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Abstract. We derive a mathematical model of a nematic electrolyte based on the Ericksen–
Leslie theory of liquid crystal flow. Our goal is to investigate the nonlinear electrokinetic effects
that occur because the nematic matrix is anisotropic, in particular, transport of ions in a direction
perpendicular to the electric field as well as quadratic dependence of the induced flow velocity on the
electric field. The latter effect makes it possible to generate sustained flows in the nematic electrolyte
that do not reverse their direction when the polarity of the applied electric field is reversed. From a
practical perspective, this enables the design of AC-driven electrophoretic and electroosmotic devices.
Our study of a special flow in a thin nematic film shows good qualitative agreement with laboratory
experiments.
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1. Introduction. In this article, we derive equations governing the electroki-
netics of a nematic electrolyte that consists of ions that diffuse and advect in the
nematic liquid crystalline matrix. The nematic electrolytes are characterized by the
unique nonlinear phenomena that occur in these material systems due to anisotropy
of conductivity and permittivity of the matrix.

Electrokinetic phenomena are usually explored for binary systems in which an
isotropic fluid with ions, called electrolyte, is in contact with a solid substrate or con-
tains dispersed solid particles. One distinguishes between the two types of electroki-
netics: electrophoresis, defined as motion of particles dispersed in the electrolyte and
electroosmosis, motion of an electrolyte with respect to the walls of a chamber. A nec-
essary condition of electrokinetics is spatial separation of electric charges of opposite
polarities ([1], [2], and [3]). In classic linear electrokinetics, charges are separated at
the solid-electrolyte interface through chemical-physical processes such as dissocia-
tion and selective adsorption and formation of permanent electric double layers [3].
An externally applied electric field imposes a torque on the electric double layer
and drives electrokinetic flows. The driving force, proportional to the product of
charge and field, is balanced by the viscous drag; the resulting velocities grow linearly
with the electric field. As a result, only a direct current (DC) field can be used to
power linear electrokinetics, as an alternating current(AC) field would produce no net
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displacement. There is a growing interest in nonlinear electrokinetics, in which the
flow velocities grow as the square of the applied field. Such a dependence allows one to
use an AC field to drive stationary flows. In the case of isotropic electrolytes, the cor-
responding effects are the so-called AC electrokinetics (ACEK) [4] and induced-charge
electrokinetics (ICEK) [5, 6]. The spatial charge is induced on energized electrodes
(the case of ACEK) or on the “floating” polarizable (metal) particles located in an
externally applied electric field (the case of ICEK). In both effects, the electrokinetic
velocities grow as E2, where one power of E induces the charge near the highly po-
larizable metal surface, while the second power of E drives these charges to trigger
flows or to transport particles. Both ACEK and ICEK combined with broken sym-
metry of electrodes or particles can lead to an AC-driven pumping of the fluids or
electrophoresis of free particles [5, 6, 7].

The studies of the liquid crystal–enabled electrokinetics are a part of a much larger
field of liquid crystal colloids that is currently experiencing a great deal of interest
partially as a result of the progress in the field of nanotechnology. Recent experiments
[8, 9, 10, 11, 12, 13, 14] demonstrate that when the isotropic electrolyte is replaced
with an anisotropic electrolyte, a liquid crystal containing ions, the electrokinetic
flows become strongly nonlinear, with the velocities growing as a square of the electric
field. For such a flow, if the polarity of the applied field is reversed, the direction of
the flow remains unchanged, enabling AC-driven electroosmosis and electrophoresis.
The nonlinearity disappears as soon as the liquid crystal is melted into an isotropic
phase. Despite the similarity in the quadratic field dependences of the flows, the
mechanisms of the liquid crystal–enabled electrokinetics and the ACEK and ICEP
effects in isotropic fluids are different, as discussed in [15]. Separation of charges and
electrokinetics in isotropic electrolytes requires highly polarizable (metal) particles or
interfaces; the isotropic electrolyte plays a supportive role, supplying the counterions.
In the case of liquid crystal–enabled electrokinetics, the space charge is induced by the
applied electric field at the distortions of the director field, thanks to the anisotropy of
electric properties of the liquid crystal; no polarizable particles are needed to separate
the charges and to generate the flows.

Of particular interest—from the point of view of this paper—are the experiments
in [13] where surface patterning of the plates bounding the nematic film is used to
impose anchoring conditions on the nematic director. Surface patterning of liquid
crystal cells thus allows one to impose a well-defined spatial variation of the director
in the bulk [13] and, consequently, the characteristics of the induced flow. This setup is
especially amenable to theoretical analysis since the surface-induced director patterns
in the available experiments are usually periodic, either one- or two-dimensional.

Our approach to modeling of nematic electrolytes follows the ideas that were
originally used to obtain the Ericksen–Leslie equations of liquid crystalline flow. The
work of Leslie in this area spans a lifetime of research effort both to capture the
appropriate physical phenomena and to provide a sound mathematical theory to de-
scribe the flow, with the main focus on understanding the balance of angular momen-
tum. Leslie’s thermodynamically self-consistent derivation appears to be the most
straightforward method to formulate a consistent model for the nematic electrolytes.
Although the exact form of the governing equations may be different if one was to
follow a more rigorous procedure, we believe that we are able to capture the correct
form of all principal contributions by imposing the proper thermodynamical structure,
along with appropriate invariances and symmetries.

The variables of the model consist of the velocity field v of the nematic, the
pressure p due to the incompressibility constraint, the unit director field n representing

D
ow

nl
oa

de
d 

09
/2

6/
18

 to
 1

28
.2

.1
14

.2
49

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2262 CALDERER, GOLOVATY, LAVRENTOVICH, AND WALKINGTON

the average molecular orientation at a given point, the electrostatic potential Φ, and
concentrations {ck}Nk=1, N ≥ 2, associated with the N species of ions with valences
{zk}Nk=1, respectively.

Our development of the model follows Leslie [16], [17], principally the work [16]
that emphasizes the role of the rate of energy dissipation of the system and its direct
connection with the viscous contributions to both the stress and the molecular force.
These, combined with the variational insights on Leslie’s works by Walkington [18],
allow for a more direct approach to the Ericksen–Leslie model. As was done by Leslie,
we assume that the laws of balance of linear and angular momentum hold in local
form. We supplement these by the local mass balances for the ions and the Maxwell’s
equations of electrostatics and postulate the equation of balance of energy at a time
t ≥ 0 for every subdomain V of the domain Ω occupied by the nematic. The total
energy of the system is now the sum of the Oseen–Frank free energy density, the
entropic contribution due the presence of ions, and the electrostatic energy. The
balance of energy involves the dissipation function that is required to be positive for
all processes, according to the second law of thermodynamics. This condition yields
the constitutive equations for the generalized stress tensor and the molecular force.

In what follows, we assume that the diffusion and dielectric permittivity matrices
of the system are uniaxial. The anisotropy of the diffusion matrix is fundamental in
explaining the experimentally observed AC electroosmosis in a nematic film confined
between the patterned plates. However, it is the combination of this anisotropy with
the anisotropy of dielectric permittivity and the anisotropy of the viscosity that pro-
vides a rich variety of possible flow patterns [11]. Note that, in the proposed model, we
neglect dependence of the viscosity coefficients on concentration fields, thus neglecting
electrorheologic effects.

The theory of polyelectrolyte gels previously studied in [19], [20] provides a rig-
orous setting to model electromechanic interaction in liquid crystals. Given the dis-
sipative character of these systems, our development also suggests that an alternate
approach to generate governing equations and formulate boundary conditions may be
based on the Onsager’s principle for the Rayleighian functional.

