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Abstract

Equations governing the flow of fluid containing visco-hyperelastic particles
are developed in an Eulerian framework. The novel feature introduced here is to
write an evolution equation for the strain. It is envisioned that this will simplify
numerical codes which typically compute the strain on Lagrangian meshes moving
through Eulerian meshes. Existence results for the flow of linear visco-hyperelastic
particles in a Newtonian fluid are established using a Galerkin scheme.

1. Introduction

When modeling physical systems that contain both fluid and solid particles one
is always confronted with the dilemma that fluids are naturally described using
the Eulerian (spatial) description yet solids are naturally described in a Lagrangian
(referential) frame. From an analysts point of view this decoupling of the problem
presents significant technical challenges. The equation for the fluid takes place on
a time-dependent domain (the region not currently occupied by the solid), and the
regularity of the solution is usually low so that the change of coordinates relating
the two descriptions is not smooth. The numerical simulation of such systems is
similarly plagued. If the solid particles are represented by a Lagrangian mesh it is
necessary to interpolate their image into the Eulerian mesh, and this is expensive
and degrades accuracy [11,25]. Moreover, the absence of a satisfactory theory for
the underlying equations undermines the analysis of these algorithms.

We consider the equations for the flow of a fluid containing visco-hyperelastic
solid particles. We pose the basic equations in a purely Eulerian description; nu-
merical simulation of such a system will only require a single mesh for the Eu-
lerian domain. The system of equations we propose contains the classical visco-
hyperelasticity equations for which there is no satisfactory theory of existence and
uniqueness [7,15]. However, we consider an approximation for which it is possible
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to develop a reasonable existence theory. This approximation corresponds to an
appropriate description of visco-hyperelasticity for the solid particles for which the
strains but not the rotations are small. This simplified system should provide a good
model problem for the analysis and comparison of various numerical algorithms.

Elastic materials are typically described in Lagrangian coordinates since the
stress depends upon the deformation gradientF from a fixed configuration, andF
is not immediately available in an Eulerian description. We circumvented this by
writing an evolution equation forF , our equation (5). Our description also utilizes
a “phase” variableφ equal to±1 in the fluid/solid regions. This approach has been
used in the past for the simulation of the flow of immiscible fluids [5,16,17,24,23],
and essentially circumvents the “mapping” problem encountered by the numerical
analysts described in the first paragraph.

The interaction of Eulerian and Lagrangian descriptions is ubiquitous in the
plasticity literature [1,2]. Classically, numerical computations are based upon a La-
grangian mesh [1], and the large plastic deformations can result in tangled meshes
and ill-conditioned systems of equations. The computations in [10] utilize an Eule-
rian description which contains a free-boundary problem to determine the surface
of the solid. Since the problem in [10] was one-dimensional it was relatively easy to
track the motion of the free surface through the mesh; however, this would seem a
difficult task in multiple dimensions where, for example, topological changes could
occur due to contact. This problem of determining the location of the particles (and
their surfaces) is circumvented here by exploiting a phase variable to track them.

1.1. Notation

We adopt the standard notation of continuum mechanics [13]:X ∈ R
d is the

material description;x = χ(X, t) is the position of particleX at time t ; and the
velocity is given byv = ẋ, where the dot indicates the partial derivative with re-
spect to time withX fixed (the material or convective derivative). In the Eulerian
description(x, t) the chain rule giveṡg = gt +v.∇g where∇ is the gradient in the
x variables. Classical mechanics assumes thatχ : R

d → R
d is a diffeomorphism

and the deformation gradientF = [∂xi/∂Xα] is the Jacobian of this mapping and
hasJ = det(F ) > 0. Below we will consider incompressible materials for which
J = 1. If the elastic part of the stress of a solid particle depends only upon the defor-
mation gradientF , it must take the form(1/J )DW(F )FT whereW : R

d×d → R

is the strain-energy function and(DW)iα = ∂W/∂Fiα is the Piola Kirchhoff stress
tensor. The strain-energy function must satisfyW(RU) = W(U) for all proper or-
thogonal matrices (i.e.,RRT = I , det(R) > 0) and henceDW(RU) = RDW(U).
If F = RU with U = UT represents the polar decomposition of the deformation
gradient, it follows that the stress becomes(1/J )RDW(U)URT . When the Piola
Kirchhoff stress tensor is the gradient of a strain-energy function, as above, the
material is called hyperelastic.

Classical linear elasticity assumes that the displacementu = x −X is small so
thatF = I+H , whereH = ∇Xu is small. In this situation the polar decomposition
is, to first order,F  (I+Hskew)(I+Hsym)whereHskewandHsymare the skew and
symmetric parts ofH . If the “residual stress”DW(I ) vanishes, then, to first order,
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the stress becomesC(Hsym) whereC : R
d×d → R

d×d is the second derivative
of W at the identity. Symmetry of the stress tensor impliesC is symmetric in the
sense thatC(A) ·B = A · C(B) whereA ·B = ∑

ij AijBij is the Frobenius inner
product. It is traditional to assume thatW reaches its minimum value atI and that
the second derivative is strictly positive definite, that isC(A) · A � c|A|2, where
c > 0 and|A|2 = A ·A is the Frobenius norm. In this situationC induces an inner
product(. , .)C onR

d×d .
Below,� ⊂ R

d will denote a bounded domain with Lipschitz boundary. Stan-
dard notation is adopted for the Lebesgue spaces,Lp(�), and the Sobolev spaces,
Wm,p(�)orHm(�). The dual exponent topwill be denoted byp′, 1/p+1/p′ = 1.
Solutions of various evolution problems will be functions from[0, T ] into these
spaces, and we adopt the usual notion,L2[0, T ;H 1(�)], C[0, T ;H 1(�)], etc.,
to indicate the temporal regularity of such functions. For vector- or matrix-valued
quantities, such as the velocityv or deformation gradientF , we writev ∈ L2(�),
F ∈ L2(�), to indicate that each component lies in the specified space. Strong
convergence of a sequence will be indicated asvn → v, and weak convergence by
vn ⇀ v.

Divergences of vectors and matrices are denoted div(v) = vi,i and div(T )i =
Tij,j , and gradients of vector-valued quantities are interpreted as matrices,(∇v)ij =
vi,j . Here indices after the comma represent partial derivatives and the summation
convention is used. The symmetric part of the velocity gradient (stretching tensor)
is written asD(u), and the skew part written asW(v) (spin tensor). Inner products
of vectorsv, w ∈ R

d are written asv.w and the Frobenius inner product of two
matricesA, B ∈ R

d×d is denoted byA · B = ∑
i,j AijBij . We frequently use the

elementary identitiesAB · C = A · CBT = B · AT C.

