj) = δij, 0 ≤
i, j ≤ `. Then the quadrature weights are wi =

∫ 1

0
Φi. Moreover, if I : C[0, 1] → P`(0, 1) is

the associated Lagrange interpolation operator;

I(f)(ξ) =
∑̀
i=0

Φi(ξ)f(ξi),
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then it is easy to check that

I(f)(0) = f(0),∫ 1

0

I(f)p = Q(fp), p ∈ P`(0, 1),∫ 1

0

I(p) = Q(p), p ∈ P2`(0, 1),

Q(fg) ≤ Q(f 2)1/2Q(g2)1/2.

Notation 4.1. Given a partition 0 = t0 < t1 < . . . < tN = T

1. Qn(.) will denote the quadrature scheme on [tn−1, tn] obtained from the Radau quadra-
ture Q using the natural affine change of variables. That is, the scheme with weights
wi∆t

n and quadrature points si = tn−1 + ξi∆t
n, where ∆tn = tn − tn−1. Q∆t(.) will

denote the composite scheme on [0, T ], with ∆t = maxn ∆tn.
2. In : C[tn−1, tn] → P`(tn−1, tn) will denote the corresponding Lagrange interpolation

operator with interpolation points si = tn−1 + ξi∆t
n. The corresponding piecewise

polynomial interpolant on [0, T ] is denoted by I∆t.

Properties of quadrature rule and associated interpolation operator, given above, are con-
served by the change of variables. In particular, we have:

In(f)(tn−1) = f(tn−1
+ ), (4.2)∫ tn

tn−1

In(f)p = Qn(fp), ∀p ∈ P`(tn−1, tn), (4.3)∫ tn

tn−1

In(p) =

∫ tn

tn−1

p, ∀p ∈ P2`(t
n−1, tn), (4.4)

Qn(fg) ≤ (Qn(f 2))1/2(Qn(g2))1/2. (4.5)

We will also use the following property, for any spatial norm ‖ · ‖ = (., .)1/2 on a Hilbert
space: ∫ tn

tn−1

‖In(f)‖2 = Qn(‖f‖2). (4.6)

4.2. Stability of Schemes with Quadrature. The quadrature rules were con-
structed so that the discrete scheme would be stable. The following analog of Lemma
3.5 requires the right hand side f of the Darcy equation to be bounded in L∞[0, T ;L∞(Ω)]
instead of L1[0, T ;L∞(Ω)]. This additional hypothesis is required since, unlike the low
order schemes, bounding ch at the partition points tn is not sufficient to bound ch in
L∞[0, T ;Ch].

Lemma 4.2 (Stability of high order schemes). Let the data and coefficients satisfy As-
sumptions 1.1 and 1.2 respectively and assume additionally that f ∈ L∞[0, T ;L∞(Ω)].
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Then there exist positive constants M1,M2, independent of h and ∆t, such that the con-
centrations computed using equation (4.1), satisfy

max
1≤n≤N

‖φ1/2cnh−‖2
L2(Ω) +

N−1∑
i=0

‖[φ1/2cnh]‖2
L2(Ω) +

∫ T

0

(
‖ch‖2

L2(Ω) + ‖I∆t(D(uh)
1/2∇ch)‖2

L2(Ω)

)
≤M1 exp((1+M2‖f‖L∞[0,T ;L∞(Ω)])T )

(
‖φ1/2c0h−‖L2(Ω) + ‖g‖L2[0,T ;C′] + ‖qout‖L2[0,T ;H−1/2(Γout)]

)
,

provided (1 +M2‖f‖L∞[0,T ;L∞(Ω)])∆t < 1. In particular,

max
0≤n≤N

‖cnh−‖L2(Ω), ‖ch‖L2[0,T ;H1(Ω)], and ‖I∆t(D(uh)
1/2∇ch)‖L2[0,T ;L2(Ω)]

are bounded independently of h and ∆t.

Proof. The idea is to select the test function to be an approximation of exp(−λt)ch(t) on
[tn−1, tn) where λ > 0 is to be specified. Specifically, fix λ > 0, define ω(t) = 1−λ(t− tn−1)
and select the test function for the concentration equation (4.1) to be dh = I∆t(ωch). Since
ωch ∈ P`+1[t

n−1, tn;Ch] and cht ∈ P`−1[t
n−1, tn;Ch], from (4.3) and (4.4), we have∫ tn

tn−1

(φcht, dh) =

∫ tn

tn−1

(φcht, I
n(ωch)) = Qn((φcht, ωch)) =

∫ tn

tn−1

(φcht, ωch)

=
1

2
(1− λ∆tn)‖φ1/2cnh+‖2

L2(Ω) −
1

2
‖φ1/2cn−1

h+ ‖2
L2(Ω) +

1

2

∫ tn

tn−1

λ‖φ1/2c2h‖L2(Ω).

