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CONVERGENCE OF NUMERICAL APPROXIMATIONS OF THE
INCOMPRESSIBLE NAVIER–STOKES EQUATIONS WITH

VARIABLE DENSITY AND VISCOSITY∗

CHUN LIU† AND NOEL J. WALKINGTON‡

Abstract. We consider numerical approximations of incompressible Newtonian fluids having
variable, possibly discontinuous, density and viscosity. Since solutions of the equations with vari-
able density and viscosity may not be unique, numerical schemes may not converge. If the solution
is unique, then approximate solutions computed using the discontinuous Galerkin method to ap-
proximate the convection of the density and stable finite element approximations of the momentum
equation converge to the solution. If the solution is not unique, a subsequence of these approximate
solutions will converge to a solution.
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1. Introduction. We consider numerical approximations of the incompressible
Navier–Stokes equations with variable density and viscosity,

ρ
(
vt + (v · ∇)v

)
+ ∇p − div

(
μ(ρ)D(v)

)
= ρf,

div(v) = 0,(1.1)

ρt + div(ρv) = 0,

on a bounded domain Ω ⊂ R
d with initial and boundary conditions

v|∂Ω = 0, v|t=0 = v0, ρ|t=0 = ρ0.

These equations model the motion of mixtures of immiscible fluids having different
densities and viscosities. The density and viscosity may be discontinuous, so, in
general, the solutions will not enjoy any regularity beyond that given by the basic
estimates

d

dt

∫
Ω

(ρ/2)|v|2 dx +

∫
Ω

μ(ρ)|D(v)|2 dx =

∫
Ω

ρf · v dx

and ρ ∈ L∞[0, T ;L∞(Ω)]; in particular, ρ does not have bounded variation. In this
situation we can establish convergence of approximate numerical solutions; however,
in the absence of additional regularity no rates of convergence can be guaranteed.

The existence of a weak solutions to (1.1) has been established by Lions [15]. Some
additional regularity was proven by Antontsev, Kazhikhov, and Monakhov [1] and
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Fujita and Kato [6] when the viscosity is constant and the initial density is bounded
from below. In [4], Desjardins provides similar results under weaker assumptions; for
instance, when the viscosity does not vary too much with the density. To establish
the existence of solutions of the Navier–Stokes equations with discontinuous density
and viscosity, sharp results for the convection equation governing the density are
required. These were developed by DiPerna and Lions [5], who showed that the
weak solutions of convection equations were unique even when the velocity was not
Lipschitz, so that characteristics may not exist. They also showed that the solutions
would converge strongly when the velocities converged weakly in L2[0, T ;H1

0 (Ω)]. For
technical reasons they only considered velocity fields v vanishing1 on ∂Ω, and for
this reason we only consider Dirichlet boundary data for v. Currently, uniqueness of
solutions to the coupled system can only be established if the velocity and density
satisfy ∇v ∈ L2[0, T ;L∞(Ω)], vt ∈ L2[0, T ;L∞(Ω)], and ∇ρ ∈ L2[0, T ;L∞(Ω)]; see
[15], so, in general, uniqueness is not expected. In this situation we can only show
that subsequences of approximate solutions converge to solutions of the Navier–Stokes
equations.

While there is a rich body of literature on numerical approximation of the classical
(constant density and viscosity) Navier–Stokes equations, very few results are available
for the situation considered here. Algorithms proposed for the approximation of (1.1)
include front tracking techniques [7, 8] and level set/phase field methods [2, 16, 17].
Recall that level set methods seek a smooth function φ satisfying φt+div(φv) = 0 and
compute ρ = H(φ), where H(.) is a suitable translation of the Heaviside graph. Nu-
merical approximations typically approximate the Heaviside graph to give a smooth
transition over several grid points. Since φ is “smooth,” accurate approximations can
be computed; however, difficulties arise when attempting to estimate the accuracy of
ρ = H(φ). Indeed, it is difficult to write down the approximate equation satisfied by
ρ in this context. For this reason we chose to compute ρ directly using the discon-
tinuous Galerkin method [9, 12]. Below we use the results of Walkington [18], which
show that approximations of the density computed using the discontinuous Galerkin
method converge strongly in L2[0, T ;L2(Ω)]. Traditionally the analysis of schemes
for hyperbolic equations is based upon the (nonlinear) theory of Kruzkov [10], which
requires the coefficients to be C1. This guarantees that the solutions are regular, in
the sense that they have bounded variation, and rates of convergence can be estab-
lished [11]. This theory fails for the problem considered here since v is not C1 and ρ
does not have bounded variation. This problem was circumvented in [18] by drawing
upon the (linear) DiPerna–Lions theory [5]. We refer to [18] for further discussion
and references on this topic.

It will be assumed that the viscosity can be determined as a continuous function
of the density, μ = μ(ρ). Physically each material particle has an associated viscosity,
so μ should satisfy the convection equation μt + v.∇μ = 0. If μ = μ(ρ), then this
equation is satisfied when ρt +div(ρv) = 0 and the fluid is incompressible, div(v) = 0.
In order to model a mixture of fluids where different components have the same
density but different viscosities, the convection equation for μ may be approximated
independently. This does not change the analysis below where the major difficulties
are due to the coupling between the density and velocity in the convection terms.

1.1. Weak solutions and the energy estimate. Since the solutions of equa-
tions (1.1) are not smooth we consider weak solutions. A pair (v, ρ) is a weak solution

1Lions and DiPerna also considered the periodic problem and the convection equation on all of
R
d.
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of (1.1) with initial data (v0, ρ0) ∈ L2(Ω) × L∞(Ω) if

v ∈ V = {v ∈ L∞[0, T ;L2(Ω)] ∩ L2[0, T ;H1
0 (Ω)] | div(v) = 0},

ρ ∈ R = L∞[0, T ;L∞(Ω)], and

∫ T

0

∫
Ω

−ρv.wt − (ρv ⊗ v) · ∇w + μ(ρ)D(v) ·D(w) =

∫
Ω

ρ0v0.w(0) +

∫ T

0

∫
Ω

ρf.w,

∫ T

0

∫
Ω

ρ(ψt + v.∇ψ) =

∫
Ω

ρ0ψ(0),(1.2)

for all w ∈ {w ∈ D([0, T ) × Ω) | div(w) = 0} and ψ ∈ D([0, T ) × Ω). DiPerna and
Lions [5] and Lions [15] established existence of solutions of this weak problem when
ρ0 is nonnegative. Their weak solutions satisfy the natural energy estimate

d

dt

∫
Ω

(ρ/2)|v|2 +

∫
Ω

μ(ρ)|D(v)|2 ≤
∫

Ω

ρf.v,(1.3)

which may be derived by formally setting w = v in the weak statement of the mo-
mentum equation and ψ = |v|2/2 in the weak statement of the density equation.