In the second part of the article, we illustrate the utility of our model by consid-
ering a particularly simple parameter regime in which the large system of governing
equation essentially reduces to a single second order nonlinear ODE. This regime
qualitatively describes electroosmosis in a nematic liquid crystalline film constrained
between two parallel plates. In [13] an approach was developed to generate electroki-
netic effects in a nematic electrolyte with surface-imposed distortions of molecular
orientations induced by patterning of the plates. In the presence of the uniform elec-
tric field, these variations produce space charge separation that triggers electroosmotic
flows in the liquid crystal. In particular, for the setup depicted in Figure 1, the di-
rector orientation is periodically varying in the vertical direction and an AC field is
applied in the horizontal direction. It was observed that spatially periodic horizontal
flow proceeds along the “guiding rails” induced by molecular orientation with the
direction of the flow independent of the sign of the field.

In this paper we will only be interested in establishing qualitative similarity be-
tween the model and the experiment. To this end, we simplify the model as much as
possible and consider a parameter regime that does not necessarily correspond to that
in [13] but is still rich enough to result in the behavior similar to what was observed
in [13]. In particular, we assume that the liquid crystal domain is very thin and ne-
glect the anisotropies of viscosity and dielectric permittivity, with the diffusion being
the only source of anisotropy. Analysis and simulations of the simplified model show
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Fig. 1. Liquid crystal–enabled electroosmotic flows in a flat nematic cell with patterned one-
dimensionally periodic director field [13]. (a) Experimentally imposed director pattern (short black
dashes) and a schematics of space charge separation due to director distortions when the electric
field is directed from left to right. Electric conductivity of the nematic is higher along the director
than in a direction perpendicular to it. Clouds of separated positive and negative ions are marked
by the “+” and “-” symbols, respectively. Thick arrows show the direction of the electrostatic forces
acting on the charge clouds and the direction of local electroosmotic flows. Note that reversal of
field polarity reverses the polarity of charges but preserves the directions of the driving electrostatic
force and the induced nematic flows. (b) Experimentally determined map of electroosmotic velocities
corresponding to the director pattern in (a).

features similar to experimental observations; in particular the quadratic dependence
of the driving force on the electric field is recovered. Note that a detailed mathemat-
ical study of the experiment in [13] using the methods described in this paper will
appear elsewhere.

The following notational conventions are used throughout the rest of the paper.
The trace of A is given by trA =

∑
iAii for any matrix A ∈M3×3. The inner product

of two matrices is defined as A ·B = tr
(
BTA

)
for any A,B ∈M3×3. These definitions

immediately extend to second order tensors with components given by 3×3 matrices.
The tensor product of x,y ∈ R3 is the tensor x⊗y that assigns to each vector c ∈ R3

the vector (y · c)x. The divergence and the curl of a vector field a ∈ R3 will be
denoted by div a and curl a, respectively. The divergence divS of a tensor field S is a
unique vector field with the property (divS) ·c = div (ST c) for every constant c ∈ R3.
Here x · y is the Euclidean inner product of two vectors x,y ∈ R3. Both the symbol
d
dt and the superimposed dot will be used interchangeably to represents the material
time derivative.

2. Ericksen–Leslie model for a nematic electrolyte.

2.1. Standard nematic model. We begin by reviewing Leslie’s derivation of
the classical Ericksen–Leslie model. Let Ω, with the piecewise smooth boundary
∂Ω, denote the domain occupied by the liquid crystal. Suppose that v = v(x, t)
and n = n(x, t) denote the velocity and director fields, respectively. The vector fields
t(x, t) and l(x, t) represent contact force and contact couple per unit area of a surface
element S, respectively. We assume that there exist the Cauchy stress tensor T and
the generalized stress tensor L (contact torque) such that

(2.1) t(x, t) = T (x, t)ν(x, t), l(x, t) = L(x, t)ν(x, t).
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We set

(2.2) T = T e + T v, L = Le + Lv,

where ν represents the unit outer normal to a surface S at x, the tensor field T e is the
elastic stress, and T v is the anisotropic part of the viscous stress tensor. Following
Leslie, we assume that there is no viscous torque tensor associated with L, that is, we
set L = Le, where Le is the elastic torque tensor.

We postulate the equations of balance of linear and angular momentum, together
with the incompressibility assumption and the unit director field constraint:

ρv̇ − div T = ρf ,(2.3)

div v = 0,(2.4)

χn̈ + g − divL = ρg,(2.5)

n · n = 1.(2.6)

Here ρ is the mass density and χ is the density of the moment of inertia of nematic
rods. The symbols f and g denote the density per unit mass of an applied external
force and torque, respectively. The body torque g can be written as

(2.7) g = gv + ge,

where ge and gv denote the elastic and viscous contributions associated with director
field rotations.

Below we assume that the nematic energy density is in the Oseen–Frank form

WOF(n,∇n) =
1

2
K1(div n)2 +

1

2
K2(n · curl n)2 +

1

2
K3|n× curl n|2

+
1

2
(K2 +K4)(tr(∇n)2 − tr2(∇n)),(2.8)

where the Frank elastic constants Ki, i = 1, . . . , 4, are assumed to satisfy the Erick-
sen’s inequalities

(2.9) K1 > 0, K2 > 0, K3 > 0, K2 ≥ |K4|, 2K1 ≥ K2 +K4,

to guarantee existence of a global minimizer of the total energy

(2.10) U =

∫
Ω

WOF(n,∇n)

under appropriate boundary data [21].

2.1.1. Dynamics. Among the different approaches that can be used to derive
the constitutive equations for the fields T e, T v, Le,ge,gv, we choose the line of reason-
ing proposed by Leslie that starts with postulating the balance laws (2.3) and (2.5)
along with the equation of the energy balance. Following [17], we let RLC be the rate
of viscous dissipation per unit volume and assume that

(2.11)

∫
V

ρ(f ·v+g·ṅ)+

∫
∂V

(t·v+l·ṅ) =
d

dt

∫
V

(
1

2
ρ|v|2 +

1

2
χ|ṅ|2 +WOF

)
+

∫
V

RLC

for every subdomain V ⊆ Ω with the smooth boundary ∂V . The local form of (2.11),

(2.12) T · ∇v + L · ∇ṅ + g · ṅ = ẆOF +RLC ,
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follows via the divergence theorem from (2.1), (2.3), and (2.5). A simple computation
shows that

(2.13) ∇ṅ = (∇n)· +∇n∇v,

hence

ẆOF =
∂WOF

∂n
· ṅ +

∂WOF

∂∇n
· (∇n)·

=
∂WOF

∂n
· ṅ +

∂WOF

∂∇n
· (∇ṅ−∇n∇v) .(2.14)

Substituting (2.14) into (2.12) yields

T · ∇v + L · ∇ṅ + g · ṅ =
∂WOF

∂n
· ṅ +

∂WOF

∂∇n
· (∇ṅ−∇n∇v) +RLC ,

so that (2.2) and (2.7) give(
T e + T v + (∇n)T

∂WOF

∂∇n

)
· ∇v +

(
Le − ∂WOF

∂∇n

)
· ∇ṅ

+

(
ge + gv − ∂WOF

∂n

)
· ṅ = RLC .(2.15)

The second law of thermodynamics in the form of the Clausius–Duhem inequality,
together with the appropriate smoothness assumptions, implies the positivity of the
rate of viscous dissipation function

(2.16) RLC(x, t) ≥ 0 ∀x ∈ Ω, t > 0,

for all dynamical processes {v, ṅ}. Specifically, given n(x, t) and ∇n(x, t), the in-
equality (2.16) must hold for arbitrary choices at (x, t) of v, ∇v, ṅ, and ∇ṅ. This
yields the constitutive relations

T e = −pI − (∇n)T
∂WOF

∂∇n
,(2.17)

ge =
∂WOF

∂n
+ λn,(2.18)

Le =
∂WOF

∂∇n
,(2.19)

where p and λ are the Lagrange multipliers corresponding to the constraints (2.4) and
(2.6), respectively.