In addition, from (4.2) we find

(cn−1
h+ −cn−1

h− , φdn−1
h+ ) = (cn−1

h+ −cn−1
h− , φcn−1

h+ ) =
1

2
‖φ1/2cn−1

h+ ‖2
L2(Ω)+

1

2
‖φ1/2[cn−1

h ]‖2
L2(Ω)−

1

2
‖φ1/2cn−1

h− ‖2
L2(Ω).

Combining the above shows∫ tn

tn−1

(φcht, dh) + (cn−1
h+ − cn−1

h− , φdn−1
h+ ) = (1/2)(1− λ∆tn)‖φ1/2cnh−‖2

L2(Ω) +

∫ tn

tn−1

(λ/2)‖φ1/2ch‖2
L2(Ω)

+(1/2)‖φ1/2[cn−1
h ]‖2

L2(Ω) − (1/2)‖φ1/2cn−1
h− ‖2

L2(Ω).

We next show that the quadrature rule preserves the monotonicity of the principle term
provided the time steps are sufficiently small. We bound the convective term using the
estimates (3.1) and (3.2) and property (4.4) of the quadrature rule. Recall that Πh :
L2[tn−1, tn;L2(Ω)] → P`[tn−1, tn;Ph] is the orthogonal projection.

Qn((chuh,∇dh)) = −1

2
Qn((div(uh), ωc

2
h)) = −1

2
Qn((Πh(f), ωc2h))

≤ (1/2)‖Πh(f)‖L∞[0,T ;L∞(Ω)]Q
n(‖ch‖2

L2(Ω))

≤ (M1/2)‖f‖L∞[0,T ;L∞(Ω)]‖ch‖2
L2[tn−1,tn;L2(Ω)].
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The diffusive term is bounded using property (4.6) of the quadrature rule.

Qn((D(uh)∇ch,∇dh)) =
∑̀
i=0

wi∆t
n(1− λ(si − tn−1))‖D(uh)

1/2∇ch‖2
L2(Ω)|t=si

≥ (1− λ∆tn)
∑̀
i=0

wi∆t
n‖D(uh)

1/2∇ch|t=si‖2
L2(Ω)

= (1− λ∆tn)

∫ tn

tn−1

‖In(D(uh)
1/2∇ch)‖2

L2(Ω).

In the above it is assumed that λ∆tn ≤ 1. We now combine the inequalities above and
obtain, for λ∆tn ≤ 1/2,

(1− λ∆tn)‖φ1/2cnh−‖2
L2(Ω) + ‖φ1/2[cn−1

h ]‖2
L2(Ω) +

∫ tn

tn−1

(
λ‖φ1/2ch‖2

L2(Ω) + ‖In(D(uh)
1/2∇ch)‖2

L2(Ω)

)
≤ ‖φ1/2cn−1

h− ‖2
L2(Ω) (4.7)

+

∫ tn

tn−1

{
M‖f‖L∞[0,T ;L∞(Ω)]‖ch‖2

L2(Ω) +
2

dm
(‖g‖C′ + ‖qout‖H−1/2(Γout))

2 +
dm
2
‖ch‖2

H1(Ω)

}
.

Pick λ = 1 + (dm

2
+M‖f‖L∞[0,T ;L∞(Ω)])/φ0 and note that∫ tn

tn−1

‖In(D(uh)
1/2∇ch)‖2

L2(Ω) = Qn
(
‖D(uh)

1/2∇ch‖2
L2(Ω)

)
≥ dmQ

n
(
‖∇ch‖2

L2(Ω)

)
= dm

∫ tn

tn−1

‖∇ch‖2
L2(Ω),

so that we can write∫ tn

tn−1

(
λ‖φ1/2ch‖2

L2(Ω) + ‖In(D(uh)
1/2∇ch)‖2

L2(Ω)

)
≥ (1 +M‖f‖L∞[0,T ;L∞(Ω)])

∫ tn

tn−1

‖φ1/2∇ch‖2
L2(Ω)

+
dm
2

∫ tn

tn−1

‖ch‖2
H1(Ω) +

1

2

∫ tn

tn−1

‖In(D(uh)
1/2∇ch)‖2

L2(Ω).