1.2. Outline. In the next section we motivate and then state the numerical
scheme used to approximate the Navier–Stokes equations with variable density and
viscosity (1.1). The requirement of stability, consistency, and nonnegativity of the
density, give rise to conflicting requirements. The scheme presented in section 2.4
satisfies these requirements and is subsequently analyzed in section 3.

1.3. Notation. Below, Ω ⊂ R
d will be a bounded domain with unit outward

normal n. We will consider a regular family of finite element meshes {Th}h>0, each of
which is assumed to triangulate Ω exactly. It is assumed that the finite elements have
uniformly bounded aspect ratio, and the parameter h > 0 represents the diameter of
the largest element in Th. The space of polynomials of degree k on an element K ∈ Th
is denoted Pk(K). For simplicity we assume that for each h > 0 a uniform partition
of [0, T ] used with tn = nτ , where τ = T/N , N ∈ N, is assumed to converge to zero as
h tends to zero. We will denote the approximate solutions by (vh, ρh); in particular,
the dependence upon τ is implicit. If a ∈ R, then the positive and negative parts are
denoted by a± with a+ = max(a, 0) and a− = min(a, 0).

Divergences of vectors and matrices are denoted div(v) = vi,i and div(T )i =
Tij,j , and gradients of vector valued quantities are interpreted as matrices, (∇v)ij =
vi,j . Here indices after the comma represent partial derivatives and the summation
convention is used. The symmetric part of the velocity gradient (stretching tensor)
is written as D(v). Inner products of vectors v, w ∈ R

d are written as v.w and their
tensor product v ⊗ w is the matrix having components viwj . The Frobenius inner
product of two matrices A, B ∈ R

d×d is denoted by A·B =
∑

i,j AijBij ; we frequently

use the elementary identities AB · C = A · CBT = B ·ATC.
Standard notation is adopted for the Lebesgue spaces, Lp(Ω), and the Sobolev

spaces, Wm,p(Ω) or Hm(Ω). The dual exponent to p will be denoted by p′, 1/p+1/p′ =
1. Solutions of the evolution equation will be functions from [0, T ] into these spaces,
and we adopt the usual notion, L2[0, T ;H1(Ω)], C[0, T ;H1(Ω)], etc. to indicate the
temporal regularity of such functions. The space of C∞ test functions having compact
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support in Ω is denoted by D(Ω). For vector valued quantities, such as the velocity v,
we write v ∈ L2(Ω) to indicate that each component lies in the specified space. The
space H(div; Ω) is the set of vector valued functions in L2[0, T ;L2(Ω)] with divergence
in L2[0, T ;L2(Ω)]. Strong convergence of a sequence will be indicated as ρh → ρ, weak
convergence by ρh ⇀ ρ, and weak � convergence by ρh ⇀∗ ρ.

2. Construction of numerical schemes.

2.1. Overview. Convergence proofs of numerical schemes for linear partial dif-
ferential equations are almost always a variant of the old adage “stability and con-
sistency imply convergence.” For nonlinear problems, some form of compactness is
usually also required. Our proof of convergence follows this line of argument; in par-
ticular, numerical schemes are constructed so that discrete versions of energy estimate
(1.3) (and hence stability) hold.

The low regularity of the solution gives rise to many technical problems. If high
order approximations of the density are used, Gibbs phenomena arise, and stable
approximations of the momentum equation require the density to be truncated or
projected onto a set of strictly positive functions. Since the density has low regularity
we cannot establish consistency of such schemes. In this situation we are forced to
resort piecewise constant approximations of the density which give rise to monotone
schemes. Unfortunately, piecewise constant approximations of the density give rise
to a different consistency error; specifically, jump terms arise when the test functions
are not continuous.

In the current context the key compactness result is that solutions of the equation
for the density ρ will converge strongly in L2[0, T ;L2(Ω)] when the velocity converges
weakly in L2[0, T ;H1

0 (Ω)], [5, 15]. The analogous statement for discontinuous Galerkin
approximations of the density equation was established by Walkington in [18] and this
result will be used below. Again the low regularity of the velocity, which appears as
a nonconstant coefficient in the density equation, gives rise to technical problems.
Specifically, in order to establish strong convergence of the density the (approximate)
velocity fields are required to have average divergence equal to zero on each element
[18].

2.2. Stability. The natural energy estimate given in (1.3) was derived assuming
that the balance of mass is satisfied exactly. Since the balance of mass is only approx-
imately satisfied by numerical approximations, the energy estimate is not automatic.
Also, numerical approximations of the density may not be nonnegative, so even if an
“energy estimate” holds it may not be useful. One way to circumvent these problems
is to observe that if ρt + div(ρv) = 0, then

ρ
(
vt + (v.∇)v

)
=

1

2

(
ρvt + (ρv.∇)v + (ρv)t + div(ρv ⊗ v)

)
.

Taking the dot product of the right-hand side with v vanishing on ∂Ω and integrating
gives (d/dt)

∫
(ρ|v|2/2). This identity holds independently of the equation for the

balance of mass and also holds if different approximations of the velocity are used as
coefficients of the convective terms. This motivates the following weak statement of
the momentum equation:

1

2

∫
Ω

ρ̄vt.w + (ρv̄.∇)v.w+(ρ̄v)t.w − (ρv̄.∇)w.v(2.1)

+

∫
Ω

−pdiv(w) + μ(ρ)D(v) ·D(w) =

∫
Ω

ρ̄f.w.



NAVIER–STOKES EQUATIONS WITH VARIABLE DENSITY 1291

In the context of a numerical scheme, ρ is an approximation of the density which
may not be positive and ρ̄ is a nonnegative projection or truncation of ρ. Similarly,
in order to obtain stability of the convection equation, a projection, v̄, of v onto a
suitable subspace of H(div; Ω) may be required for the convection terms; see [18].
Selecting w(t) = v(t) in the above equation immediately gives

d

dt

∫
Ω

(1/2)ρ̄|v|2 +

∫
Ω

μ(ρ)|D(v)|2 =

∫
Ω

ρ̄f.v.

2.3. Consistency. While numerical schemes based upon the weak statement (2.1)
will “automatically” be stable, they are not “automatically” consistent. Specifically,
in the absence of any estimates on vt it is necessary to integrate the first term by
parts. Then∫ T

0

∫
Ω

ρ̄vt.w + (ρv̄.∇)v.w =

∫ T

0

∫
Ω

−v.(ρ̄w)t + (ρv̄.∇)v.w

=

∫ T

0

∫
Ω

−(ρ̄− ρ)t v.w − ρ̄v.wt −
(
ρt(v.w) − (ρv̄.∇)v.w

)
.