It also follows that

(2.20) RLC = gv · ṅ + T v · ∇v.

The arguments in [16] then yield the total viscous stress

(2.21)
T v = α1 (D(v)n · n) n⊗n+α2n̊⊗n+α3n⊗n̊+α4D(v)+α5D(v)n⊗n+α6n⊗D(v)n

and the viscous molecular force

(2.22) gv = γ1n̊ + γ2D(v)n,
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where

(2.23) γ1 = α3 − α2, γ2 = α6 − α5,

and n̊ = ṅ−W (v)n is the Lie derivative of n. Further,

D(v) =
1

2

(
∇v +∇vT

)
and W (v) =

1

2

(
∇v −∇vT

)
(2.24)

represent the symmetric and skew parts of the velocity gradient ∇v, respectively.
Note that an even more general expression [22] that involves the gradient of n̊ can
be established for (2.21)–(2.22), although we chose not to include terms of this type
here.

In what follows, we assume that the Parodi’s relation [16] given by

(2.25) α6 − α5 = α2 + α3

holds. This relation is necessary to ensure the variational structure of the system of
equations and thus the equivalency of the equation of balance of linear momentum
(2.3) to that derived via the Onsager’s principle. Then (2.20) and (2.21)–(2.22) give

(2.26)
2RLC = α1(n ·D(v)n)2 + 2γ2(n̊ ·D(v)n) + α4|D(v)|2 + (α5 + α6)|D(v)n|2 + γ1 |̊n|2.

Ericksen [23] gave sufficient conditions for the positivity of RLC in the following.

Proposition 2.1. Suppose that (2.25) and the inequalities

(2.27) α4 > 0, α1 +
3

2
α4 + α5 + α6 > 0, γ1 > 0, γ1(2α4 + α5 + α6) ≥ γ2

2

hold. Then

(2.28) RLC ≥ 0

and

(2.29) T v =
∂RLC
∂∇v

and gv =
∂RLC
∂ṅ

.

Moreover RLC ≡ 0 if and only if ∇v = 0 and n̊ = 0.

2.1.2. Boundary conditions. Since the energy law (2.11) for the Ericksen–
Leslie system must hold in the entire domain Ω, it follows from (2.3)–(2.6) and (2.17)–
(2.20) that ∫

∂Ω

{Tν · v + Lν · ṅ} =

∫
∂Ω

{t · v + l · ṅ} .(2.30)

This equation should be valid for all dynamical processes {v, ṅ}; therefore the bound-
ary conditions on ∂Ω should be of the form

Tν = t̂ or v = 0 and(2.31)

Lν = l̂ or n = n̂,(2.32)

where t̂, l̂, and n̂ are prescribed vector fields on ∂Ω with |n̂| = 1 and T and L given by

(2.2), (2.17), (2.21), and (2.19). Observe that the fields t̂ and l̂ can be time-dependent
in this formulation.
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2.2. Nematic electrolyte. Suppose now that the domain Ω ⊂ R3 is occupied
by a nematic electrolyte that contains ions. Later on, we will assume that some parts
of ∂Ω correspond to conducting electrodes on which we will prescribe values of the
electrostatic potential Φ, while the other parts of the boundary will be assumed to
be electrically insulated. In this section, however, we will impose time-independent,
Dirichlet boundary data on the potential Φ everywhere on ∂Ω, corresponding to ne-
matic being surrounded by conductors held at fixed potentials. This problem setup is
chosen for simplicity because we do not expect the boundary data on the electric field
to affect the constitutive expressions on electrostatic forces in the bulk of the nematic
electrolyte.

Suppose that there are N > 1 families of charged ions present in the liquid crystal
at concentrations ck, with valences zk, where 1 ≤ k ≤ N . Let the velocity fields of
the ions be denoted by {uk}1≤k≤N . In what follows, we assume that the system is
in the dilute regime so that the particles are not subject to mutual interaction. The
continuity equations for the ions are given by

∂ck
∂t

+ div(ckuk) = 0 in Ω, k = 1, . . . N.(2.33)

Motivated by standard results of the theory of isotropic diffusion, we assume
that the rate of dissipation associated with the mobility of ions in the nematic is
a quadratic function of the relative velocity of the ions with respect to the liquid
crystalline medium. We set

R = RLC +

N∑
k=0

kBθckD−1
k (uk − v) · (uk − v),(2.34)

where RLC is given by (2.26), and the diffusion matrix Dk is anisotropic, reflecting the
fact that the mobilities of the kth species in the directions parallel and perpendicular
to the nematic director are generally different. The parameter kB in (2.34) is the
Boltzmann constant and θ is the absolute temperature [22]. The ions also contribute
to the free energy of the system via an entropic energy density term

(2.35) Wion = kBθ

N∑
k=1

ck ln ck.

The electric displacement vector D of the nematic liquid crystal is given by

(2.36) D = ε0εE,

where ε = I +χ is the dielectric permittivity matrix. Letting ε‖ and ε⊥ represent the
dielectric permittivities when E is parallel and perpendicular to n, respectively, and
denoting εa = ε‖ − ε⊥, we have that

(2.37) ε(n) = ε⊥I + εan⊗ n.

The fields E and D satisfy the Maxwell’s equations of electrostatics

(2.38) E = −∇Φ, div D =

N∑
k=1

qzkck
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that hold in Ω, subject to time-independent Dirichlet boundary data for Φ on ∂Ω.
Here the parameter q denotes the elementary charge. The electrostatic energy

(2.39) Welec = −1

2
D ·E +

N∑
k=1

qzkckΦ = −ε0

2
ε(n)∇Φ · ∇Φ +

N∑
k=1

qzkckΦ

is clearly nonlocal because Φ is determined by solving the second equation in (2.38)
for the given n, ck, and the appropriate boundary data on Φ. The arguments of Leslie
in the purely mechanical case [16] rely on formulating a local energy balance (2.11)
for a material control volume V ⊂ Ω with the balance being assumed to hold for
any dynamical process {v, ṅ} with a support in V . The following simple proposition
allows for localization of the time derivative of the total electrostatic energy.

Proposition 2.2. Suppose that Φ satisfies the second equation in (2.38), subject
to time-independent Dirichlet boundary data on ∂Ω. If the support of {v,u1, . . . ,uN , ṅ}
is contained in V , that is, the rates v,u1, . . . ,uN , ṅ all vanish in Ω\V̄ , then

d

dt

∫
Ω

Welec =

∫
V

{
−ε0

2

dε(n)

dt
∇Φ · ∇Φ−

N∑
k=1

qzkck∇Φ· (v−uk) +ε0ε(n)∇Φ·
(
∇vT∇Φ

)}

+

∫
∂V

N∑
k=1

qzkckΦ (v − uk) .ν.(2.40)

Proof. Using (2.33), (2.39), integration by parts, incompressibility of the flow,

and our assumptions on the dynamical process, and writing ρe =
∑N
k=1 qzkck, we

have

d

dt

∫
Ω

Welec =
d

dt

∫
Ω

{
−1

2
(ε0ε(n)∇Φ · ∇Φ) + ρeΦ

}
=

∫
Ω

{
−ε0

2

dε(n)

dt
∇Φ · ∇Φ +

{
∂ρe
∂t

+ div (ρev)

}
Φ

}
+

∫
Ω

{
−ε0ε(n)∇Φ · d

dt
(∇Φ) + ρe

dΦ

dt

}
=

∫
V

{
−ε0

2

dε(n)

dt
∇Φ · ∇Φ + qΦ

N∑
k=1

zk div (ck (v − uk))

}

+

∫
Ω

{
−ε0ε(n)∇Φ ·

{
∇
(
dΦ

dt

)
−∇vT∇Φ

}
+ ρe

dΦ

dt

}
=

∫
V

{
−ε0

2

dε(n)

dt
∇Φ · ∇Φ + qΦ

N∑
k=1

zk div (ck (v − uk)) + ε0ε(n)∇Φ ·
(
∇vT∇Φ

)}

+

∫
Ω

dΦ

dt
{div (ε0ε(n)∇Φ) + ρe} −

∫
∂Ω

∂Φ

∂t
{ε0ε(n)∇Φ · ν} ,

and (2.40) follows from (2.38) and the fact that the potential does not depend on time
on ∂Ω.