1.2. Outline

In the next section we present an Eulerian description of a system consisting of a
fluid containing particles with a focus on the situation where the fluid is Newtonian
and the particles are visco-hyperelastic. As stated previously, currently there is
no satisfactory existence theory for solutions of the visco-elastic equations, so in
Section 3 we develop approximate equations which model situations for which the
strain in the solid is small. The final section establishes existence of solutions of
the approximate equations. The proof of existence draws heavily from the ideas
developed inDiPerna & Lions [8] andLions [21] where convection equations
and fluids with variable density are studied.

2. Eulerian Description of Fluid/Solid Particles

Let� ⊂ R
d , (d = 2 or 3) be a domain with boundary∂�. We consider a model

where� is filled with a fluid containing solid particles and write

�̄ = �̄f (t) ∪ �̄s(t),
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where�f is the region occupied by the fluid and�s is the region occupied by the
solid particles, each of which may be disconnected.

Formulae for the density, stress tensor, etc. at a point(x, t) will depend upon
whether fluid is currently atx, (x ∈ �f (t)), or a solid particle is currently at the
positionx. For example, for incompressible materials,

ρ =
{
ρf in the fluid, and
ρs in the solid,

ρf , ρs ∈ R
+, and a similar formula holds for the stress tensorT . A convenient way

to write this is to introduce a phase functionφ(x, t) equal to+1 in the fluid and
−1 in the solid,

φ(x, t) =
{+1 x ∈ �f (t),
−1 x ∈ �s(t).

We think of the level setφ = 0 as the solid/fluid interface. Then

ρ = 1+ φ
2
ρf + 1− φ

2
ρs ≡ χf ρf + χsρs,

whereχf andχs are the characteristic functions of the fluid and solid regions
respectively.

Notice that when expressed in Lagrangian coordinatesφ is independent of time,
φ(x(X, t), t) = +(X), soφ̇ = 0 or, equivalently,

φt + v.∇φ = 0 (1)

in an Eulerian frame (∇ = ∇x). Sinceφ is discontinuous this equation must be
interpreted in the usual weak sense, that is,∫ T

0

∫
�

φ(ψt + v.∇ψ + div(v)ψ) =
∫
�

φψ |T0 +
∫ T

0

∫
∂�

φψv.n

for smooth functionsψ . In order to avoid multiplying distributions it may be nec-
essary to require the velocityv to have some regularity. We will assume that the
fluid is viscous so that it sticks to the particles. In this situation classical solutions
havev continuous throughout�.

Balance of Mass: Balance of mass requires that

ρt + div(ρv) = 0.

Sinceρ is not continuous, this equation is required to hold in the weak sense:∫ T

0

∫
�

ρ(ψt + v.∇ψ) =
∫
�

ρψ |T0 +
∫ T

0

∫
∂�

ψρv.n. (2)

When the velocity field is divergence free, div(v) = 0, the equations for balance
of mass and convection ofφ are identical. In fact, sinceρ = (1/2)(ρf − ρs)φ +
(ρf +ρs)/2 is an affine function ofφ, the weak form of balance of mass is satisfied
whenever the weak statement forφ holds. To observe this, notice that ifφ satisfies
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the weak form of the convection equation, then so too doesαφ+β for anyα,β ∈ R

(assuming thatv satisfies some minimal regularity), and hence so too doesρ.
The observation that affine functions ofφ satisfy the same weak statement asφ

is a special case of a theorem by Liouville and a more general result byDiPerna
& Lions [8]. Under suitable regularity assumptions onv, any function of the form
β(φ) with β : R → R continuous will also be a weak solution of the convection
equation.

Balance of Momentum: We write balance of momentum in a weak form to avoid
having to explicitly introduce tractions across the fluid/solid interfaces. This weak
equation represents balance of momentum in situations for which the velocity is
smooth (at least continuous) and the density and stresses possibly discontinuous:∫

�

ρvt .w + ρ(v.∇)v.w + T ·D(w) =
∫
�

ρf.w (3)

for smooth vector fieldsw : � → R
d vanishing on∂�. HereT = T T is the

Cauchy stress tensor, andD(w) = (∇w + (∇w)T )/2 is the stretching tensor for
the fieldw.

The constitutive equation for the stress tensor differs for fluids and solids, so
we write

T = χf Tf + χsTs.
We consider the situation whereTf depends upon the stretching tensorD(v), while
Ts depends additionally upon the deformation gradientF . The prototypical situ-
ation of an incompressible Navier-Stokes fluid containing incompressible visco-
hyperelastic particles would have

Tf = −pI + µfD(v), and Ts = −pI + µsD(v)+ DW(F )FT . (4)

HereW : R
d×d → R is the strain-energy function, andp is the pressure.

Computing the Deformation Gradient: We finally address the question of how
to compute the deformation-gradient tensor. An application of the chain rule gives
an Eulerian description,

Ḟ = ∂

∂t

∂x

∂X
(X, t) = ∂v

∂X
(X, t) = ∂v

∂x
(x, t)

∂x

∂X
(X, t),

which we write as

Ft + (v.∇)F = (∇v)F ; (5)

the product on the right being a matrix product. Notice that in order to computeT ,
we need only computeF in the solid whereφ = −1; in fact,F would become a
rather wild function in the fluid. Observe that if we defineFs = χsF , then since
χ̇s = 0 we obtain

Fst + (v.∇)Fs = (∇v)Fs.
Clearly solutions of this equation are those obtained simply by multiplying the
initial data for (5) byχs(0); in effect, specifyingF = 0 in the fluid.
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2.1. Summary

The equations for the evolution of an incompressible Newtonian fluid carrying
incompressible visco-hyperelastic particles are

∫
�

ρ(vt + (v.∇)v).w + p div(w)

+ µD(v) ·D(w)+ χsDW(F )FT ·D(w) =
∫
�

ρf.w,

∇.v = 0,

φt + v.∇φ = 0,

and
Ft + (v.∇)F = (∇v)F.

The characteristic functionsχf , χs are computed fromφ as (1 ± φ)/2 and the
density and viscosity are computed asρ = ρf χf + ρsχs andµ = µf χf + µsχs
with ρf , ρs andµf , µs each non-negative.

Initial values are specified for the velocityv|t=0 = v0 and the phase function
φ|t=0 = φ0. Typically the initial deformation gradient is the identity on the solid
particles, and set arbitrarily to zero in the fluid,F0 = χs(0)I . If non-zero Dirichlet
boundary data on the velocity is specified, it is necessary to specifyφ andF on
those portions of∂� for which v.n < 0, that is, specify if fluid or solid particles
are entering the domain, and for the solid particles it is necessary to specify their
deformation gradient (we setF = 0 in the fluid). While it is easy to specify
traction boundary conditions for the momentum equation, this can give rise to
technical problems since it is possible that the portion of∂� wherev.n < 0 varies
with time in an implicit fashion, and this is where boundary values forφ andF
are specified. Also, it is not clear what traction to specify on interior portions of
particles emanating from the domain.