(1) If a high order approximation of the density equation is used it is possible to
select v.w as a test function in the Galerkin approximation of ρt + div(ρv̄) = 0. Then∫ T

0

∫
Ω

ρ̄vt.w + (ρv̄.∇)v.w =

∫ T

0

∫
Ω

−(ρ̄− ρ)t v.w − ρ̄v.wt − (ρv̄ ⊗ v) · ∇w

and consistency requires the first term to vanish in the limit. For the continuous
problem ρ is bounded in L∞[0, T ;L∞(Ω)] so that the momentum, ρv, is bounded in
L2[0, T ;L2(Ω)]. Since ρt+div(ρv) = 0, it follows that ρt is bounded in L2[0, T ;H−1(Ω)].
Unfortunately, L∞ bounds could not be established for high order approximations of
the density, so the analogous estimates could not be established for the time derivative
of the discrete density. For this reason we could not construct nonnegative approx-
imations, ρ̄, for which (ρ̄ − ρ)t converged to zero in L2[0, T ;H−1(Ω)]. In particular,
we could not establish consistency of numerical schemes constructed using high order
approximations of the density equation.

(2) If piecewise constant approximations of the density are used, then numerical
approximations of ρ are nonnegative so it is possible to select ρ̄ = ρ. The first term
in (2.1) then becomes∫ T

0

∫
Ω

ρvt.w + (ρv̄.∇)v.w =

∫ T

0

∫
Ω

−ρv.wt − ρtv.w + (ρv̄.∇)v.w.

To establish consistency we would like to multiply the Galerkin approximation of
ρt + div(ρv̄) = 0 by v.w. When the density is approximated using piecewise constant
functions we must first approximate v.w by a (discontinuous) piecewise constant func-
tion. This leads to an expression of the form∫ T

0

∫
Ω

ρvt.w + (ρv̄.∇)v.w =

∫ T

0

∫
Ω

−ρv.wt − (ρv̄ ⊗ v) · ∇w + “jump terms,”

and the scheme is consistent provided the “jump terms” vanish in the limit. In
section 3 we show that the jump terms do vanish in the limit, which establishes
consistency.
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2.4. Scheme. In light of the above discussion we will consider approximations
of equations (1.1) where the density is approximated using piecewise constant ap-
proximations in space and time, and the momentum equation is approximated using
the implicit Euler scheme with velocity-pressure spaces satisfying the Babuska–Brezzi
condition. In order to minimize the technicalities it will be assumed that the pressure
space contains the (discontinuous) piecewise constant functions on each triangulation.
Relaxing this condition is considered in section 4. Since the accuracy of the piecewise
constant approximation of the density is formally first order, at each discrete time we
can first advance the density and then the velocity and pressure without further loss
of accuracy. In this situation the linear systems for the density and velocity/pressure
can be decoupled.

Given a triangulation Th of Ω and time step τ = T/N , let

Rh = {ρ ∈ L2(Ω) | ρ|K ∈ R ∀K ∈ Th}.

If ρ0 is the projection of ρ(0) onto Rh, then the (piecewise constant) discontinuous
Galerkin approximation of ρ(tn) satisfies ρn ∈ Rh and∫

K

ρnψn + τ

∫
∂K

(
ρn−(vn−1.n)+ + ρn+(vn−1.n)−

)
ψn =

∫
K

ρn−1ψn,(2.2)

for K ∈ Th and ψn ∈ R. Here v.n = (v.n)+ + (v.n)− are the positive and negative
parts of v.n and ρn±(x) = lims↘0 ρ

n(x±sn) so that the middle term gives the “upwind”
value of ρnvn−1.n.

To march the velocity forward, let

Vh ⊂ {v ∈ H1
0 (Ω) | v|K ∈ Pk(K), K ∈ Th},

and

Ph ⊂ {p ∈ L2(Ω)/R | p|K ∈ P�(K), K ∈ Th},

be a pair of spaces satisfying the Babuska–Brezzi condition and let v0 be the L2(Ω)
projection of v(0) onto Vh. Then the approximations, (vn, pn) ∈ Vh×Ph, of (v(tn), p(tn))
are the solution of

1

2

∫
Ω

{
ρn−1

(
vn − vn−1

τ

)
.w + (ρnvn−1.∇)vn.w

+

(
(ρv)n − (ρv)n−1

τ

)
.w − (ρnvn−1.∇)w.vn

}
(2.3)

+

∫
Ω

−pn div(w) + μnD(vn) ·D(w) =

∫
Ω

ρnfn.w,

∫
Ω

div(vn) q = 0

for all (w, q) ∈ Vh×Ph. In the above equation, fn is an approximation of the average
of f on (tn−1, tn] and μn = μ(ρn).
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3. Analysis of the numerical scheme.

3.1. Estimates. To establish stability of the scheme (2.2)–(2.3) we first state
the natural energy estimate the scheme was designed to satisfy.

Notation: If {vn}Nn=0 ⊂ Vh and {ρn}Nn=0 ⊂ Rh, then we let vh ∈ L2[−τ, T ;Vh]
and ρh ∈ L2[−τ, T ;Rh] denote the piecewise constant functions taking values vn and
ρn on (tn−1, tn], respectively.

Lemma 3.1. Let (ρh, vh, ph) be the approximate solution of equations (1.1) com-
puted using the scheme (2.2)–(2.3). Then

1

2

∫
Ω

ρn|vn|2 +
1

2

n∑
i=1

∫
Ω

ρn−1|vn − vn−1|2+
n∑

i=1

τ

∫
Ω

μn|D(vn)|2

=
1

2

∫
Ω

ρ0|v0|2 +

n∑
i=1

τ

∫
Ω

ρnfn.vn.

Let the pressure space contain the piecewise constant functions. If 0 < c ≤ ρ(0) ≤ C
and 0 < c ≤ μ(ρ) ≤ C for constants c, C ∈ R, v0 ∈ L2(Ω), and f ∈ L2[0, T ;L2(Ω)],
then {vh}h>0 is bounded in L∞[0, T ;L2(Ω)] ∩ L2[0, T ;H1

0 (Ω)] and

∫ T

τ

‖vh(t) − vh(t− τ)‖2
L2(Ω) ≤ C(v0, f)τ.

The first estimate follows directly upon substituting w = vn and q = pn into
equations (2.3). The assumption on the pressure space guarantees that the scheme
for the density is monotone [18, Theorem 6.1], so the bounds on the initial data are
preserved,

min
Ω

ρ0 ≤ ρn(x) ≤ max
Ω

ρ0, x ∈ Ω.(3.1)

The bounds on {vh}h>0 then follow from the energy estimate.