Remark 1. Note that by using (2.37) and the first equation in (2.38), the first
integrand on the right-hand side of (2.40) can be written as

ε0

2

dε(n)

dt
∇Φ · ∇Φ =

ε0εa
2

d

dt
(n⊗ n)∇Φ · ∇Φ = ε0εa (n · ∇Φ) (ṅ · ∇Φ)

= ε0εa (E⊗E) n · ṅ.
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Further, recalling the definition (2.36) of D and using the first equation in (2.38), the
third integrand on the right-hand side of (2.40) can be written as

ε0ε(n)∇Φ ·
(
∇vT∇Φ

)
= D · ∇vTE = (E⊗D) · ∇v,

so that (2.40) takes the form

d

dt

∫
Ω

Welec =

∫
V

{
−ε0εa (E⊗E) n · ṅ + (E⊗D) · ∇v −

N∑
k=1

qzkck∇Φ · (v − uk)

}

+

∫
∂V

N∑
k=1

qzkckΦ (v − uk) · ν.(2.41)

The material time derivative of
∫
V
Wion will also enter the energy balance.

Proposition 2.3. Suppose that (2.33) holds. Then

d

dt

∫
V

Wion = −
∫
V

N∑
k=1

kBθ∇ck · (v − uk) +

∫
∂V

N∑
k=1

kBθ (ln ck + 1) ck (v − uk) · ν.

(2.42)

Proof. Using (2.35) for Wion and the mass balances (2.33) gives

d

dt

∫
V

Wion =

∫
V

d

dt

{
kBθ

N∑
k=1

ck ln ck

}
=

∫
V

N∑
k=1

{
kBθ (ln ck + 1)

(
∂ck
∂t

+ div (ckv)

)}

=

∫
V

N∑
k=1

kBθ (ln ck + 1) div (ck (v − uk))

= −
∫
V

N∑
k=1

kBθ∇ck · (v − uk) +

∫
∂V

N∑
k=1

kBθ (ln ck + 1) ck (v − uk) · ν.

Combining (2.41) and (2.42) we obtain

d

dt

{∫
V

Wion+

∫
Ω

Welec

}
=

∫
V

{
N∑
k=1

ck∇µk· (uk−v)−ε0εa (E⊗E) n·ṅ+ (E⊗D) ·∇v

}

−
∫
∂V

N∑
k=1

ckµk (uk − v) · ν,(2.43)

where the quantities

(2.44) µk = kBθ(ln(ck) + 1) + qzkΦ =
∂

∂ck

(
Wion + qzkckΦ

)
, k = 1, . . . , N,

are the electrochemical potentials of the ions.
In order to establish the set of governing equations, we now extend the procedure

carried out above in the purely mechanical case. We postulate the same local forms
of the balance of both linear (2.3) and angular (2.5) momenta, coupled with the
constraint relations (2.4) and (2.6), and assume that the mass balances (2.33) hold
in Ω along with the Maxwell’s equations of electrostatics (2.38) that hold in R3. The
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2270 CALDERER, GOLOVATY, LAVRENTOVICH, AND WALKINGTON

equation of balance of energy in an arbitrary subdomain V ⊂ Ω for any isothermal
dynamical process

{v,u1, . . . ,uN , ṅ},
with a support in V then given by

(2.45)

∫
V

ρ(f · v + g · ṅ) +

∫
∂V

(
t · v + l · ṅ−

N∑
k=1

ckµk(uk − v) · ν

)

=
d

dt

{∫
V

(
1

2
ρ|v|2 +

1

2
χ|ṅ|2 +Wion +WOF

)
+

∫
Ω

Welec

}
+

∫
V

R.

The additional boundary term
∑N
k=1 ckµk(uk−v)·ν, which does not appear in (2.11),

represents the energy transported across the boundary by the ions. Equations (2.15),
(2.34), and (2.43) allow us to express (2.45) in the local form(

T e + T v + (∇n)T
∂WOF

∂∇n
−E⊗D

)
· ∇v +

(
Le − ∂WOF

∂∇n

)
· ∇ṅ

+

(
ge + gv − ∂WOF

∂n
+ ε0εa (E⊗E) n

)
· ṅ−

N∑
k=1

ck∇µk · (uk − v)(2.46)

= RLC +

N∑
k=0

{
kBθckD−1

k (uk − v) · (uk − v)
}
.

The necessary conditions for positivity of the dissipation functional R required by the
Clausius–Duhem inequality for an arbitrary admissible dynamical process then give
the following analogues of the constitutive relations (2.17)–(2.19) which account for
the presence of ions and the electric field,

T e = −pI − (∇n)T
∂WOF

∂∇n
+ E⊗D,(2.47)

ge =
∂WOF

∂n
− ε0εa(E⊗E)n + λn,(2.48)

Le =
∂WOF

∂∇n
,(2.49)

uk = v − 1

kBθ
Dk∇µk, k = 1, . . . , N,(2.50)

along with the relations (2.21) for the viscous stress T v and (2.22) for the viscous
molecular force gv. As in the classical Ericksen–Leslie system, the fields p and λ in
(2.47)–(2.48) are the Lagrange multipliers corresponding to the constraints (2.4) and
(2.6), respectively. We are now ready to formulate the full set of equations governing
the evolution of a nematic electrolyte.

Proposition 2.4. Suppose that the continuity equations (2.33), the linear mo-
mentum balance (2.3), the angular momentum balance (2.5), and the Maxwell’s equa-
tions of electrostatics (2.38) hold in Ω. Further, suppose that the energy balance (2.45)
holds in every subdomain V ⊂ Ω for any dynamical process

{v,u1, . . . ,uN , ṅ}

with a support in V . Then the necessary conditions for positivity of the dissipation
functional R in (2.34) are (2.21)–(2.22) and (2.47)–(2.50).
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The system of equations for the nematic electrolyte is as follows:

∂ck
∂t

+ div

(
ck

[
v − 1

kBθ
Dk∇µk

])
= 0,(2.51)

−div(ε0ε(n)∇Φ) =

N∑
k=1

qzkck,(2.52)

ρv̇ − div

(
−pI − (∇n)T

∂WOF

∂∇n
+ ε0 (∇Φ⊗∇Φ) ε(n) + T v

)
= ρf ,(2.53)

div v = 0,(2.54)

χn̈ +
∂WOF

∂n
− ε0εa (∇Φ⊗∇Φ) n + div

(
∂WOF

∂∇n

)
+ gv + λn = ρg,(2.55)

n · n = 1,(2.56)

where T v is given by (2.21) and gv is given by (2.22).