2.2. Balance of Energy

As with the density, we writeµ = µf χf + µsχs for the viscosity and will
assume thatµf , µs > 0. For ease of exposition we will consider the situation
wherev vanishes on∂� (Dirichlet boundary conditions):

v|∂� = 0.

Formal calculations are used to develop an energy estimate. Putw = v in the
momentum equation and selectψ = |v|2/2 in the weak statement of the balance
of mass (2) to obtain∫
�

ρ(|v|2/2)t + ρv.∇(|v|2/2)+ µ|D(v)|2 + χsDW(F ) · (∇v)F =
∫
�

ρf.v,
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and ∫ T

0

∫
�

ρ
(
(|v|2/2)t + v.∇(|v|2/2)

)
=

∫
�

ρ(|v|2/2)
∣∣∣T
0
.

The condition div(v) = 0 was used to eliminate the term involving the pressure,
and the Dirichlet boundary data onv eliminated the boundary term in the weak
statement of balance of mass. Adding these equations gives∫

�

ρ(|v|2/2)|T0 +
∫ T

0

∫
�

µ|D(v)|2 + χsDW(F ) · (∇v)F =
∫
�

ρf.v.

To accommodate the term involving the elastic energy, recall (5) satisfied by the
deformation gradient:Ft + (v.∇)F = (∇v)F . Sinceχ̇s = 0 it follows that

χsDW(F ) · (∇v)F = χs (W(F )t + (v.∇)W(F ))
= (χsW(F ))t + (v.∇)(χsW(F )).

The Dirichlet data assumed forv then allows us to conclude that∫ T

0

∫
�

χsDW(F ) · (∇v)F =
∫
�

χsW(F )
∣∣∣T
0
.

Combining the above equations results in the classical energy equation∫
�

[
ρ(|v|2/2)+ χsW(F )

]T
0
+

∫ T

0

∫
�

µ|D(v)|2 =
∫
�

ρf.v. (6)

Notice that in the context of a Galerkin approximationv will typically be smooth,
so classical solutions of the equation forF can be obtained using the method of
characteristics, and hence the above calculations would be justified. Assuming that√
ρf ∈ L2[0, T ;L2(�)], an application of the Korn and Gronwall inequalities

shows that the velocity is bounded inL∞[0, T ;L2(�)] ∩ L2[0, T ;H 1(�)]. This
energy equation is classical [12,13]; the unusual treatment here being that the
calculations are done in Eulerian coordinates.

2.3. Surface Tension

Balance of momentum as stated in (3) neglects surface tension. Surface tension
in the fluid gives rise to a discontinuity of the normal stress,T n, at the solid/fluid
interface proportional to the interfacial mean curvatureκ. This stress is a measure
supported on the surface and therefore singular; however, it is possible to approxi-
mate it using ideas ofDiGorgi [6]. If η is a smooth function, then formal asymptotic
expansions [4,26,27] show that

lim
ε→0

∫
�

(
−ε3η + (1/ε)W ′(η)

)
∇η.w→

∫
S
(−4/3)κw.n,

and

lim
ε→0

∫
�

(
−ε3η + (1/ε)W ′(η)

)
ξ → 0,
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whereW(η) = (1/2)(η2 − 1)2 andS = {x ∈ � | η(x) = 0}. It follows that the
equations for the flow of solid/fluid systems with surface tension may be approxi-
mated by∫
�

ρvt .w+ ρ(v.∇)v.w+ T ·D(w)− γ (−ε3η + (1/ε)W ′(η)
)∇η.w =

∫
�

ρf.w

with γ � 0 and

ηt + v.∇η + γ
(−ε3η + (1/ε)W ′(η)

) = 0.

Notice that for incompressible solid/fluid systems the termW ′(η)∇η = ∇W(η)
can be absorbed into the pressurep and that3η∇η = div(∇η⊗∇η)−∇|∇η|2/2,
and the term∇|∇η|2/2 can also be so absorbed. It is possible to identifyη with φ;
however, since theT depends uponφ, the equation forφwould require modification
in order to recover an energy estimate similar to that stated in Section 2.2.

Lowengrub & Truskinovsky [23] andGurtin, Polignone & Viñals [14]
derive equations to model the fluid/fluid problem, but use a Cahn-Hilliard equation
for η instead of the Cahn-Allen equation. This approach gives a conservation ofη

and allows fluid particles to coalesce (“phase coarsening”). An integral part of the
formulation ofGurtin et al. [14] was a suitable statement of the second law of
thermodynamics chosen to produce models which satisfy natural energy estimates
similar to (6). The approximation of the solid/fluid problem with surface tension
introduced here also satisfies a natural energy estimate, namely,∫

�

ρ(|v|2/2)+ χsW(F )+ (ε/2)|∇η|2 + (1/ε)W(η)
∣∣∣T
0

+
∫ T

0

∫
�

µ|D(v)|2 + γ |ε3η − (1/ε)W ′(η)|2 =
∫
�

ρf.v.

Chang et al. [5] and more recentlyLi & Renardy [19] compute numerical
approximations of the two fluid problem with surface tension by explicitly intro-
ducing a singular term into the momentum equation and approximating the solution
of (1) using the level-set technique. In the numerical community this is considered
a “competing approach” to the “phase field” ideas considered here [3,9]. The anal-
ysis of many of these schemes is hampered by the fact that energy estimates do not
hold for their particular formulations.

2.4. Deformation Gradient and Strain Energy Functions

In this section we digress slightly to discuss some technical issues associated
with strain-energy functions,W, and the structure of the evolution equation for the
deformation gradient.

Strain-Energy Functions: Recall that the elastic stress is zero in the fluid, so is
written asχsDW(F )F , whereχs = (1− φ)/2 is the characteristic function of the
solid. This can conveniently be written asDW(Fs)F Ts with Fs = χsF . However,
this gives rise to a technical problem: physically reasonable energies are infinite
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when the deformation gradient (or its determinant) vanish. Since there is no elastic
stress in the fluid we are tacitly assuming thatDW(Fs)Fs = 0 whenFs = 0.

This technical detail can be circumvented in several ways. For example,W(I )
is finite and typically the residual stress,DW(I ) = 0, vanishes. We may then write
the stress as

χsDW(F )FT = DW(Fs + χf I)FTs .
When we defineF̂ = Fs + χf I = χsF + χf I , the elastic stress becomes

χsDW(F )FT = DW(F̂ )(F̂ T − χf I) = DW(F̂ )F̂ T

and
F̂t + (v.∇)F̂ = (∇v)(F̂ − χf I), F̂ (0) = I.