3.2. Consistency of the density equation. To establish compactness of the
sequence {vh}h>0 in L2[0, T ;L2(Ω)], it is necessary to use test functions ψ in the
discrete density equation (2.2) which are not piecewise constant. This gives rise to
consistency errors which are estimated in this section. The following lemma provides
explicit expressions for these errors.

Lemma 3.2. Let ρh ∈ Rh satisfy (2.2). If ψ ∈ H1
0 (Ω) and ψ̄ ∈ Rh is the function

taking the average value of ψ on each element K ∈ Th, then∫
Ω

(ρn − ρn−1)ψ − τ

∫
Ω

ρnvn−1.∇ψ = τ

∫
Ω

ρn(ψ − ψ̄)div(vn−1)

+ τ
∑

K∈Th

∫
∂K

[ρn](vn−1.n)−(ψ − ψ̄),

where the value of ψ̄ on ∂K is taken as ψ̄|K (that is, the trace from inside K) and
[ρn] = ρn+ − ρn−.

Proof. Select ψn = ψ̄|K in (2.2) and sum over all of the simplices K ∈ Th to get∫
Ω

ρnψ + τ
∑

K∈Th

∫
∂K

(
ρn−(vn−1.n)+ + ρn+(vn−1.n)−

)
ψ̄ =

∫
Ω

ρn−1ψ.(3.2)



1294 CHUN LIU AND NOEL J. WALKINGTON

In the middle term ρn±(x) = lims↘0 ρ
n(x ± n) and ψ̄|∂K = ψ̄|K . If E0 denotes all of

the interior edges (faces in 3d) of the elements, then the middle term may be written
as

∑
K∈Th

∫
∂K

(
ρn−(vn−1.n)+ + ρn+(vn−1.n)−

)
ψ̄

=
∑
e∈E0

∫
e

−
(
ρn−(vn−1.N)+ + ρn+(vn−1.N)−

)
[ψ̄].

Here N is one of the normals to e, ρn±(x) = lims↘0 ρ
n(x ± sN) and [ψ̄] = ψ̄+ − ψ̄−.

Integrals over the edges e ⊂ ∂Ω vanish since
∫
e
v.n = 0 on boundary edges. If

ψ : Ω̄ → R is continuous and vanishes on ∂Ω, then [ψ] = 0 on each edge e ∈ E0, so
[ψ̄] = [ψ̄ − ψ]. Reversing the above calculation shows

∑
K∈Th

∫
∂K

(
ρn−(vn−1.n)+ + ρn+(vn−1.n)−

)
ψ̄

=
∑

K∈Th

∫
∂K

(
ρn−(vn−1.n)+ + ρn+(vn−1.n)−

)
(ψ̄ − ψ)

=
∑

K∈Th

∫
∂K

(
ρn−(vn−1.n) + (ρn+ − ρn−)(vn−1.n)−

)
(ψ̄ − ψ)

=
∑

K∈Th

∫
K

div
(
ρnvn−1(ψ̄ − ψ)

)
+

∑
K∈Th

∫
∂K

(ρn+ − ρn−)(vn−1.n)−(ψ̄ − ψ)

= −
∫

Ω

(
ρnvn−1.∇ψ + ρn(ψ − ψ̄)div(vn−1)

)
−

∑
K∈Th

∫
∂K

[ρn](vn−1.n)−(ψ − ψ̄).

The last step used the property that ρn and ψn are constant on each element K ∈ Th.
The lemma follows upon substituting this expression into (3.2).

The following corollary expresses the weak statement satisfied by the discrete
density ρh in a more convenient form. Given a sequence of functions {ψn}Nn=0 ⊂ Rh,
recall the convention that ψh : (−τ, T ] → Rh is the function taking values ψh(t) = ψn

for t ∈ (n− 1)τ, nτ ].

Corollary 3.3. Let ρh ∈ Rh satisfy (2.2), {ψn}Nn=0 ⊂ H1
0 (Ω), and let {ψ̄n}Nn=0 ⊂

Rh be the piecewise constant approximations of {ψn}Nn=0. Then

n∑
j=m+1

∫
Ω

(ρj − ρj−1)ψj −
∫ tn

tm

∫
Ω

ρhvh(.− τ).∇ψh(3.3)

=

∫ tn

tm

∫
Ω

ρh(ψh − ψ̄h)div(vh(.− τ)) +

∫ tn

tm

∑
K∈Th

∫
∂K

[ρh](vh(.− τ).n)−(ψh − ψ̄h),

where the value of ψ̄h on ∂K is taken as ψ̄h|K .

The two terms on the right-hand side represent the consistency error of the piece-
wise constant DG scheme. The first term is easy to bound, and the following lemma
will be used to bound the last one.

Lemma 3.4. Let K ⊂ R
d be a simplex, v ∈ P�(K)d, ψ ∈ P�(K) and p, q ≥ 1.

Then there exists a constant C depending only upon d, p, q, 	 and the aspect ratio of
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K such that ∫
∂K

|v.n||ψ − ψ̄|q ≤ C‖v‖Lp′ (K)h
q−1
K |ψ|qW 1,pq(K),

where ψ̄ = (1/|K|)
∫
K
ψ is the average of ψ on K and hK is the diameter of K.

Proof. Let K̂ be the usual reference simplex and χ(ξ) = x0 + Bξ be an affine
mapping of K̂ onto K. We use a hat to denote the natural correspondence between
functions defined on K and K̂, ψ̂ = ψ ◦ χ. Writing the integral over the boundary as
the sum over the faces e ⊂ ∂K gives∫

∂K

|v.n||ψ − ψ̄|q =
∑

e⊂∂K

∫
e

|v.n||ψ − ψ̄|q

=
∑

ê⊂∂K̂

|e|
|ê|

∫
ê

|v̂.n||ψ̂ − ψ̄|q

≤ C
∑

ê⊂∂K̂

|e|‖v̂‖Lp′ (K̂)‖ψ̂ − ψ̄‖q
Lqp(K̂)

≤ C
∑

ê⊂∂K̂

|e|‖v̂‖Lp′ (K̂)|ψ̂|
q

W 1,pq(K̂)
.

To obtain the third line the trace theorem was used and the finite dimensionality of
P�(K̂) allowed the use of the indicated norms. The last line follows from the Poincaré

inequality and the observation that the average of ψ is the average of ψ̂.
Since

‖v̂‖Lp′ (K̂) = (|K̂|/|K|)1/p′‖v‖Lp′ (K), |ψ̂|W 1,pq(K̂) ≤ C(|K̂|/|K|)1/pqhK |ψ|W 1,pq(K),

and |e| ≤ C|K|/hK , where C depends upon the aspect ratio of K, the lemma
follows.