Proof. Equation (2.51) immediately follows from (2.50) and (2.33). The remain-
ing equations follow by substituting the expressions for the appropriate stresses, using
the definitions of D and E, and by recalling that a⊗Ab = (a⊗ b)AT for any a,b ∈ R3

and A ∈M3×3.

Remark 2. From (2.51), we identify the tensor

(2.57) Mk =
qzk
kBθ
Dk

as the mobility tensor of the kth species. Note that when Dk is a multiple of the
identity, M is the analogue of Einstein’s mobility relation of electrons in a gas (zk =
−1). The conductivity matrix (mobility times charge density) of the kth species is
now given by

(2.58) σk =
1

kBθ
ckz

2
kq

2Dk.

Note that the corresponding resistivity matrix is equal to the inverse of σk.

2.2.1. Boundary conditions. Since the energy law (2.45) for the nematic elec-
trolyte has to hold in the entire domain Ω, it follows from (2.51)–(2.56) that
(2.59)∫

∂Ω

{
Tν · v + Lν · ṅ−

N∑
k=1

ckµk(uk − v) · ν

}
=

∫
∂Ω

{
t · v + l · ṅ−

N∑
k=1

jk

}
,

where jk, k = 1, . . . , N , represents the normal energy flux associated with the trans-
port of the kth species of ions across the boundary. This equation should be valid for
all dynamical processes {v,u1, . . . ,uk, ṅ}; therefore the boundary conditions on ∂Ω
should be of the form

Tν = t̂ or v = 0, and(2.60)

Lν = l̂ or n = n̂, and(2.61)

ckµk(uk − v) · ν = ĵk or uk · ν = v · ν, k = 1, . . . , N,(2.62)

where t̂, l̂, n̂, and ĵk, k = 1, . . . , N , are prescribed fields on ∂Ω with |n̂| = 1 and

T and L given by (2.2), (2.47), (2.21), and (2.49). Observe that the fields t̂, l̂,
ĵk, k = 1, . . . , N , can be time-dependent in this formulation.
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The set of the boundary conditions should be supplemented by the boundary data
on the electric field. Here, we will impose the Dirichlet conditions on the potential on
the boundary between the nematic electrolyte and a conductor

(2.63) Φ|∂Ω = Φ0

for some prescribed Φ0. On the boundary between the nematic and an insulating
medium [24], we will impose the condition of the zero jump of the normal component
of the displacement D, that is,

(2.64) [D · ν]∂Ω = 0,

where [·]∂Ω represent the jump of a quantity in the brackets across ∂Ω. In this case,
the equations of electrostatics have to be solved in R3.

2.2.2. Variational structure. Setting

W(n,∇n,Φ,∇Φ, c1, . . . , cN ) = WOF (n,∇n) +Wion(c1, . . . , cN )

+ Welec(φ,∇φ, c1, . . . , cN )

= WOF (n,∇n) +

N∑
k=1

(
kBθck ln(ck) + qzkckΦ

)
− ε0

2
ε(n)∇Φ · ∇Φ,

Maxwell’s equation (2.51) and the balance laws (2.52), (2.53), and (2.55) may be
written as

∂ck
∂t

+ div
(
ck(v − (1/kBθ)∇µk)

)
= 0,

div

(
∂W
∂∇Φ

)
=
∂W
∂Φ

,

ρv̇ − div

(
−pI +

∂R

∂∇v
− (∇n)T

∂W
∂∇n

−∇Φ⊗ ∂W
∂∇Φ

)
= ρf ,

χn̈ +
∂R

∂ṅ
− div

(
∂W
∂∇n

)
+
∂W
∂n

+ λn = ρg.

Introducing the Legendre transform of W,

W∗(n,∇n,Φ,∇Φ, µ1, . . . , µN ) = −WOF (n,∇n) + kBθ

N∑
k=1

exp
(
(µk − qzkΦ)/kBθ − 1

)
+
ε0

2
ε(n)∇Φ · ∇Φ,

the dual relations take the form

ck =
∂W∗

∂µk
= exp

(
(µk − qzkΦ)/kBθ − 1

)
and µk =

∂W
∂ck

= kBθ(ln(ck)+1)+qzkΦ.
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Computing ∇W∗ and rearranging the terms shows

div

(
−W∗I − (∇n)T

∂W
∂∇n

−∇Φ⊗ ∂W
∂∇Φ

)
= div

(
−W∗I + (∇n)T

∂W∗

∂∇n
+∇Φ⊗ ∂W∗

∂∇Φ

)
= (∇n)T

(
div

(
∂W∗

∂∇n

)
− ∂W∗

∂n

)
+

(
div

(
∂W∗

∂∇Φ

)
− ∂W∗

∂Φ

)
∇Φ−

N∑
k=1

∂W∗

∂µk
∇µk

= −(∇n)T
(

div

(
∂W
∂∇n

)
− ∂W

∂n

)
−
(

div

(
∂W
∂∇Φ

)
− ∂W
∂Φ

)
∇Φ−

N∑
k=1

ck∇µk,

so the linear momentum equation can be written as

(2.65)

ρv̇ − div

(
−(p+W∗)I +

∂R

∂∇v

)
+ (∇n)T

(
div

(
∂W
∂∇n

)
− ∂W

∂n

)
+

N∑
k=1

ck∇µk = ρf .

The energy estimate for the coupled system now follows upon multiplying the equa-
tions for the concentrations by µk, Maxwells equation by Φt, and the linear and an-
gular momentum equations by v and ṅ, respectively. Granted appropriate boundary
data, this gives

d

dt

∫
Ω

{
(1/2)

(
ρ|v|2 + χ|ṅ|2

)
+W

}
+

∫
Ω

{
∂R

∂∇ṅ
· ṅ +

∂R

∂∇v
· ∇v +

N∑
k=1

ck
kBθ
|∇µk|2

}

=

∫
Ω

ρ
(
f · v + g · ṅ

)
.

The identities required obtain the statement of the linear momentum equation in
(2.65) and to pose the balances of mass for the concentrations in terms of the chemical
potentials are used in an essential fashion for the development of stable numerical
schemes with nonnegative concentrations [18].

3. Liquid crystal–enabled electroosmosis. Next, we use the model devel-
oped in the previous section to study electroosmosis in a nematic liquid crystalline
film constrained between two parallel plates. In [13], the authors present an ap-
proach to generate electrokinetic effects by using as an electrolyte a liquid crystal
with surface-imposed distortions of molecular orientations. In the presence of the
uniform electric field, these variations produce space charge separation that triggers
electroosmotic flow in the liquid crystal. In particular, for the setup depicted in Fig-
ure 1, the director orientation is periodically varying in the vertical direction and an
AC field is applied in the horizontal direction. It was observed that spatially periodic
horizontal flow proceeds along the “guiding rails” induced by molecular orientation
with the direction of the flow independent of the sign of the field. Indeed, for weak
fields, it is known [10, 11, 12, 13] that the driving force of the flow is proportional to
the square of the field. The physical reason is simple [12, 13]. The spatial charge is
created at the director distortions by the applied field E and therefore grows linearly
with E; the Coulomb force, being the product of the charge and the driving field,
should thus grow as E2. We are interested in establishing a simple model of this
process.
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3.1. A simplified model. In what follows, we will represent the film by a
domain Ω× [−h, h] ⊂ R3, where Ω ⊂ R2 and 0 < h� 1. The plates are patterned in
a way that enforces strong anchoring of the director so that the director orientation
varies in the prescribed way along the plates while it remains parallel to the plates.
This mode of “prepatterned” surface anchoring is achieved experimentally through
the recently developed plasmonic mask approach [25]. Briefly, the photosensitive
layers at the inner surfaces of the bounding plates are illuminated by light that passes
through the array of narrow elongated nanoslits. The transmitted light acquires local
state of polarization determined by the orientation of nanoslits. The pattern of light
polarization is imprinted onto the photosensitive layer; the latter then imposes the
alignment pattern onto the director of the adjacent nematic liquid crystal. Since both
plates in the assembled cell are irradiated simultaneously, the patterns at the top
and bottom plates are identical to each other and impose fixed boundary conditions
on both nematic/plate boundaries Ω × {−h, h}. Choosing a coordinate system with
the z-axis perpendicular to the plates, we impose the Dirichlet condition n|∂Ω×{z} =
n|∂Ω×{h} for any z ∈ [−h, h] on the lateral boundary of the film ∂Ω× [−h, h].