Clearly any other stress-free state could be used in place of the identity.A variant of
this approach is to writeH = F − I andW̄(H) = W(H + I ). Then the equation
for the elastic stress becomesDW̄(H)(HT + χsI) andH satisfies

Ht + (v.∇)H = (∇v)(H + χsI), H(0) = 0.

From a mathematical perspectives these perturbations do not change the fundamen-
tal structure of the equations, so below we will simply assume thatW(0) is finite
and write the elastic stress asDW(F )FT whereF satisfies (5) withF(0) = 0 in
the fluid. The important structural feature is that the elastic stress takes the form

DW̄(F̄ )F̃ T andF̄ satisfies˙̄F = (∇v)F̃ for suitable choices ofW̄, F̄ andF̃ .

Evolution Equation for the Deformation Gradient: We briefly discuss some
properties of the equation for the deformation gradient. One interesting observation
is that the convective derivative of the divergence ofFT , div(F T ) = Fiα,i , vanishes
when div(v) = 0. To observe this, take the divergence of (5) to obtain

Fiα,it + vkFiα,ik + vk,iFiα,k = vi,ijFjα + vi,jFjα,i .
Notice that the first term on the right vanishes since div(v) = vi,i = 0, and the
last term on the right is identical to the last term on the left, so that div(F T )t +
(v.∇)div(F T ) = 0. It follows that div(F T )will be zero if the initial and appropriate
boundary values vanish. Unfortunately this is not so for fluid containing particles,
since typicallyF0 = χsI and div(F T ) is a measure supported on the boundary
of the particles. However, in the situation where div(F ) = 0 the nonlinear term
(∇v)F consists of the product of a curl-free term with a divergence-free term, so
should be stable under weak limits [29]. This becomes apparent if we consider a
weak statement of (5). Letting+ : (0, T )× �→ R

d×d be smooth with compact
support and assuming div(v) = 0, we have∫ T

0

∫
�

F · (+t + (v.∇)+) =
∫ T

0

∫
�

vi+iα,jFjα, (7)

where we used the relation div(F T ) = 0 to simplify the right-hand side. It is
now clear that, grantedvε → v in Lα[0, T , Lq(�)], α, q > 1, andFε ⇀∗ F in
L∞[0, T , Lp(�)] with 1/p + 1/q � 1, then if (vε, Fε) satisfies (7),(v, F ) also
does.
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3. Equations of a Fluid with Particles Undergoing Small Strains

3.1. Small-Strain Elasticity

Classical linear elasticity invokes an ansatz of the formx = X + u where the
displacementu is small [12,13], so thatF = I + H whereH = ∇Xu. Clearly
this ansatz is not plausible for elastic particles being transported in a fluid medium.
Such particles will be subject to large translations and rotations, so that an ansatz
of the formx = x0(t)+ R̂(t)(X+ u) is plausible, wherêR is a rotation, andx0(t)

is the location of the center of mass. In this situation the deformation gradient takes
the formF = R̂(I +H). If H is small, the polar decomposition is approximately
F ∼ R̂(I +Hskew)(I +Hsym). This motivates the following ansatz which we will
assume throughout this section:

• The polar decomposition of the deformation gradient takes on the formF =
R(I + E) whereR is a proper rotation andE = ET is “small”.

3.2. Evolution Equations for Small Strain

We develop approximate equations satisfied byR andE. By Ḟ = (∇v)F and
F = R(I + E),

Ṙ(I + E)+ RĖ = (∇v)R(I + E).
Pre-multiplying this equation byRT = R−1 and post-multiplying byI − E (an
approximate inverse ofI + E) gives

RT Ṙ + Ė = RT (∇v)R + RT (Ṙ − (∇v)R)E2 + ĖE.
The latter two terms on the right of this equation are of orderO(E2), so to first
order this equation becomes

RT Ṙ + Ė = RT (∇v)R.
SinceRT Ṙ is skew we may decompose this equation into skew and symmetric
components:

Ṙ = W(v)R and Ė = RTD(v)R,
whereD(v) andW(v) are the symmetric and skew components of∇v respectively.

3.3. Linearized Shear Relation

The elastic part of the Cauchy stress tensor is given by

DW(F )FT = DW(R(I + E))(I + E)RT

= RDW(I + E)(I + E)RT

= R
(
DW(I )+ C(E)+O(E2)

)
(I + E)RT ,
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where we use the notation

C(E)jβ = D2W(I )(E)jβ = ∂2W
∂Fiα∂Fjβ

(I )Eiα.

It follows that

DW(F )FT = R
(
DW(I )+ DW(I )E + C(E)+O(E2)

)
RT .

It is convenient to assume that the residual stressDW(I ) vanishes, in which case
C is symmetric, so to first order the Cauchy stress is given byRC(E)RT .

3.4. Summary of the Small-Strain Problem

We have

ρ(φ)
(
vt + (v.∇)v

)
− ∇p − div

(
µ(φ)D(v)+ RC(E)RT

)
= ρ(φ)f,

div(v) = 0,

φt + v.∇φ = 0,

Rt + (v.∇)R = W(v)R, and Et + (v.∇)E = RTD(v)R.
The initial data forR is specified asR|t=0 = χs(0)R0 where, as usual,χs is the
characteristic function of the solid region. The hyperbolic nature of the evolution
equation forR then guarantees thatR vanishes in the fluid for all subsequent times.

Isotropic Elastic Stress: If the elastic stress in the solid particles is isotropic
(C(QEQT ) = QC(E)QT for proper orthogonalQ), the equations forR and
E can be combined to give a single equation for the elastic component of the
stress. Since linear isotropic functions of symmetric matrices take the formC(E) =
αE + β trace(E)I , α, β ∈ R, it follows that the Cauchy stress of an isotropic
incompressible material isTe = αRERT . A short calculation shows that

Ṫe −W(v)Te + TeW(v) = αχsD(v),
which can be used in place of the equations forR andE. This equation appears in
the plasticity literature [1].

3.5. Regularization of the Rotation

It is clear thatE and the Cauchy stress depend nonlinearly on the rotationR;
moreover,R will not be smooth, since it satisfies a hyperbolic convection equation
into whichW(v)enters as a coefficient. This lack of regularity is a technical obstacle
to a satisfactory existence theory. To circumvent this difficulty we introduce a
smooth rotation,Rε, that differs fromR by at mostε ∼ O(E), which is consistent
with the assumption of small strain. We begin by showing that the energy estimate
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is insensitive to perturbation ofR. Then the regularity ofRε and the energy estimate
will be combined to establish existence for the small-strain system.