3.3. Compactness. The energy estimate shows that {vh}h>0 is bounded in
L∞[0, T ;L2(Ω)] ∩ L2[0, T ;H1

0 (Ω)]. A result of Lions [13] and Lions and Magenes [14]
states that compactness of the sequence in L2[0, T ;L2(Ω)] will follow if

∫ T

δ

‖vh(t) − vh(t− δ)‖L2(Ω) ≤ Cδα,

for 0 ≤ δ ≤ T and some α > 0.
We recall Lions’ argument [13] which shows that weak solutions of the Navier–

Stokes equations with variable density and viscosity satisfy this inequality. This proof
carries over to Galerkin approximations with a few modifications which will be con-
sidered subsequently.

Lions’ compactness argument. Beginning with the weak statement of the
momentum equation (cf. (2.3))∫

Ω

{
(1/2) (ρvt + (ρv)t) .w + (1/2)(ρv.∇)v.w − (1/2)(ρv.∇)w.v

− pdiv(w) + μD(v) ·D(w)
}

=

∫
Ω

ρf.w,
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the identity ρvt = (ρv)t − ρtv is used to obtain∫
Ω

(ρv)t.w =

∫
Ω

{
ρf.w + (1/2)ρt(v.w) − (1/2)(ρv.∇)v.w

+ (1/2)(ρv.∇)w.v + pdiv(w) − μD(v) ·D(w)
}
.

The second term on the right-hand side can be eliminated upon writing the weak
statement of the balance of mass as∫

Ω

ρtψ =

∫
Ω

ρv.∇ψ,(3.4)

and selecting ψ = v.w, to give∫
Ω

(ρv)t.w =

∫
Ω

ρf.w + (ρv.∇)w.v + pdiv(w) − μD(v) ·D(w).

Integrating this expression with respect to s ∈ (t − δ, t) and letting w = w(t) be
independent of s gives∫

Ω

ρv|tt−δ .w(t) =

∫ t

t−δ

∫
Ω

ρf.w(t) + (ρv.∇)w(t).v + pdiv(w(t)) − μD(v) ·D(w(t)) ds.

Integrating the weak statement of the balance of mass (3.4) with respect to s ∈ (t−δ, t)
and setting ψ = v(t).w(t) shows∫

Ω

ρ|tt−δ v(t).w(t) =

∫ t

t−δ

∫
Ω

ρv.∇(v(t).w(t)).

Subtracting this equation from the previous one and observing that

ρv|tt−δ .w(t) − ρ|tt−δ v(t).w(t) = ρ(t− δ)(v(t) − v(t− δ)).w(t)

gives ∫
Ω

ρ(t− δ)(v(t) − v(t− δ)).w(t) =

∫ t

t−δ

∫
Ω

{
ρf.w(t) + (ρv.∇)w(t).v(3.5)

+pdiv(w(t)) − μD(v) ·D(w(t)) − ρv.∇(v(t).w(t))
}
ds.

Upon electing w(t) = v(t)−v(t−δ) the left-hand side dominates ‖v(t) − v(t− δ)‖2
L2(Ω)

when ρ is bounded below by c > 0. The right-hand side is estimated using the
following lemma.

Lemma 3.5. Let Ω ⊂ R
d with d = 2 or 3 and v, w ∈ L2[0, T ;H1

0 (Ω)]∩L∞[0, T ;L2(Ω)],
ρ, μ ∈ L∞[0, T ;L∞(Ω)], and f ∈ L2[0, T ;L2(Ω)]. Then there exists a constant C > 0
and α ∈ (0, 1) such that∣∣∣∣∣
∫ T

δ

∫ t

t−δ

∫
Ω

ρf.w(t) + (ρv.∇)w(t).v − μD(v) ·D(w(t)) − ρv.∇(v(t).w(t)) ds dt

∣∣∣∣∣ ≤ Cδα,

for 0 < δ < T . Here C depends only upon d, T , and f , ρ, μ, v, and w through the
norms stated in the hypotheses.

This lemma follows from elementary applications of Holder’s inequality and the
Sobolev embedding theorem, ‖v‖L4(Ω) ≤ ‖v‖βL2(Ω)‖∇v‖1−β

L2(Ω), where β = 1/2 and

β = 1/4 for d = 2 and 3, respectively.
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Compactness for the discrete problem. The calculations above can be repli-
cated for numerical solutions computed using (2.2)–(2.3) provided the discrete weak
statement of the balance of mass (3.3) is used in place of (3.4). This gives rise to four
extra terms on the right-hand side of (3.5).

Lemma 3.6. Let {(ρh, vh)}h>0 be numerical approximations of the Navier–Stokes
equations with variable density and viscosity computed using (2.2)–(2.3) over a quasi-
regular family of triangulations {Th}h>0 of Ω ⊂ R

d with d = 2 or = 3. Assume the
following:

• v0 ∈ L2(Ω), ρ0 ∈ L∞(Ω) satisfies 0 < c ≤ ρ0(x) ≤ C, and f ∈ L2[0, T ;L2(Ω)].
• μ : R → R

+ is continuous.
• The spaces for the velocity and pressure satisfy the Babuska–Brezzi condition

and the pressure space contains the piecewise constant functions.
Then there exists a constant C > 0 independent of h and α ∈ (0, 1) such that

∫ T

δ

‖vh(t) − vh(t− δ)‖2
L2(Ω) ≤ Cδα,

for 0 < δ < T .
Proof. Since {vh}h>0 are piecewise constant in time it suffices to consider δ a

multiple of the time step τ . Writing (t− δ, t) = (tm, tn) and w(t) = vn − vm = wmn,
the discrete analogue of (3.5) is

∫
Ω

ρm(vn − vm).wmn =

∫ tn

tm

∫
Ω

{
ρhf.w

mn + (ρhvh(.− τ).∇)wmn.vh

− μhD(vh) ·D(wmn) − ρhvh.∇(vn.wmn)
}
ds

+

∫ tn

tm

∫
Ω

{
ρh(vh.w

mn − vh.wmn) div(vh(.− τ))

− ρh(vn.wmn − vn.wmn) div(vh(.− τ))
}
ds

+τ

n∑
j=m+1

∑
K∈Th

∫
∂K

{
[ρj ](vj−1.n)− (vj .wmn − vj .wmn)

− [ρj ](vj−1.n)−(vn.wmn − vn.wmn)
}
.