The primary goal of this section is to demonstrate that the predictions of our
model are in qualitative agreement with the experiment. Even though the ideas
below apply to a wide range of parameter regimes, here we will consider only a simple
setup that is sufficiently anisotropic to replicate experimentally observed behavior.
To this end, if we let α1 = α2 = α3 = α5 = α6 = 0 and α4 > 0, then by (2.23)
the parameters γ1 = γ2 = 0, and hence by (2.22) the viscous molecular force gv ≡
0. The approximation of isotropic viscosity is justified, as the mechanism of liquid
crystal–enabled electrokinetics is not the anisotropy of viscosity but the anisotropy
of conductivity (or dielectric permittivity) [12, 13]. Viscosity anisotropy renormalizes
the velocities of electrokinetic flows but does not create these flows [12, 13]. By
assuming that the dielectric permittivity anisotropy of the liquid crystal is small
and setting εa = 0, we eliminate direct interaction between the director and the
electric field. Although the dielectric anisotropy is expected to play a role similar
to anisotropy of conductivity in triggering the liquid crystal–enabled electrokinetics,
such a simplification allows us to reflect closely the experimental situations described
in [12, 13], in which the liquid crystal was formulated to be of zero dielectric anisotropy.

To simplify the model further, we adopt the equal elastic constants approximation
K1 = K2 = K3 = K, so that

WOF (n,∇n) =
K

2
|∇n|2.

Here we have also eliminated the term in (2.8) that corresponds to the elastic constant
K4 since this term is a null Lagrangian under the Dirichlet boundary data on the
director. Note that the simplifying assumptions made in this paragraph generally do
not hold for the experimental system considered in [13]. A more detailed study of this
system using the methods described in this section will appear elsewhere.

Given the assumptions above, (2.55) reduces to the harmonic map equation

(3.1) ∆n = γn

in Ω× [−h, h], where n satisfies the Dirichlet conditions on the boundary of the film.
Since the director is assumed to be parallel to the plates on the film boundary, we
seek a solution of (3.1) of the form

n(ψ(x, y)) = (cosψ(x, y), sinψ(x, y), 0).
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By substituting this ansatz into (3.1) we find that

(3.2) ∆ψ = 0

in Ω. In the remainder of this section we will require the director pattern on the plates
to satisfy (3.2) so that n(x, y) = (cosψ(x, y), sinψ(x, y), 0) is a solution of (3.1). In
fact, the third component of n can be neglected and n can be written as

n(ψ(x, y)) = (cosψ(x, y), sinψ(x, y)).

It is now reasonable to look for a solution of the system of governing equations
(2.51)–(2.55) that is independent of the z-variable and such that the third component
of velocity is identically zero, i.e., v(x, y, t) = (u(x, y, t), v(x, y, t), 0) or

v(x, y, t) = (u(x, y, t), v(x, y, t)),

if we drop the trivial component. As an additional simplifying assumption, we consider
a case of two ionic species given by the fields

cp(x, y, t) and cm(x, y, t)

with zp = 1 and zm = −1, respectively. We further select the anisotropic diffusion
matrix for both species to be in the form

(3.3) D(ψ) = D̄ (I + (λ− 1)n(ψ)⊗ n(ψ)) ,

where D̄ > 0 and the parameter λ ≥ 0 determines the strength of anisotropy.
The system (2.51)–(2.55) now takes the form

(3.4)



∂cp
∂t

+ div(vcp) = div

(
D(ψ)

(
∇cp +

qcp
kBθ
∇Φ

))
,

∂cm
∂t

+ div(vcm) = div

(
D(ψ)

(
∇cm −

qcm
kBθ
∇Φ

))
,

−∆Φ =
q

εε0
(cp − cm) ,

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p+ µ∆v − q (cp − cm)∇Φ,

div v = 0,
∆ψ = 0,

in Ω, where µ := α4/2. Here we use the symbol p to denote the pressure from

(2.53) incremented by the factor kBθ (cp + cm) + K
2 |∇ψ|

2
. Specializing further to a

rectangular domain Ω = [−L,L]× [−W,W ], we impose the boundary conditions

(3.5)



v = 0 on {−L,L} × [−W,W ],

v = 0 and
∂u

∂y
= 0 on [−L,L]× {−W,W},(

∇cp +
qcp
kBθ
∇Φ

)
· D(ψ)ν = 0 on ∂Ω,(

∇cm −
qcm
kBθ
∇Φ

)
· D(ψ)ν = 0 on ∂Ω,

∂Φ

∂y
(x,±W, t) = 0,

Φ(±L, y, t) = ±Φ0(t).
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Note that in writing the impenetrability conditions on cp and cm in (3.5), we took
advantage of the symmetry of the diffusion matrix. Furthermore, the second equa-
tion in (3.5) corresponds to a perfect slip condition on the lateral components of the
boundary ∂Ω. Here the conditions on [−L,L] × {−W,W} are equivalent to impos-
ing periodic boundary conditions on the solution of (3.4) corresponding to periodic
director distributions discussed below.

Remark 3. Since n(x, y) = (cosψ(x, y), sinψ(x, y)), then

(3.6) ∇nT∇n = ∇ψ ⊗∇ψ =
|∇ψ|2

2
I + τ ,

where, by (3.2), the deviatoric stress tensor τ is divergence-free: div τ = 0.

3.2. Nondimensionalization. Next, we nondimensionalize the system (3.4)–
(3.5) as follows. Let

(3.7) x̃ =
x

W̄
, ṽ =

v

ū
, t̃ =

ūt

W̄
, c̃p =

cp
c̄
, c̃m =

cm
c̄
, Φ̃ =

Φ

Φ̄
, p̃ =

p

p̄
,

where f̄ denotes the characteristic value of a given quantity f . We let Φ̄ = W̄L−1‖Φ0‖∞
= W̄‖E0‖∞, where E0 represents the strength of the electric field between the elec-
trodes. Following [13], assume that

(3.8) ū =
εε0Φ̄2

µW̄
.