There are many mathematical techniques for regularizing a function, the classi-
cal approach is to mollify with a smooth function of compact support. For example,

Rεt + (v.∇)Rε = Wε(v)Rε, Rε|t=0 = χsR0,

whereWε(v) = W(vε) is the mollified spin tensor withε > 0 fixed. A classical
solution of the fluid-solid problem would havev Lipschitz and the particles would
have regular boundaries. In this situation the particle vorticity,χsW , would be
of bounded variation, so that‖χs(W −Wε)‖L1[0,T ;L1(�)] � Cε. Granted this, a
formal calculation shows that

‖R − Rε‖L∞[0,T ;L1(�)] � C|χsW |L1[0,T ;BV (�)] ε,

so that, ifε = O(E), such regularizations are consistent with the linear theory.
In two dimensions it is possible to explicitly write down the solution of the

equationṘ = W(v)R. This motivates a simple but elegant regularization of the
rotationR.

Two-Dimensional Regularization: In two dimensions the spin tensorW(v)may
be written asW(v) = (ω/2)J , whereω = v2,1 − v1,2 is the vorticity and

J =
[

0 1
−1 0

]
.

Then the equation forR becomesṘ = (ω/2)JR, which has solution1

R = exp(�J ) R0 =
[

cos(�) sin(�)
− sin(�) cos(�)

]
R0,

whereR0 is the initial rotation and� satisfies�̇ = ω/2 with initial data�0 = 0.
A natural regularization ofR is given by

Rε = exp(�εJ ) R0 =
[

cos(�ε) sin(�ε)
− sin(�ε) cos(�ε)

]
R0,

where�ε satisfies the regularized equation

�̇ε − ε23� = ω/2.
In the current context a classical solution of the solid/fluid problemv would
be piecewise smooth, Lipschitz continuous, and the particles would have finite
perimeter. In this situation the ideas ofKruzkov [18] can be used to show that
‖�−�ε‖L∞[0,T ;L1(�)] � Cε. Then

R − Rε = sin((�−�ε)/2)
[

sin((�+�ε)/2) − cos((�+�ε)/2)
cos((�+�ε)/2) sin((�+�ε)/2)

]
R0, (8)

1 Following tradition, the primitive ofω is denoted by the upper case character�. Conflicts
with the notation for the domain� ⊂ R

d are easily resolved by context.
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so ‖R − Rε‖L∞[0,T ;L1(�)] � Cε. Thus, if ε = O(E), replacingR with Rε is
consistent with our approximation of small strains.

Convection Equation: The phase variableφ appears as a coefficient in essentially
every term of the momentum equation; in particular it multiplies quantities that
would only converge weakly when passing to the limit in a Galerkin scheme. In
order to pass to the limit it is vital to know thatφ converges strongly in someLp

space. The subtle point is that the coefficients in the equation forφ depend upon
v which, in the limit, has insufficient regularity to establish a classical solution.
These issues were resolved byDiPerna & Lions in [8].

DiPerna and Lions introduced the concept of a “renormalized” solution. A
renormalized solution is essentially a weak solution that satisfies all of the natural
entropyequalities. If φ is a classical solution ofφt + (v.∇)φ = 0, then so too
is β(φ), whereβ : R → R is a smooth function. In the more general nonlinear
situation a similar statement holds forconvex functionsβ and under passage to
limits the equation satisfied byβ(φ) becomes an (entropy) inequality [18].

The following theorem from [8] shows that renormalized solutions not only
exist when the functionv is not smooth enough to establish a classical solution, but
are also stable under perturbation.

Theorem 3.1 (DiPerna Lions). Let � be a bounded domain and suppose that:

• {vn}∞n=0 ⊂ L2[0, T ;H 1
0 (�)] is a bounded sequence, div(vn(t)) = 0 in D′(�)

for t ∈ [0, T ], and vn ⇀ v in L2[0, T ;H 1
0 (�)];

• {φn}∞n=0 ⊂ L∞[0, T ;L∞(�)] is a bounded sequence, satisfying

∂φn

∂t
+ div(φnvn) = 0 in D′((0, T )×�),

and φn(0)→ φ0 in L1(�).

Then {φn}∞n=0 converges in C[0, T ;Lp(�)], for all 1 � p <∞, to the unique
renormalized solution of

∂φ

∂t
+ div(φv) = 0 in D′((0, T )×�), φ|t=0 = φ0.

In particular, if β : R → R is continuous, then {β(φn)} converges to β(φ) in
C[0, T ;Lp(�)], 1 � p <∞, and β(φ) satisfies

∂β(φ)

∂t
+ div(β(φ)v) = 0 in D′((0, T )×�), β(φ)|t=0 = β(φ0),

and
∫
�
β(φ(T )) = ∫

�
β(φ0).

In Lemma 4.1 below we sketch the proof of a slight generalization of this result
to systems of convection equations coupled through their right-hand sides.
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4. Existence for Mixtures with Linear Visco-Hyperelastic Particles

In this section we establish an existence result for the regularized small-strain
theory developed above. We assume that� ⊂ R

d is a bounded Lipschitz domain,
and begin by summarizing the equations for linear visco-hyperelastic particles in
a Newtonian fluid medium. Galerkin approximations of the equations

∫
�

ρ(vt + v.∇v).w + p div(w)+ µD(v) ·D(w)

+ RC(E)RT ·D(w) =
∫
�

ρf.w, (9)

and
∇.v = 0,

will be constructed with with initial datav|t=0 = v0 ∈ L2(�) satisfying div(v0) =
0; boundary datav|∂� = 0; and non-homogeneous termf ∈ L2[0, T ;L2(�)].
The phase function and strain will be solutions of the equations

φt + v.∇φ = 0,

and

Et + (v.∇)E = RTD(v)R. (10)

The density and viscosity are then determined by

ρ = χf ρf + χsρs, µ = χf µf + χsµs,
with χf = (1+ φ)/2 andχs = (1− φ)/2.

To compute the rotation matrix fixε > 0 and letR satisfy

Rt + (v.∇)R = Wε(v)R, R|t=0 = χsR0, (11)

whereWε(v) = W(vε) is the mollified spin tensor.
Alternatively, in two dimensions compute

�t + v.∇�− ε23� = curl(v), �|t=0 = 0, ∂�/∂n = 0, (12)

and set

R = χs
[

cos(�) sin(�)

− sin(�) cos(�)

]
R0. (13)

Solutions will be obtained as limits of Galerkin approximations and will satisfy:

v ∈ L∞[0, T ;L2(�)] ∩ L2[0, T ;H 1
0 (�)],

φ, R ∈ L∞[0, T ;L∞(�)],
E ∈ L∞[0, T ;L2(�)];
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div(v) = 0, and a weak form of the momentum equation, namely

∫ T

0

∫
�

−ρv.wt − (ρv ⊗ v) · ∇w + µD(v) ·D(w)

+ C(E) · RTD(w)R =
∫
�

ρ0v0.w(0)+
∫ T

0

∫
�

ρf.w,

for all w ∈ D([0, T )×�) with div(w) = 0. The equations forφ,E andR (and, if
applicable, the vorticity�) will be satisfied in the usual weak sense.