The last four terms represent the consistency errors associated with the density equa-
tion and the term involving the pressure vanishes since wmn = vn − vm is discreetly
divergence free. (Recall that ψ̄ is the piecewise constant function having average value
of ψ on each element K ∈ Th.)

We bound the first term in each of the last two lines since the second is bounded
similarly. Since ‖ψ̄‖Lp(Ω) ≤ ‖ψ‖Lp(Ω) for any ψ ∈ Lp(Ω), the first term on the second
to last line may be bounded as

∫ tn

tm

∫
Ω

ρh(vh.w
mn − vh.wmn) div(vh(.− τ)) ds

≤ 2‖ρh‖L∞[0,T ;L∞(Ω)]

∫ tn

tm
‖vh‖L4(Ω)‖wmn‖L4(Ω)‖div(vh(.− τ))‖L2(Ω) ds

≤ C

∫ tn

tm
‖∇vh‖1−β

L2(Ω)‖div(vh(.− τ))‖L2(Ω) ds ‖∇wmn‖1−β
L2(Ω)
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≤ C

∫ tn

tm
‖∇vh‖1−β

L2(Ω)‖∇vh(.− τ)‖L2(Ω) ds ‖∇wmn‖1−β
L2(Ω)

≤ C‖∇vh‖2−β
L2[0,T ;L2(Ω)](t

n − tm)β/2‖∇wmn‖1−β
L2(Ω)

(here β = 1/2 or 1/4 for d = 2 or 3, respectively). Since vh, wmn ∈ L∞[0, T ;L2(Ω)],
quantities involving ‖vh‖L2(Ω) and ‖wmn‖L2(Ω) have been absorbed into the constant
C. Integrating with respect to tn ∈ (δ, T ) and recalling that tm = tn − δ and wmn =
vh(tn) − vh(tn − δ) shows that this term may be bounded by a constant of the form
Cδβ/2 with C independent of h.

To estimate the first jump term use Lemma 3.4 with q = 1 to obtain

τ

n∑
j=m+1

∑
K∈Th

∫
∂K

[ρj ](vj−1.n)−(vj .wmn − vj .wmn)

≤ C‖ρh‖L∞[0,T ;L∞(Ω)]τ

n∑
j=m+1

∑
K∈Th

∫
K

‖vj−1‖Lp′ (K)|vj .wmn|W 1,p(K)

≤ C‖ρh‖L∞[0,T ;L∞(Ω)]

∫ tn

tm
‖vh(.− τ)‖Lp′ (Ω)|vh.wmn|W 1,p(Ω).

When p < 2 the terms of the form ∇(v.w) can be estimated as

|∇(v.w)|W 1,p(Ω) ≤ ‖|v||∇w| + |∇v||w|‖Lp(Ω)

≤ ‖|v||∇w|‖Lp(Ω) + ‖|∇v||w|‖Lp(Ω)

≤ ‖v‖L2p/(2−p)(Ω)‖∇w‖L2(Ω) + ‖∇v‖L2(Ω)‖w‖L2p/(2−p)(Ω).

Letting p = 4/3 so that 2p/(2 − p) = 4, the first jump term becomes

τ
n∑

j=m+1

∑
K∈Th

∫
∂K

[ρj ](vj−1.n)−(vj .wmn − vj .wmn)

≤ C

∫ tn

tm
‖vh(.− τ)‖L4(Ω)

(
‖vh‖L4(Ω)‖∇wmn‖L2(Ω) + ‖∇vh‖L2(Ω)‖wmn‖L4(Ω)

)
ds

≤ C

∫ tn

tm
‖∇vh(.− τ)‖1−β

L2(Ω)

(
‖∇vh‖1−β

L2(Ω)‖∇wmn‖L2(Ω) + ‖∇vh‖L2(Ω)‖∇wmn‖1−β
L2(Ω)

)
ds

≤ C
(
‖∇vh‖2(1−β)

L2[0,T ;L2(Ω)](t
n − tm)β‖∇wmn‖L2(Ω)

+‖∇vh‖2−β
L2[0,T ;L2(Ω)](t

n − tm)β/2‖∇wmn‖1−β
L2(Ω)

)
.

Integration with respect to tn ∈ (δ, T ) bounds this term by a constant of the form
Cδβ/2 with C independent of h.

3.4. Convergence. The bound on the sequence {vh}h>0 and the compactness
result of Lions [13] and Lions and Magenes [14] allows passage to a subsequence for
which

vh ⇀∗ v in L∞[0, T ;L2(Ω)] ∩ L2[0, T ;H1
0 (Ω)] and vh → v in L2[0, T ;L2(Ω)].

In this situation, Theorem 5.1 of [18] states that the corresponding densities {ρh}h>0

converge in L2[0, T ;L2(Ω)] to a limit which we denote by ρ. We will show that the
pair (v, ρ) is a solution of (1.1).
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Note that since {ρh}h>0 is bounded in L∞[0, T ;L∞(Ω)] and converges in
L2[0, T ;L2(Ω)] it also converges in Lp[0, T ;Lp(Ω)] for any 1 ≤ p < ∞. Similarly,
since {vh}h>0 is bounded in L∞[0, T ;L2(Ω)] ∩ L2[0, T ;H1

0 (Ω)] and converges in
L2[0, T ;L2(Ω)], the Sobolev embedding theorem and elementary interpolation show
that vh converges in Lp[0, T ;Lq(Ω)] for any pair p, q ≥ 1 satisfying 1/2 < 1/q+ 2/dp.

Theorem 3.7. Let Ω ⊂ R
d, d = 2 or 3, be a bounded Lipschitz and {Th}h>0

be a regular family of quasi-uniform triangulations of Ω. Let f ∈ L2[0, T ;L2(Ω)],
v0 ∈ L2(Ω), and ρ0 ∈ L∞(Ω) satisfy 0 < c ≤ ρ0(x) ≤ C for positive constants c and
C. Assume that the viscosity, μ : R → (0,∞), is a continuous nonnegative function
of the density.

Let {(vh, ρh)}h>0 be the approximate solution of equations (1.1) computed using
the scheme presented in section 2.4 with time steps τ converging to zero as h →
0. In particular, assume that the density is computed using the piecewise constant
discontinuous Galerkin method, that the velocity-pressure spaces satisfy the Babuska–
Brezzi condition, and that the pressure space contains the piecewise constant functions.

Then, after passing to a subsequence, the densities {ρh} converge strongly in
L2[0, T ;L2(Ω)], and the velocities {vh} converge strongly in L2[0, T ;L2(Ω)] and weakly
star in L∞[0, T ;L2(Ω)] ∩ L2[0, T ;H1

0 (Ω)] to a weak solution of equations (1.1) with
initial data (v0, ρ0) and homogeneous Dirichlet boundary data on the velocity. If the
solution of equations (1.1) is unique, then the whole sequence {(vh, ρh)}h>0 converges.