Therefore (4.7) becomes:

(1− λ∆tn)‖φ1/2cnh−‖2
L2(Ω) + ‖φ1/2[cn−1

h ]‖2
L2(Ω) +

∫ tn

tn−1

(
‖φ1/2ch‖2

L2(Ω) +
1

2
‖In(D(uh)

1/2∇ch)‖2
L2(Ω)

)
≤ ‖φ1/2cn−1

h− ‖2
L2(Ω) +

2

dm

∫ tn

tn−1

(‖g‖C′ + ‖qout‖H−1/2(Γout))
2.

The discrete Gronwall inequality, Lemma 3.4, completes the proof.
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4.3. Compactness of the Concentration. Theorem 3.6 will be used to show com-
pactness of the concentrations. The stability estimates of Lemma 4.2 provide the bounds
required upon {ch}h>0, and, as for the low order time stepping schemes, these will be
sufficient to bound the spatial terms in equation (4.1) to establish the third hypothesis of
Theorem 3.6.

Theorem 4.3. Let the data and coefficients satisfy Assumptions 1.1 and 1.2 respectively
and suppose additionally that f ∈ L∞[0, T ;L∞(Ω)] and that the maximal time step ∆t
tends to zero with the mesh parameter. Then the concentrations {ch}h>0 computed using
(2.2), (2.3) and (4.1) are precompact in L2[0, T ;L2(Ω)] ∩ Lr[0, T ; (C ∩W 1,4(Ω))′] for any
1 ≤ r <∞.

Proof. The proof of Theorem 3.7 will carry over provided the terms in equation (4.1) com-
puted using the quadrature rule can be bounded so that the third hypothesis of Theorem
3.6 holds. We define a function F̂h by

F̂h(dh) = I∆t(−chuh +D(uh)∇ch,∇dh), (4.8)

and we have ∫ T

0

F̂h(dh) = Q∆t((−chuh +D(uh)∇ch,∇dh)).

It suffices to show that F̂h ∈ L1(0, T ;C ′h). Fixing dh ∈ {L∞[0, T ;W 1,4(Ω)] | dh|(tn−1,tn) ∈
P`[tn−1, tn;Ch]}, the convection term is estimated by

Q∆t((−chuh,∇dh)) ≤ Q∆t(‖ch‖L4(Ω)‖uh‖L2(Ω)‖∇dh‖L4(Ω))

≤MQ∆t(‖ch‖H1(Ω)‖uh‖L2(Ω))‖∇dh‖L∞[0,T ;L4(Ω)]

≤M(Q∆t(‖ch‖2
H1(Ω)))

1/2(Q∆t(‖uh‖2
L2(Ω)))

1/2‖∇dh‖L∞[0,T ;L4(Ω)]

≤M‖ch‖L2[0,T ;H1(Ω)]‖uh‖L2[0,T ;L2(Ω)]‖∇dh‖L∞[0,T ;L4(Ω)],

where the last line follows since ‖ch‖2
H1(Ω) and ‖uh‖2

L2(Ω) are piecewise polynomials of degree
2` so are integrated exactly by the quadrature rule.

To estimate the second term of F̂h, use properties (4.5) and (4.6) of the quadrature scheme
to write

Q∆t ((D(uh)∇ch,∇dh)) = Q∆t

(
(D(uh)

1/2∇ch, D(uh)
1/2∇dh)

)
≤ (Q∆t(‖D(uh)

1/2∇ch‖2
L2(Ω)))

1/2(Q∆t(‖D(uh)
1/2∇dh‖2

L2(Ω)))
1/2

≤ ‖I∆t(D(uh)
1/2∇ch)‖L2[0,T ;L2(Ω)](Q∆t(‖D(uh)

1/2∇dh‖2
L2(Ω)))

1/2.

The stability estimate bounds the first term. To estimate the second term use (1.6) to
obtain

Q∆t(‖D(uh)
1/2∇dh‖2

L2(Ω)) ≤MQ∆t

(
‖∇dh‖2

L2(Ω) + ‖uh‖L2(Ω)‖∇dh‖2
L4(Ω)

)
≤M

(
‖∇dh‖2

L2[0,T ;L2(Ω)] + ‖uh‖L2[0,T ;L2(Ω)]‖∇dh‖2
L∞[0,T ;L4(Ω)]

)
.
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In the last line we use the fact that ‖∇dh‖2
L2(Ω) and ‖uh‖2

L2(Ω) are piecewise polynomials
of degree 2`, so are integrated exactly by the quadrature rule. The rest of the proof is the
same as in the proof of Theorem 3.7.