4.1. Estimates for the Small-Strain System

There are two important structural differences between these equations and the
complete system (2)–(5). While they both satisfy an energy estimate, the elastic
stress in the above system will be inL2 instead ofL1, and, unlike equation (5)
for the deformation gradient, the equation for the linearized strain will directly
give estimates forE. However, one important feature is lost; the termW(v)R in
the equation forR, while very similar to the corresponding term(∇v)F in the
equation for the deformation gradient, does not have the div-curl structure; this is
what forces the introduction of the regularizations discussed above.

The derivation of the energy estimate for the system with linearized elastic
stress is obtained by selectingw = v in the weak statement of the momentum
equation, taking the (Frobenius) inner product of the equation forE with C(E),
and adding the resulting equations. As in the original equations, balance of mass
and integration by parts enable the sum of the kinetic and elastic energies to be
estimated by

1
2

∫
�

(
ρ(T )|v(T )|2 + |E(T )|2

C

)
+

∫ T

0

∫
�

µ|D(v)|2 (14)

= 1
2

∫
�

(
ρ0|v0|2 + |E0|2C

)
+

∫ T

0

∫
�

ρf.v.

These calculations require some regularity onv; the Galerkin approximation will
only assume this equation to hold for smooth velocities.

As stated above, one of the major differences between the evolution equations
for the deformation gradientF and its linearized counterpart is that the latter directly
yields bounds. In particular,

1

2

d

dt

∫
�

|E|2 �
∫
�

|D(v)||E|
so

‖E(T )‖L2(�) � ‖E(0)‖L2(�) +
∫ T

0
‖D(v)‖L2(�). (15)

Finally, it is necessary to establish the stability of solutions of the equation forR

under perturbations of the velocity. Given a sequence of velocity fields{vn}∞n=0 con-
verging weakly inL2[0, T ;H 1

0 (�)], their spins{W(vn)} will converge weakly in
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L2[0, T ;L2(�)]. If {Wε(vn)}are the mollified spin tensors and+ ∈ D((0, T )×�),
thenWε(vn)+ will converge weakly inL2[0, T ;H 1

0 (�)]; indeed, if> is smooth,

∫ T

0

∫
�

∇(Wε(vn)+) · ∇> =
∫ T

0

∫
�

−Wε(vn)+ ·3>

=
∫ T

0

∫
�

−Wε(vn) · (3>)+T

=
∫ T

0

∫
�

−W(vn) · ((3>)+T )ε

→
∫ T

0

∫
�

−W(v) · ((3>)+T )ε

=
∫ T

0

∫
�

∇(Wε(v)+) · ∇>.

In this situation the following lemma shows that the sequence of rotations computed
from {W(vε)} will converge strongly.

Lemma 4.1. Let {vn}∞n=1 be a sequence of smooth functions that converge weakly
in L2[0, T ;H 1

0 (�)] and satisfy div(vn) = 0, and let {Wn}∞n=0 be a sequence of
smooth skew matrices bounded in L2[0, T ;L2(�)]. Suppose thatWn+ ⇀ W+ in
L2[0, T ;H 1

0 (�)] for every smooth test function + ∈ D((0, T ) × �) and that Rn
satisfies

Rnt + vn.∇Rn = WnRn, Rn|t=0 = Rn0 ∈ L∞(�) ∩ L2(�),

where the initial data {Rn0} converge to R0 in L2(�). The sequence {Rn} is
then bounded in L∞[0, T ;L∞(�)] ∩ L∞[0, T ;L2(�)] and converges in
L2[0, T ;L2(�)] (and hence all Lp[0, T ;Lp(�)], 1 � p < ∞) to a weak so-
lution of

Rt + v.∇R = WR, R|t=0 = R0.

Proof. The proof of strong convergence is a mild generalization of the results of
DiPerna & Lions [8]; the major difference is that in the scalar case it is necessary
for {Wn} to be bounded inL∞ while for the coupled system of equations the
assumption thatW ∈ L2[0, T ;L2(�)] and skew suffices. The idea of the proof is
quite elementary; however, one step requires a technical result from [8] or [21] to
justify a formal calculation.

TheL∞ bound on{Rn} is immediate.Writing the equation asRTn Ṙn = RTn WnRn
and adding this to its transpose gives

(RTn Rn)
. = RTn (Wn +WTn )Rn = 0, RTn Rn|t=0 = RTn0Rn0.

Since|R| = trace(RT R) theL∞ bound follows. Similarly, since(|Rn|2/2). =
Ṙn · Rn = WnRn · Rn = 0 it follows that‖Rn(t)‖L2(�) = ‖Rn0‖L2(�), and we

explicitly compute‖Rn‖L2[0,T ;L2(�)] =
√
T ‖Rn0‖L2(�).
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The bounds show that we may pass to a subsequence{Rn} which converges
weakly inL2[0, T ;L2(�)] to a limitR ∈ L∞[0, T ;L∞(�)] ∩L∞[0, T ;L2(�)].
Integration by parts shows that∫ T

0

∫
�

Rn,t ·+ =
∫ T

0

∫
�

WnRn ·++ Rn · (vn.∇)+

for any smooth function, hence{Rn,t } is bounded inL2[0, T ;H−1(�)]. The Lions-
Aubin lemma [30] then shows that, upon passing to a subsequence,Rn → R

strongly inC[0, T ;H−1(�)]. The hypotheses on the coefficientsvn andWn then
suffice to pass to the limit term by term in the weak statement∫ T

0

∫
�

Rn · (+t + (vn.∇)+−Wn+) =
∫
�

Rn0 ·+|t=0,

so thatR is a weak solution ofRt + v.∇R = WR with initial dataR0. At this point
we would like to take the dot product of this equation withR to show thatṘ ·R = 0
and hence‖R‖L2[0,T ;L2(�)] =

√
T ‖R0‖L2(�). However, such a computation would

be formal since the weak solutions are not sufficiently smooth to carry out this
computation.