Proof. Notice that the hypotheses of Lemma 3.1 are satisfied since monotonicity
of the scheme (2.2) for computing the density guarantees that 0 < c ≤ ρh(x, t) ≤ C.
Also, μ : R → (0,∞) is continuous so μh = μ(ρh) satisfies a similar inequality.

Let w ∈ D([0, T ) × Ω) be divergence free and let wn be the Stokes projection of
w(tn) onto the space

Ṽh =

{
vh ∈ Vh |

∫
Ω

div(vh) qh = 0∀qh ∈ Ph

}
,

and let wh ∈ L2[0, T ;Vh] be the piecewise constant function taking values wn on
(tn−1, tn] and ŵh ∈ C[0, T ;Vh] be the corresponding piecewise linear interpolant.
Since the pair (Vh, Ph) satisfies the Babuska–Brezzi condition, wh and ŵh converge to
w in L∞[0, T,H1

0 (Ω)] and W 1,∞[0, T ;H1
0 (Ω)], respectively. Selecting wn as the test

function in (2.3) and summing over n gives

1

2

N∑
n=1

∫
Ω

(ρn−1 − ρn)vn.wn +

N∑
n=1

∫
Ω

(ρv)n−1.(wn−1 − wn)

+
τ

2

N∑
n=1

∫
Ω

(ρnvn−1.∇)vn.wn − (ρnvn−1.∇)wn.vn

+τ

N∑
n=1

∫
Ω

μnD(vn) ·D(wn) =

∫
Ω

ρ0v0.w0 + τ

N∑
n=1

∫
Ω

ρnfn.w.

To obtain the first line we used the identity

1

2

(
ρn−1(vn − vn−1).wn +

(
(ρv)n − (ρv)n−1

)
.wn

)
=

1

2
(ρn−1 − ρn)vn.wn +

(
(ρv)n − (ρv)n−1

)
.wn,
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and summed the second term by parts. The upper limit of the summation vanishes
since w ∈ D([0, T )×Ω) implies wN = 0. Recalling the notation that vh(t) ∈ Vh is the
function taking on value vn on (tn−1, tn], we find that

1

2

N∑
n=1

∫
Ω

(ρn−1 − ρn)vn.wn −
∫ T

0

∫
Ω

ρh(.− τ)vh(.− τ)ŵt

+
1

2

∫ T

0

∫
Ω

(
ρhvh(.− τ).∇

)
vh.wh −

(
ρhvh(.− τ).∇

)
wh.vh

+

∫ T

0

∫
Ω

μhD(vh) ·D(wh) =

∫
Ω

ρ0v0.w0 +

∫ T

0

∫
Ω

ρhfh.wh.

Selecting ψ = vh.wh in Corollary 3.3 shows that the first term can be rewritten as

N∑
n=1

∫
Ω

(ρn−1 − ρn)vn.wn = −
∫ T

0

∫
Ω

ρhvh(.− τ).∇(vh.wh) − eh,

where

eh =

∫ T

0

∫
Ω

ρh(vh.wh − vh.wh)div(vh(.− τ))

+

∫ T

0

∑
K∈Th

∫
∂K

[ρh](vh(.− τ).n)−(vh.wh − vh.wh)

is the consistency error. Then

−
∫ T

0

∫
Ω

ρh(.− τ)vh(.− τ)ŵt +
(
ρhvh(.− τ) ⊗ vh

)
· ∇wh

+

∫ T

0

∫
Ω

μhD(vh) ·D(wh) =

∫
Ω

ρ0v0.w0 +

∫ T

0

∫
Ω

ρhfh.wh + eh.

Now pass to a subsequence along which vh and ρh converge in L2[0, T ;L2(Ω)]
and vh ⇀ v in L2[0, T ;H1

0 (Ω)]. Since ρh and μh are bounded in L∞[0, T ;L∞(Ω)],
they converge in Lp[0, T ;Lp(Ω)] for 1 ≤ p < ∞ and vh converges in Lp[0, T ;L4(Ω)]
for p < 8/3. This is sufficient to pass to the limit term-by-term in the above equation;
the theorem will then follow provided eh → 0.

It suffices to show that the consistency error eh vanishes as h → 0. The first term
in eh is bounded using classical estimates for piecewise constant approximations [3],

∫ T

0

∫
Ω

ρh(vh.wh − vh.wh)div(vh(.− τ))

≤ C‖ρh‖L∞[0,T ;L∞(Ω)]‖div(vh)‖L2[0,T ;L2(Ω)]‖vh.wh − vh.wh‖L2[0,T ;L2(Ω)]

≤ C‖ρh‖L∞[0,T ;L∞(Ω)]‖div(vh)‖L2[0,T ;L2(Ω)]|vh.wh|L2[0,T ;W 1,p(Ω)h
1+d(1/2−1/p).

As in the proof of Lemma 3.6

|vh.wh|W 1,4/3(Ω) ≤ ‖vh‖L4(Ω)‖∇wh‖L2(Ω) + ‖∇vh‖L2(Ω)‖wh‖L4(Ω)

≤ C‖vh‖H1(Ω)‖wh‖H1(Ω).
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It follows that |vh.wh|L2[0,T ;W 1,4/3] ≤ ‖vh‖L2[0,T ;H1(Ω)]‖wh‖L∞[0,T ;H1(Ω)] is bounded
so∫ T

0

∫
Ω

ρh(vh.wh − vh.wh)div(vh(.− τ))

≤ C‖ρh‖L∞[0,T ;L∞(Ω)]‖div(vh)‖L2[0,T ;L2(Ω)]‖vh‖L2[0,T ;H1(Ω)]‖wh‖L∞[0,T ;H1(Ω)]h
1−d/4

→ 0.

The second term of eh is bounded using Lemma 3.4 with q ≤ 2,

∫ T

0

∑
K∈Th

∫
∂K

[ρh](vh(.− τ).n)−(vh.wh − vh.wh)

≤
(
‖ρh‖q

′−2
L∞[0,T ;L∞(Ω)]

∫ T

0

∑
K∈Th

∫
∂K

|vh(.− τ).n|[ρh]2

)1/q′

×
(∫ T

0

∑
K∈Th

∫
∂K

|vh(.− τ)|(vh.wh − vh.wh)q

)1/q

≤ C‖ρh‖1−2/q′

L∞[0,T ;L∞(Ω)](J
N
h )1/q

′

(∫ T

0

∫
Ω

‖vh(.− τ)‖Lp′ (Ω)|vh.wh|qW 1,pq(Ω)h
q−1

)1/q

≤ C‖ρh‖1−2/q′

L∞[0,T ;L∞(Ω)](J
N
h )1/q

′‖vh‖1/q

Lr′ [0,T,Lp′ (Ω)]
|vh.wh|Lrq [0,T ;W 1,pq(Ω)]h

1−1/q,

where q′ ≥ 2 and

JN
h =

∑
e∈E0

∫ T

0

∫
e

|vh(.− τ).n| [ρh]2.