4.4. Convergence of the Concentration. Compactness of the concentrations al-
lows passage to a subsequence for which ch → c in L2[0, T ;L2(Ω)] and converges pointwise
at almost every (t, x) ∈ (0, T )×Ω. Theorem 3.10 then shows that the corresponding veloci-
ties and pressures (uh, ϕh) then converge strongly in L2(Ω)[0, T ;H(Ω; div)]×L2[0, T ;L2(Ω)]
to a weak solution of equations (1.1) and (1.2). The following theorem shows that the con-
centrations will then converge to a weak solution of equation (1.3).

Theorem 4.4. Let the data satisfy Assumptions 1.1, 1.2 and 2.1 and suppose additionally
that f ∈ L∞[0, T ;L∞(Ω)] and that the maximal time step ∆t tends to zero with the mesh
parameter. Then upon passage to a subsequence, the concentrations computed using scheme
(2.2), (2.3) and (4.1) over a regular family of meshes converge strongly in L2[0, T ;L2(Ω)]
and weakly in L2[0, T ;H1(Ω)] to a weak solution c of the concentration equation. In par-
ticular the triple (uh, ϕh, ch) converges to a weak solution of equations (1.1)-(1.3).

Proof. The argument is the similar to the one used to prove convergence of the low order
schemes in Theorem 3.11. The major difference is that in the present situation some terms
are evaluated using quadrature, so it suffices to show that these converge to the correct
limits.

Using the stability and compactness properties estimates we may pass to a subsequence
for which

uh → u strongly in L2[0, T ;L2(Ω)]

ch → c strongly in L2[0, T ;L2(Ω)]

ch ⇀ c weakly in L2[0, T ;H1(Ω)]

I∆t(D(uh)
1/2∇ch) ⇀ η weakly in L2[0, T ;L2(Ω)].

If dh ∈ Ch ∩ C[0, T ;L2(Ω)] converges to d in W 1,∞((0, T )× Ω), we need to show that

lim
h,∆t→0

∫ T

0

F̂h(dh) =

∫ T

0

(−cu +D(u)∇c,∇d) ,

where F̂h is the function specified in equation (4.8). Let d̄h be piecewise constant in time
on each interval (tn−1, tn) and take the average value of dh. Then d̄h → d strongly in
L∞[0, T ;W 1,∞(Ω)], and in the proof of Theorem 4.3 it was shown that∣∣∣∣∫ T

0

F̂h(dh − d̄h)

∣∣∣∣ ≤M‖dh − d̄h‖L∞[0,T ;W 1,4(Ω)],

which converges to zero as h tends to zero. It then suffices to show

lim
h,∆t→0

∫ T

0

F̂h(d̄h) =

∫ T

0

(−cu +D(u)∇c,∇d) .
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On each interval, (chuh,∇d̄h) ∈ P2`(t
n−1, tn), so the quadrature rule is exact, and

Q∆t

(
(−chuh,∇d̄h)

)
=

∫ T

0

(
−chuh,∇d̄h

)
→
∫ T

0

(−cu,∇d) .

To establish convergence of the principle term, let ūh be piecewise constant in time on each
interval (tn−1, tn) and take the time average value of uh. Then {ūh}h converges weakly to
u in L2[0, T ;L2(Ω)], and a calculation shows

‖ūh‖L2[0,T ;L2(Ω)] ≤ ‖uh‖L2[0,T ;L2(Ω)] → ‖u‖L2[0,T ;L2(Ω)];

so ūh → u strongly in L2[0, T ;L2(Ω)]. Then write the principle term as

Q∆t

(
(D(uh)∇ch,∇d̄h)

)
= Q∆t

(
((D(uh)−D(ūh))∇ch,∇d̄h)

)
+

∫ T

0

(D(ūh)∇ch,∇d̄h),

(4.9)
where we use the fact that on each interval (D(ūh)∇ch,∇d̄h) ∈ P`(tn−1, tn) so is integrated
exactly by the quadrature rule. Since D : Ω × Rd → Rd×d satisfies the Caratheodory
conditions with linear growth, it follows that D(ūh) → D(u) strongly in L2[0, T ;L2(Ω)],
so ∫ T

0

(D(ūh)∇ch,∇d̄h) →
∫ T

0

(D(u)∇c,∇d).