To circumvent this technical problemDiPerna & Lions [8] considered the
equation satisfied by mollificationsRη of R. They satisfy

Rηt + v.∇Rη = WRη +O(η),
whereO(η) is an error term which, under the regularity hypotheses assumed forv

andW , converges to zero inL1[0, T ;L1(�)]+L2[0, T ;L2(�)] asη→ 0. Taking
the inner product withRη gives

‖Rη‖L2[0,T ;L2(�)] =
√
T ‖R0‖L2(�) + 2

∫ T

0

∫
�

O(η) · Rη,

and passing to the limitη → 0 (and recalling thatR is bounded inL∞ ∩ L2) we
obtain

‖R‖L2[0,T ;L2(�)] =
√
T ‖R0‖L2(�)

= lim
n→∞

√
T ‖Rn0‖L2(�) = lim

n→∞‖Rn‖L2[0,T ;L2(�)],

so that the weak convergence of{Rn} is actually strong. Notice that the mollification
argument shows that weak solutions are unique since the difference of two weak
solutions is a weak solution with zero initial data. We then conclude that the whole
sequence{Rn} converges strongly toR. "#

Next, consider the two-dimensional situation whereR is computed using (13).
If div (v) = 0, the natural estimate for� is

1

2

d

dt

∫
�

|�|2 + ε2
∫
�

|∇�|2 =
∫
�

ω�,
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whereω = curl(v) = v2,1 − v1,2 ∈ L2(�). A Gronwall argument then shows that

‖�(T )‖2
L2(�)

+ 2ε2
∫ T

0
‖∇�‖2

L2(�)
� eT

∫ T

0
‖ω‖2

L2(�)
(16)

(recall that�(0) = 0). It follows that a bound upon the velocity inL2[0, T ;H 1(�)]
gives bounds upon� inC[0, T ;L2(�)]∩L2[0, T ;H 1(�)]. Since�t is bounded in
L2[0, T ;H−1(�)], the Lions Aubin lemma [30] shows that the mappingv $→ � is
“completely continuous” (compact) fromL2[0, T ;H 1(�)] intoL2[0, T ;L2(�)].

4.2. Existence of Solutions

To establish existence of solutions to equations (9)–(11) (or (13)) we utilize a
Galerkin scheme. LetV1 ⊂ V2 ⊂ · · · ⊂ H 1

0 (�) be a sequence of finite dimensional
spaces of smooth divergence-free functions, and let∪nVn be dense inV = {v ∈
H 1

0 (�) | div(v) = 0}. For definiteness letVn be spanned by a sequence{wj }nj=1,
where{wj }∞j=1 is a dense set ofV . For v ∈ Vn, define(φ(v), R(v), E(v)) to be
the solutions of (1), (11) and (10) respectively, with coefficients determined by
v. Since functions inVn are smooth, classical solutions of these equations can be
computed using the method of characteristics. It is then possible to construct a
mapF : C[0, T , Vn] → C[0, T , Vn] by definingv = F(v̂) to be the approximate
solution of (9) with coefficients(φ(v̂), R(v̂), E(v̂)) obtained by restricting the
solution and test functions to be inVn.

The following lemma shows that the mappingF is not only well defined but has
a fixed point. The bounds derived from the energy estimate will then suffice to show
that a subsequence of fixed points,{vn}, converge to a limit satisfying (9)–(11) (or
(13)). If the initial datav0 is not smooth, select the initial value for the approximate
problem to be theH 1 projection ofv0 into Vn.

Lemma 4.2. Let Vn be a finite-dimensional space of smooth divergence-free func-
tions (div(v) = 0 for v ∈ Vn).
1. The mapping F : C[0, T , Vn] → C[0, T ;Vn], defined above, exists for suffi-

ciently small times T > 0.
2. For each T > 0, F has a fixed point vn ∈ C[0, T ;Vn], and vn satisfies the

energy estimate (14).

Proof. Step 1: For v̂ ∈ Vn, classical techniques can be used to compute the co-
efficients(φ(v̂), R(v̂), E(v̂)), and it is clear that their integrals vary continuously
with respect to time. In this situation the Galerkin approximation of (9) reduces to
a system of first order ordinary differential equations int where the “right-hand
side” is a locally Lipschitz function. Piccard’s theorem then establishes existence
of a solutionv for small times. Next, substitutew = v − v0 into (9) to obtain∫

�

ρ̂(|v − v0|2/2)t + (ρ̂v̂).∇(|v − v0|2/2)
+ µ̂|D(v − v0)|2 + R̂TC(Ê)R̂ ·D(v − v0)

=
∫
�

ρ̂f.(v − v0)− µ̂D(v0) ·D(v − v0),



Eulerian Description of Fluids Containing Visco-Elastic Particles 247

where we have written̂φ = φ(v̂) etc. Sinceρ̂t + ∇.(v̂ρ̂) = 0, it follows that∫
�

ρ̂(T )|v(T )− v0|2 � C(‖f ‖L2[0,T ;L2(�)], ‖v0‖H1(�))

∫ T

0

(
1+ ‖v̂‖2

H1(�)

)
.

To obtain this estimate we used the fact thatφ̂, R̂ ∈ L∞, and hence so too arêµ
andρ̂, and (15) was used to bound̂E. Sinceρ̂ � min(ρf , ρs) > 0, and since all
norms on finite dimensional spaces are equivalent, it follows that

‖v − v0‖2
C[0,T ;Vn] � CnT

(
1+ ‖v̂ − v0‖2

C[0,T ;Vn]
)
,

so if T � 1/2Cn, the functionv = F(v̂)maps a ball inC[0, T , Vn] centered atv0
into itself.
Step 2: In the above we tacitly assumed thatv0 was the initial data; however, if
v0 = v(t0) for some 0� t0 � T , then the above estimate shows that

‖v(t)− v(t0)‖2
Vn

� Cn(v0, v̂)|t − t0|,
and hencev ∈ C[0, T , Vn] is Lipschitz. It then follows from the Arzela-Ascoli
theorem thatF is a “completely continuous” (compact) mapping from the unit
ball inC[0, T , Vn] centered atv0 to itself. The Schauder fixed point theorem then
establishes the existence of a fixed point,vn = F(vn).

The energy estimate (14) now yields

∫
�

(
ρn|vn(T )|2/2+ |En(T )|2C

)
+

∫ T

0

∫
�

µn|D(vn)|2

=
∫
�

(
ρ0|v0|2/2+ |E0|2C

)
+

∫ T

0

∫
�

ρnf.vn.

It follows that the fixed pointvn is uniformly bounded in time, and the above
argument, which guaranteed solutions for short times, can be repeated indefinitely
to obtain existence of a solution inC[0, T ;Vn] satisfying the energy estimates for
arbitrarily largeT . "#

To verify that the sequence of Galerkin approximations converge we will need
the following compactness result ofJ. L. Lions [20]. This theorem was developed
by Lions to establish existence results for incompressible fluids with non-constant
density and has been used frequently in this context [22].

Theorem 4.3 (J. L. Lions). Let � ⊂ R
3 be a bounded domain and suppose the

sequence {vn}∞n=1 is bounded in L∞[0, T ;L2(�)] ∩ L2[0, T ;H 1
0 (�)], and that

there exists C and α > 0 such that, for all 0 � δ < 1,∫ T−δ

0
|vn(t + δ)− vn(t)|2 � Cδα, n = 1,2, . . . .