JN
h measures the jumps in the density across the interelement boundaries e ∈ E0, and

it was shown in [18, Theorem 5.1] that, under the hypotheses assumed above, JN
h → 0

as h (and τ) tend to zero. The parameters p, q, and r are selected so that the norms
of vh and vh.wh are bounded. If

p = 26/21, p′ = 26/5, q = 14/13, q′ = 14, r = 13/7, r′ = 13/6,

then 1/2 = 1/p′ + 2/dr′ when d = 3, so the terms ‖vh‖Lr′ [0,T,Lp′ (Ω)] and

|vh.wh|Lrq [0,T ;W 1,pq(Ω)] = |vh.wh|L2[0,T ;W 1,4/3(Ω)]

are bounded, and the second term in eh vanishes as h → 0.

4. Projections of the velocity field. In order to guarantee that the piecewise
constant DG scheme is monotone and convergent, the average divergence of the ve-
locity field in (2.2) must vanish on each simplex K ∈ Th. Above we assumed space
Ph contains the piecewise constant functions so that solution vh of the approximate
momentum equation (2.3) automatically satisfies this condition. In this section pro-
jections of the velocity field vh ∈ Vh onto a space V̄h ⊂ H(Ω; div) having average
divergence on each element equal to zero are considered when Ph does not contain
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the piecewise constant functions. In this case the density and velocity/pressure are
approximated by ρn ∈ Rh satisfying∫

K

ρnψn + τ

∫
∂K

(
ρn−(v̄n−1.n)+ + ρn+(v̄n−1.n)−

)
ψn =

∫
K

ρn−1ψn,(4.1)

for K ∈ Th and ψn ∈ R, and (vn, pn) ∈ Vh × Ph satisfying

1

2

∫
Ω

ρn−1

(
vn − vn−1

τ

)
.w+(ρnv̄n−1.∇)vn.w

+
1

2

∫
Ω

(
(ρv)n − (ρv)n−1

τ

)
.w − (ρnv̄n−1.∇)w.vn

+

∫
Ω

−pn div(w) + μnD(vn) ·D(w) =

∫
Ω

ρnfn.w,(4.2)

∫
Ω

div(vn) q = 0,

for all (w, q) ∈ Vh × Ph.
Writing v̄n−1 = PV̄h

vn−1, where

V̄h ⊂
{
vh ∈ H(Ω; div) |

∫
K

div(vh) = 0, K ∈ Th
}
,

examining the proofs shows that the modified scheme will also converge if the projec-
tion PV̄h

: Vh → V̄h satisfies the following hypotheses.
Assumption 4.1.

1. There exists 	 ∈ N independent of h such that v̄h|K ∈ P�(K) for each K ∈ Th.
2. For each v̄h ∈ V̄h∫

K

div(v̄h) = 0, and

∫
∂K∩∂Ω

v̄h.n = 0, K ∈ Th.

3. If vh ∈ Vh and v̄h = PV̄h
vh, then there exists C > 0 independent of h such

that ‖div(v̄h)‖L2(Ω) ≤ C‖vh‖H1(Ω).
4. If vh ∈ Vh and v̄h = PV̄h

vh, then there exists C > 0 independent of h such
that ‖v̄h‖L2(Ω) ≤ C‖vh‖L2(Ω) and ‖v̄h‖L6(Ω) ≤ C‖∇vh‖H1(Ω).

5. Let {vh}h>0, vh ∈ Vh be bounded in L∞[0, T ;L2(Ω)] ∩ L2[0, T ;H1
0 (Ω)], and

v̄h = PV̄h
vh. If vh → v in L2[0, T ;L2(Ω)], then v̄h → v.

Stokes projections. If (V̄h, P̄h) ⊂ H1
0 (Ω)

d×L2(Ω)/R is a family of finite element
spaces constructed on Th which satisfies the Babuska–Brezzi condition, and if P̄h

contains the piecewise constant functions, then the Stokes projection PV̄h
: Vh → V̄h

satisfies Assumption 4.1.
The Stokes projection of vh ∈ Vh is computed from the unique solution (v̄h, p̄h) ∈

(V̄h, P̄h) of

a(v̄h, w̄h) + b(p̄h, w̄h) + b(q̄h, v̄h) = a(vh, w̄h)(4.3)

for all (w̄h, q̄h) ∈ (V̄h, P̄h). The bilinear forms a : H1(Ω) × H1(Ω) → R and b :
L2(Ω) ×H1(Ω) → R are defined by

a(v, w) = (v, w)H1(Ω), b(p, v) = (p,div(v))L2(Ω).
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By construction the average of div(v̄h) vanishes on each simplex K ∈ Th. The next
lemma shows that the continuity properties of Assumption 4.1 are also satisfied by
this construction.

Lemma 4.2. Let Ω ⊂ R
d be sufficiently regular to guarantee H2(Ω)

d × H1(Ω)
regularity of the Stokes operator, and let {Th}h>0 be a regular quasi-uniform family
of triangulations of Ω.

Let (Vh, Ph) and (V̄h, P̄h) ⊂ H1
0 (Ω)

d×L2(Ω)/R be families of finite element spaces
constructed on Th which satisfy the Babuska–Brezzi condition, and let (v̄h, p̄h) ∈
(V̄h, P̄h) be the Stokes projection of a velocity field vh ∈ Vh satisfying b(qh, vh) = 0 for
all qh ∈ Ph. Then

• ‖v̄h‖H1(Ω) ≤ ‖vh‖H1(Ω), and
• ‖v̄h − vh‖L2(Ω) ≤ C‖vh‖H1(Ω)h ≤ C‖vh‖L2(Ω).

The first statement of the lemma follows upon setting w̄h = v̄h in (4.3), and
the Aubin–Nitsche trick and inverse inequalities are used to establish the second
statement. The Sobolev embedding theorem guarantees

‖v̄h‖L6(Ω) ≤ C‖v̄h‖H1(Ω) ≤ C‖vh‖H1(Ω).

It follows that the Stokes projection vh → v̄h satisfies Assumption 4.1.
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