It then suffices to show that the first term on the right of equation (4.9) vanishes in the
limit. To do this we use the Lipschitz continuity of D(·) established in Lemma 1.3). We
compute

Q∆t

(
((D(uh) − D(ūh))∇ch,∇d̄h)

)
≤MQ∆t

(
‖uh − ūh‖L2(Ω)‖∇ch‖L2(Ω)

)
‖∇d̄h‖L∞[0,T ;L∞(Ω)]

≤MQ∆t

(
‖uh − ūh‖2

L2(Ω)

)1/2

Q∆t

(
‖∇ch‖2

L2(Ω)

)1/2

‖∇d̄h‖L∞[0,T ;L∞(Ω)]

≤M‖uh − ūh‖L2[0,T ;L2(Ω)]‖∇ch‖L2[0,T ;L2(Ω)]‖∇d̄h‖L∞[0,T ;L∞(Ω)],

The second line uses the Cauchy Schwarz inequality and the last line follows since ‖uh − ūh‖2
L2(Ω)

and ‖∇ch‖2
L2(Ω) are in P2`(t

n−1, tn) on each interval. It follows that this term vanishes in the
limit, so, upon passing to a subsequence, the high order numerical schemes with quadrature
converge strongly in L2[0, T ;H(Ω; div)]×L2[0, T ;L2(Ω)]×L2[0, T ;L2(Ω)]. To conclude that
the limit (u, ϕ, c) is a weak solution of equations (1.1)-(1.3) as defined in Section 1.3 we
need to verify that D1/2(u)∇c ∈ L2[0, T ;L2(Ω)]. It suffices to show that η = D1/2(u)∇c.
Let w ∈ L2[0, T ;L2(Ω)] be continuous, and, as above, let w̄h be piecewise constant on the
intervals (tn−1, tn) and take the average value of w̄. Then following the line of argument
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in the previous paragraph,∫ T

0

(η,w) = lim
h→0

∫ T

0

(
I∆t(D

1/2(uh)∇ch), w̄h

)
= lim

h→0

∫ T

0

(
D1/2(ūh)∇ch, w̄h

)
+ lim

h→0
Q∆t

(
((D(uh)

1/2 −D(ūh)
1/2)∇ch, w̄)

)
=

∫ T

0

(
D1/2(u)∇c,w

)
+ lim

h→0
Q∆t

(
((D(uh)

1/2 −D(ūh)
1/2)∇ch, w̄)

)
.

Lemma 1.3 shows that D1/2(·) is Lipschitz, so

|Q∆t

(
((D(uh)

1/2 − D(ūh)
1/2)∇ch, w̄)

)
|

≤ Q∆t

(
‖uh − ūh‖L2(Ω)‖∇ch‖L2(Ω)

)
‖w̄h‖L∞[0,T ;L∞(Ω)]

≤ Q∆t

(
‖uh − ūh‖2

L2(Ω)

)1/2

Q∆t

(
‖∇ch‖2

L2(Ω)

)1/2

‖w̄h‖L∞[0,T ;L∞(Ω)]

≤ ‖uh − ūh‖L2[0,T ;L2(Ω)]‖∇ch‖L2[0,T ;L2(Ω)]‖w̄h‖L∞[0,T ;L∞(Ω)],

which converges to zero as h tends to zero. This shows∫ T

0

(η,w) =

∫ T

0

(
D1/2(u)∇c,w

)
,

for all smooth w ∈ L2[0, T ;L2(Ω)] from which it follows thatD1/2(u)∇c = η ∈ L2[0, T ;L2(Ω)].

5. Conclusions. This paper formulates and analyzes a numerical method for solving
the miscible displacement problem. The proposed discretization employs a discontinuous
Galerkin method in time and a combined mixed method and finite element method in
space. Stability and convergence of the numerical approximation of pressure, velocity and
concentration are obtained under minimal regularity.

REFERENCES

[1] S. Bartels, M. Jensen, and R. Müller, Discontinuous Galerkin finite element convergence for
incompressible miscible displacement problems of low regularity, preprint, (2008).

[2] F. Brezzi, J. Douglas, M. Fortin, and L. Marini, Efficient rectangular mixed finite elements
in two and three space variables, RAIRO Model. Math. Anal. Numer., 21 (1987), pp. 581–604.

[3] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, no. 15 in Computational
Mathematics, Springer–Verlag, 1991.
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