Then the sequence is relatively compact in Lp[0, T ;Lq(�)] for any pair (p, q)
satisfying 2/p + 3/q > 3/2.
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This theorem follows from a classical result of Frechet and Kolmogorov, see
[28, page 50], which is a variant of the Arzela-Ascoli theorem applicable toLp(�)

spaces.

Theorem 4.4. Equations (9)–(11) (or (13)) with the assumptions on the boundary
and initial data stated at the beginning of this section have a weak solution satisfying
the energy estimate (14) (with inequality).

Proof. Let {vn, φn, En, Rn}∞n=0 be the Galerkin approximations constructed in
the lemma. The lower boundρn � min(ρf , ρs) and the energy estimate directly
yield bounds uponvn in L∞[0, T ;L2(�)] ∩ L2[0, T ;H 1(�)], and by construc-
tion div(vn) = 0. The hypotheses of Theorem 3.1 are then satisfied by the se-
quence{(vn, φn)} and, upon passing to a subsequence, we conclude that there exists
φ ∈ L∞[0, T ;L∞(�)] such thatφn → φ in C[0, T ;Lp(�)] for all 1 � p <∞.
Sinceρn, µn etc. are all affine functions ofφn, these quantities converge similarly.

We utilize the technique ofJ. L. Lions [20] to establish strong convergence of
the velocities inL2[0, T ;L2(�)]. The densities{ρn}each satisfy (2), so if 0� δ<1
andψ ∈ H 1

0 (�), it follows that

∫
�

(ρn(t + δ)− ρn(t))ψ =
∫ t+δ

t

∫
�

ρnvn.∇ψ.

Puttingψ = vn(t).w into this equation gives

∫
�

(
ρn(t + δ)− ρ(t)

)
vn(t).w =

∫ t+δ

t

∫
�

ρn(s)vn(s).∇(vn(t).w) ds.

Next, if w ∈ Vn, (9) and (2) may be combined to yield

∫
�

(
ρn(t + δ)vn(t + δ)− ρn(t)vn(t)

)
.w

=
∫ t+δ

t

∫
�

(ρvn ⊗ vn) · ∇w − µD(vn) ·D(w)− RC(En)R
T ·D(w).

Subtracting the previous two equations gives

∫
�

ρn(t + δ)
(
vn(t + δ)− vn(t)

)
.w

=
∫ t+δ

t

∫
�

(ρvn ⊗ vn) · ∇w − µD(vn) ·D(w)
−RC(En)R

T ·D(w)− ρnvn.∇(vn(t).w),

where we have suppressed the variable of integration on the right.
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Recalling thatR ∈ L∞ andC : R
d×d → R

d×d is a bounded linear map, it
follows that∣∣∣∣

∫
�

ρn(t + δ)
(
vn(t + δ)− vn(t)

)
.w

∣∣∣∣
�

∫ t+δ

t

‖vn‖L4(�)‖∇vn(t)‖L2(�)‖w‖L4(�)

+ C
∫ t+δ

t

(
‖vn‖2

L4(�)
+ ‖D(vn)‖L2(�) + ‖En‖L2(�)

+ ‖vn‖L4(�)‖vn(t)‖L4(�)

) ‖∇w‖L2(�).

The Sobolev embedding theorem states that‖v‖L4(�) � C‖v‖1−α
L2(�)

‖v‖α
H1(�)

whereα = 1/2 in two dimensions andα = 3/4 in three dimensions. Sincevn
is bounded inL∞[0, T ;L2(�)], the bounds from the energy estimate and the
bound (15) show that the integrands on the right are inL1/α, then∣∣∣∣

∫
�

ρn(t + δ)
(
vn(t + δ)− vn(t)

)
.w

∣∣∣∣
�C

(
‖∇vn(t)‖L2(�)‖w‖L4(�) + (1+ ‖vn(t)‖L4(�))‖∇w‖L2(�)

)
δ1−α

�C
(
‖∇vn(t)‖L2(�)‖w‖L4(�) + ‖∇w‖L2(�)+‖∇vn(t)‖αL2(�)

‖∇w‖L2(�)

)
δ1−α.

Finally, putw = vn(t + δ) − vn(t) and verify that the right-hand side can be
integrated to obtain

min(ρf , ρs)
∫ T−δ

0
‖vn(t + δ)− vn(t)‖L2(�)

�
∫ T−δ

0

∫
�

ρn(t + δ)|vn(t + δ)− vn(t)|2

� Cδ1−α.

This verifies the final hypothesis of Theorem 4.3, so we conclude that{vn} is
relatively compact inL2[0, T ;L2(�)], and may pass to a subsequence for which
vn → v strongly inL2[0, T ;L2(�)].

The bounds uponvn provided by the energy estimate and the strong convergence
of (a subsequence of){vn}establish the hypotheses for Lemma (4.1), so that the sub-
sequence{Rn} of (regularized) rotations converges strongly inLp[0, T ;Lp(�)],
1 � p < ∞. In two dimensions the strong convergence of the sequence�n
and the identity (8) lead to the same conclusion. Finally, sinceEn is bounded in
L∞[0, T ;L2(�)] it is possible to pass to a subsequence which converges weakly
star in this space.

We are now in a position to show that the limit(v, φ,E,R) of a subsequence
of Galerkin approximations is a weak solution of (9)–(11) (or (13)). Letw ∈
D([0, T ) × �) satisfy div(w) = 0, then by density there exists a subsequence
{ŵn}∞n=0 with ŵn ∈ C1[0, T ;Vn] such thatŵn → w in C1[0, T ;W1,q(�)] for
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q � 1. Since it is possible to select̂wn(T ) = 0, each Galerkin approximation
satisfies ∫ T

0

∫
�

−ρnvn.ŵnt − (ρnvn ⊗ vn) · ∇ŵn
+ µnD(vn) ·D(ŵn)+ C(En) · RTn D(ŵn)Rn

=
∫
�

ρn(0)vn(0).ŵn(0)+
∫ T

0

∫
�

ρnf.ŵ.

The first two terms in this equation are the product of functions which converge
in Lp[0, T ;Lp(�)], p > 1, and gradients of the test function which converges
strongly inLp

′ [0, T ;Lp′(�)]. It follows that these terms converge strongly and
hence pass to their natural limits. This argument also shows that the termsµnD(ŵn)

andRTn D(ŵn)Rn converge strongly inL2[0, T ;L2(�)], and sinceD(vn) andEn
converge weakly it is again possible to pass to the limit. It follows that∫ T

0

∫
�

−ρv.wt − ρ(v ⊗ v) · ∇w + µD(v) ·D(w)

+ C(E) · RTD(w)R =
∫
�

ρ0v0.w(0)+
∫ T

0

∫
�

ρf.w

for all w ∈ D([0, T )×�) satisfying div(w) = 0. This line of argument is equally
applicable to weak statements of (10) and (11) (or (12)) and shows that they are
satisfied by the limitsE andR (and�). "#
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