By denoting D̃(ψ) = D̄−1 (Dij(ψ)), dropping all tildes for notational convenience,
and setting f,r := ∂f/∂r for any f and r, we obtain the system of nondimensional
equations

(3.9)



Pe (cp,t + ucp,x + vcp,y) = (D11(ψ) (cp,x + FcpΦ,x)),x

+ (D12(ψ) (cp,x + FcpΦ,x)),y + (D12(ψ) (cp,y + FcpΦ,y)),x

+ (D22(ψ) (cp,y + FcpΦ,y)),y ,

Pe (cm,t + ucm,x + vcm,y) = (D11(ψ) (cm,x − FcmΦ,x)),x

+ (D12(ψ) (cm,x − FcmΦ,x)),y + (D12(ψ) (cm,y − FcmΦ,y)),x

+ (D22(ψ) (cm,y − FcmΦ,y)),y ,

−Φ,xx − Φ,yy = B (cp − cm) ,

ψ,xx + ψ,yy = 0,

Re (u,t + uu,x + vu,y) = −p,x + u,xx + u,yy − B (cp − cm) Φ,x,

Re (v,t + uv,x + vv,y) = −p,y + v,xx + v,yy − B (cp − cm) Φ,y,

u,x + v,y = 0,

in Ω =
[
−ε−1, ε−1

]
× [−a, a]. Here we set

(3.10) Re =
ρūW̄

µ
, Pe =

ūW̄

D̄
, ε =

W̄

L
, a =

W

W̄
, F =

qΦ̄

kBθ
, B =

qc̄W̄ 2

εε0Φ̄
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and assume that p̄ = µūW−1. The boundary conditions can now be written as

(3.11)

u = v = 0 on
{
−ε−1, ε−1

}
× [−a, a],

v = 0 and u,y = 0 on
[
−ε−1, ε−1

]
× {−a, a},

D11(ψ) (cp,x + FcpΦ,x) +D12(ψ) (cp,y + FcpΦ,y) = 0 on
{
−ε−1, ε−1

}
× [−a, a],

D11(ψ) (cp,x + FcpΦ,x) +D12(ψ) (cp,y + FcpΦ,y) = 0 on
{
−ε−1, ε−1

}
× [−a, a],

D12(ψ) (cp,x + FcpΦ,x) +D22(ψ) (cp,y + FcpΦ,y) = 0 on
[
−ε−1, ε−1

]
×{−a, a} ,

D12(ψ) (cm,x − FcmΦ,x) +D22(ψ) (cm,y − FcmΦ,y) = 0 on
[
−ε−1, ε−1

]
×{−a, a} ,

Φ,y(x,±a, t) = 0,

Φ
(
±ε−1, y, t

)
= ±Φ0(t),

where we set Φ̃0(t) = Φ0(t)
Φ̄

and drop the tilde. From now on—unless specified
otherwise—we will work with the nondimensional problem (3.9)–(3.11).

3.3. Periodic flow pattern. Suppose now that the director field follows a pe-
riodic stripe pattern with the stripes being parallel to the x-axis. In nondimensional
coordinates this can be modeled, for example, by assuming that a = πn for some
n ∈ N and setting ψ = y

2 . One can immediately observe that this function satisfies
the fourth equation in (3.9). By a direct computation we also have

(3.12) D =
1

2

(
(λ+ 1)I + (λ− 1)

(
cos y sin y
sin y − cos y

))
.

Our setup can be associated with an electrochemical experiment, in which the
right—

{
ε−1
}
× [−πn, πn]—and the left—

{
−ε−1

}
× [−πn, πn]—components of the

boundary are identified as a positive and a negative electrode, respectively. Here the
rest of the boundary is assumed to be electrically insulated. As the positive ions will
be attracted to the negative electrode and vice versa, the boundary layers would form
next to the electrodes that would subsequently suppress both the potential difference
and flow in the nematic electrolyte as long as the electrodes potentials remain fixed.
In an experiment, this is circumvented by applying the AC instead of the DC field,
making the corresponding problem inherently transient. Here we will assume that
the parameter ε is small and that the flux of ions on the timescale of the flow is not
large enough to significantly affect the boundary layers. We will thus solve the “outer
problem” away from the electrodes and set Φ0 to be constant in time and equal to the
half of the potential difference between the “matching regions” corresponding to the
edges of the right and left boundary layers. Since we are not solving the equations
inside the boundary layer, we can then also ignore the second and third boundary
conditions in (3.11).

We now seek a solution of (3.9)–(3.11) in the form

cp = cp(y), cm = cm(y), v = (u(y), 0), Φ = x+ φ(y).

Then the incompressibility condition trivially holds and the system (3.9)–(3.11)
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reduces to

(3.13)



(FD12(ψ)cp +D22(ψ) (cp,y + Fcpφ,y)),y = 0,

(−FD12(ψ)cm +D22(ψ) (cm,y − Fcmφ,y)),y = 0,

φ,yy = −B (cp − cm) ,

u,yy = B (cp − cm) ,

p,y = −B (cp − cm)φ,y,

p,x = 0,∫ πn

−πn
cp dy =

∫ πn

−πn
cm dy = 2πn,∫ πn

−πn
u dy = 0,

subject to the boundary conditions

(3.14)


u,y(±πn) = 0,

FD12(ψ(±πn))cp(±πn) +D22(ψ(±πn))cp,y(±πn) = 0,

FD12(ψ(±πn))cm(±πn)−D22(ψ(±πn))cm,y(±πn) = 0,

φ,y(±πn) = 0.

Note that we have added three integral conditions to the problem in order to take into
account conservation of mass of both species as well as to ensure that there is a zero
net flow across each cross section of the domain. Indeed, since the time-dependent
problem has now been replaced by the stationary problem, we have to impose the
condition that the total masses of both ionic species are the same as what they were
at the initial time for the time-dependent problem.

The fourth and fifth equations in (3.13) are used to determine pressure. By
combining the third and the fourth equations in (3.13) and denoting f ′ = df/dy for
any function f of y, we find that

(3.15) u′′ = −φ′′,

so that the nematic liquid crystal velocity is found once the electric field has been
computed. To this end, observe that by integrating the first two equations in (3.13)
and using (3.14), we have

FD12(ψ)cp +D22(ψ)
(
c′p + Fcpφ

′) = 0, −FD12(ψ)cm +D22(ψ) (c′m − Fcmφ
′) = 0

on [−πn, πn]. Dividing these equations by D22(ψ)cp and D22(ψ)cm, respectively, and
using (3.12) gives

(3.16) (log cp + Fφ)
′

= −FD12(ψ)

D22(ψ)
= −Fβ′, (log cm − Fφ)

′
=

FD12(ψ)

D22(ψ)
= Fβ′

on [−πn, πn], where

(3.17) β(y) = log (λ+ 1− (λ− 1) cos y).

The system of governing equations can now be reduced to a single equation for r =
log cp. By taking the derivative of the first equation in (3.16), we obtain

(3.18) r′′ + Fφ′′ = −Fβ′′(y).
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Since from (3.21) it follows that cm = c20/cp = c20e
−r, using the third equation in

(3.13) gives

(3.19) r′′ − F B
(
er − c20e−r

)
= −Fβ′′(y).

This equation should be supplemented by the integral conditions from (3.13) that in
terms of r take the form

(3.20)

∫ πn

−πn
er dy = c20

∫ πn

−πn
e−r dy = 2πn.

Even though they are significantly simpler than the original system of partial differen-
tial equations, both the problem (3.22) and the problem (3.19)–(3.20) still need to be
solved either numerically or by using asymptotic expansions, provided that a suitable
small parameter can be identified.

Remark 4. Alternatively, the solution procedure for the system (3.13)–(3.14) can
essentially be reduced to solving a single second order nonlinear ODE for the potential.
Indeed, integrating (3.16), we find

cp = c0pe
−F (φ+β) and cm = c0me

F (φ+β),

where c0p and c0m are arbitrary positive constants. Since φ is determined up to an
arbitrary constant, we can replace φ by φ− φ0 and choose φ0 so that

c0pe
Fφ0 = c0me

−Fφ0 = c0.

It follows that

(3.21) cp = c0e
−F (φ+β) and cm = c0e

F (φ+β).

Substituting these expressions into the third equation in (3.13) gives the problem

(3.22)

{
φ′′ = c0B

(
eF(φ+β) − e−F(φ+β)

)
, y ∈ (−πn, πn),

φ′(±πn) = 0,

satisfied by φ.

3.3.1. Asymptotic solutions. The behavior of solutions of (3.19)–(3.20) is
determined by the sizes of nondimensional groups B and F. In the experimental
setup considered in [11], the physical parameters had the following values:

(3.23)
L = 1 · 10−2 m, W = 5 · 10−4 m, H = 5 · 10−5 m, λ = 1.417,
D̄ = 4.89 · 10−11 m2/s, c̄ = 1 · 1019 m−3, q = 1.6 · 10−19 C, µ = 0.832 Pa · s,
εε0 = 5.32 · 10−11 F/m, ρ = 1 · 103 kg/m3, Φ0 = 400 V, W̄ = 5 · 10−5 m.

Here D̄ is as defined in (3.3) and c̄ is the equilibrium concentration of the positive
(and negative) ions in the liquid crystal in the absence of the field. These numbers
yield

(3.24) ū = 5 · 10−6 m/s and Φ̄ = 2 V

and

(3.25) Re = 3 · 10−7, Pe = 5, ε = 5 · 10−3, F = 79, B = 37.
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According to these observations, here we will assume that the nondimensional
groups F,B � 1, so that we can take advantage of a natural small parameter 1

F in
order to solve the problem (3.19)–(3.20) asymptotically. We thus suppose that δ := 1

F ,
where δ � 1, and use (3.25) to set B = b/δ, where b = O(1). Then (3.19)–(3.20)
takes the form

(3.26)


δr′′ − b

δ

(
er − c20e−r

)
= −β′′, y ∈ (−πn, πn),

∫ πn

−πn
er dy = c20

∫ πn

−πn
e−r dy = 2πn.

Assuming that

r = δr1 +O
(
δ2
)
, c0 = 1− c1

2
δ +O

(
δ2
)
,

we can rewrite (3.26) as
−2b r1 = −β′′ + b c1, y ∈ (−πn, πn),∫ πn

−πn
r1 dy = 2πnc1 +

∫ πn

−πn
r1 dy = 0,

to the leading order in δ. Then, it immediately follows that c1 = 0 and that r1 is
given by

(3.27) r1(y) =
1

2b
β′′.

From (3.16) and (3.27), setting φ(y) = φ0(y) +O (δ) , we obtain

(3.28)

{
φ′0 = −β′, y ∈ (−πn, πn),
φ′0(±πn) = 0.

We conclude that, up to an arbitrary constant of integration,

(3.29) φ0(y) = −β(y).

Finally, from (3.15), the expression for the leading term in velocity u(y) = u0(y)+O (δ)
takes the form

u0(y) = β(y) + C1
uy + C2

u,

where C1
u and C2

u are arbitrary constants. Since by (3.14) we have that u0y(±πn) = 0,
then using the integral condition on velocity in (3.13) it follows that

C1
u = 0, C2

u = − 1

2πn

∫ πn

−πn
β dy,

hence

(3.30) u0(y) = β(y)− 1

2πn

∫ πn

−πn
β dy.

To summarize the asymptotic results above, up to terms O
(
δ2
)
, we have

D
ow

nl
oa

de
d 

09
/2

6/
18

 to
 1

28
.2

.1
14

.2
49

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MODELING OF NEMATIC ELECTROLYTE 2281

cp = 1 +
1

2B
β′′,(3.31)

cm = 1− 1

2B
β′′,(3.32)

φ = −β,(3.33)

u = β − 1

2πn

∫ πn

−πn
β dy.(3.34)

Here we have used δ = b/B and the facts that cp = er = 1 + δr1 + O
(
δ2
)

and

cm = c20e
−r = 1− δr1 +O

(
δ2
)
.

Note that since the scaling (3.8) for u was chosen to be quadratic in the applied
field while the product of F and B in (3.10) is independent of the field, the flow
velocity u is quadratic in the field when both are expressed in dimensional units.
Thus reversing the direction of the field would not result in flow reversal. Note that
any solution obtained by solving (3.26) also solves the original system (3.13), although
it does not satisfy all of the boundary conditions in (3.14).

3.3.2. Applicability of asymptotic solutions: Comparison with numeri-
cal results. In Figures 2–3, we have plotted in dimensional units both the asymptotic
solutions (3.31)–(3.34) as well as the numerical solutions of (3.13)–(3.14) for the pa-
rameter values given by (3.23)–(3.25).

The numerical solution was obtained by solving (3.19)–(3.20) in MATLAB [26]
using the standard boundary value problem solver. The results show an excellent
match between the corresponding numerical and asymptotic solution fields. In Figure
4 we have plotted on a logarithmic scale the maximum magnitude of the flow velocity
as a function of the applied potential. The dependence on the field is clearly quadratic
since umax ∼ Φ2

0. Note that the solutions in Figures 2–3 are qualitatively similar to
the experimental results in Figure 1 in that both demonstrate periodicity of velocity
and charge distribution patterns. Further, even though some of the assumptions we
have made in this section should rule out quantitative similarity between the theory
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Fig. 2. Concentration of the positive ions (top), concentration of the negative ions (middle),
and space charge distribution (bottom) for the parameters in (3.23).
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Fig. 3. Electric potential (left) and flow velocity (right) for the parameters in (3.23).
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Fig. 4. Maximum flow velocity as a function of Φ0 on a logarithmic scale when c̄ = 1 ·1019 m−3

and Φ0 ∈ [300, 400] V. The slope of the graph is equal to 2.

and the experiment, the velocities predicted by the simplified model are of the same
order of magnitude as those observed in the experiment (cf. Figure 1).

In general, the behavior of solutions critically depends on the sizes of the nondi-
mensional groups F and B defined in (3.10). The parameter F is equal to the ratio
of the electrostatic potential energy of an ion and its thermal energy. Correspond-
ingly, when F is large, electrostatic force dominates over diffusion and the latter can be
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Fig. 5. Concentration of the positive ions (top), concentration of the negative ions (middle),
and space charge distribution (bottom) when c̄ = 7 · 1015 m−3 and the remaining parameters are as
in (3.23).
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Fig. 6. Electric potential (left) and flow velocity (right) when c̄ = 7·1015 m−3 and the remaining
parameters are as in (3.23).

ignored. To understand the role of B, observe that if the applied field is strong enough
to cause separation of all charges in the nematic, the field along the y-direction can
be interpreted as a field in a capacitor with an area charge density of c̄W̄ and the
distance between the capacitor plates equal to W̄ . The potential difference between
the plates of such capacitor is equal to c̄W̄ 2/εε0 and we conclude that the nondimen-
sional group B is equal to the ratio between the characteristic potential Φ̄ and the
maximum potential difference that can be supported by the system via separation
of charges. Then, if B � 1—as in the experiment in [11]—there are enough charges
in the system to support quadratic growth of the flow velocity, as the applied field
increases. If this parameter is small, however, then all of the available charges are
expected to move—according to their sign—to different locations prescribed by the
distribution of the nematic director. The flow then should become proportional to
the magnitude of the field.
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Fig. 7. Maximum flow velocity as a function of Φ0 on a logarithmic scale when c̄ = 7 ·1015 m−3

and Φ0 ∈ [398, 403] V. The slope of the graph is approximately 1.266.

Indeed, in Figures 5–6 we have plotted the numerical and asymptotic solutions
when c̄ = 7 · 1015 m−3 so that B � 1. The graphs clearly show significant charge
separation and confirm that the asymptotic solution is not valid when B is small.
Further, the dependence of the flow velocity on the field in Figure 7 is closer to
being linear, as umax ∼ Φ1.266

0 , indicating that the system approaches saturation.
The solutions depicted in Figures 5–6 can also be obtained via an asymptotic singular
perturbation procedure for (3.26) using an appropriate small parameter. This analysis
is beyond the scope of this paper and will be presented elsewhere.
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