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Abstract. We construct non-isomorphic linear orders X and Y that are both

left-hand and right-hand divisors of each other, answering positively a question

of Sierpiński.

1. Introduction

In his book Cardinal and Ordinal Numbers [11], Sierpiński posed five questions
concerning the class (LO,×) of linear orders under the lexicographical product.

Q1. Does there exist a linear order X that is isomorphic to its cube but not to
its square?

Q2. Do there exist non-isomorphic linear orders X and Y that are left-hand and
right-hand divisors of each other?

Q3. Do there exist non-isomorphic orders X and Y whose cubes are isomorphic
but squares are not?

Q4. Do there exist non-isomorphic orders X and Y whose squares are isomor-
phic but cubes are not?

Q5. Do there exist countable non-isomorphic orders X and Y that are right-
hand divisors of each other?

Though analogous questions have since been answered for many other classes of
structures, these problems had all remained open until the author solved the first
problem negatively in [4]. A negative answer to the fifth problem follows easily
from the work in that paper. The main result of this paper is a positive solution
to the second problem.

Before presenting the construction, we motivate these problems and give some
historical background. Let (K,×) be a fixed class of structures equipped with an
associative product. Distinguishing the structures in K only up to isomorphism,
we may view (K,×) as a semigroup, and ask whether this semigroup possesses any
familiar properties, such as cancellation (A × X ∼= B × X =⇒ A ∼= B) or unique
square roots (X2 ∼= Y 2 =⇒ X ∼= Y ).

While many natural classes of finite structures satisfy cancellation (see [9]),
classes that contain infinite structures frequently do not. For example, in any class
K that is closed under countable direct sums, there will exist infinite structures A
and X such that A × X ∼= X. In many classes it is even possible to find infinite
structures X that are isomorphic to their own squares.

Even when cancellation fails, one may ask if (K,×) satisfies other less stringent
regularity properties. Two such properties that were considered historically are the
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Kaplansky test properties. The first of these, sometimes individually referred to as
the Schroeder-Bernstein property, asserts that whenever two structures X,Y ∈ K
are each isomorphic to a divisor of the other, then X and Y must themselves be
isomorphic. That is, if X ∼= A × Y and Y ∼= B × X for some A,B ∈ K, then
X ∼= Y . The second, the unique square root property, asserts that for all X,Y ∈ K,
if X2 ∼= Y 2 then X ∼= Y .

Kaplansky himself was interested in determining whether these properties held
for certain classes of infinite abelian groups. He considered their failure a heuristic
indication that a given class admitted no useful structure theorem, a la the clas-
sification theorem for finitely generated abelian groups. In his book [7] in which
he recorded them, he said “I believe their defeat is convincing evidence that no
reasonable invariants exist.” The two properties had been considered previously for
other classes of structures by several authors, including Tarski [13] and Hanf [5].

A third property, related to the two Kaplansky properties, is the cube property.
Whenever a structure X from a class K is isomorphic to its own square X2, it is
isomorphic to all of its finite powers Xn. In particular, it is isomorphic to its cube.
The cube property asserts that the converse holds: for all X ∈ K, if X ∼= X3 then
it is already the case that X ∼= X2. If K contains a counterexample to the cube
property, namely, a structure X that is isomorphic to its cube but not to its square,
then the pair X and Y = X2 witnesses the failure of both Kaplansky properties
for K.

The cube property holds trivially if K contains no infinite structures isomorphic
to their cubes. Usually when K does contain such structures, it is possible to find
one that is not isomorphic to its square. The first example was produced by Hanf,
who constructed in [5] a Boolean algebra isomorphic to its direct cube but not to
its square. Subsequent to his result, the cube property has been shown to fail for a
great number of algebraic, relational, and topological classes of structures. See the
introduction to [4] for a detailed list.

Counterexamples to the cube property can be recast in the language of repre-
senting semigroups. If (S, ·) is a semigroup, then S is represented in K if there is
a map i : S → K such that for all x, y ∈ S, we have i(x · y) ∼= i(x) × i(y), and if
x 6= y then i(x) 6∼= i(y). The failure of the cube property for K is equivalent to the
statement that the group Z2 can be represented in K. More generally, Zn can be
represented in K if and only if there is a structure X ∈ K that is isomorphic to
Xn+1 but whose lower powers X,X2, . . . , Xn are pairwise non-isomorphic.

If the cube property fails for K, then usually not only Z2 but every finite cyclic
group can be represented in K. In some cases, more spectacular representation re-
sults hold. Ketonen showed in [8] that every countable commutative semigroup can
be represented in the class (BA,×) of countable Boolean algebras under the direct
product. Trnková and Koubek showed in [14] that every commutative semigroup
can be represented in the class (G,×) of graphs, where the product can be taken
to be the categorical product, strong product, or Cartesian product. It follows
that these classes satisfy no general laws that cannot be derived solely from the
associativity and commutativity of their products.

If X and Y are linear orders, their lexicographical product X×Y is the order ob-
tained by replacing every point in X with a copy of Y . The lexicographical product
is somewhat peculiar among the many natural products appearing in mathematics



3

in that it is not commutative. For non-commutative products, “asymmetric” prop-
erties like cancellation and the Schroeder-Bernstein property have both left-sided
and right-sided versions.

Both left and right cancellation fail for general linear orders. Indeed for any
fixed order A, there are many examples of orders X and Y such that A ×X ∼= X
and Y ×A ∼= Y . Moreover, there are orders X of any infinite cardinality such that
X ∼= X2. Certain special subclasses of orders, however, do possess cancellation
laws. See [10].

The left-sided and right-sided versions of the Schroeder-Bernstein property also
fail for (LO,×). Sierpiński himself was aware of counterexamples when he wrote
Cardinal and Ordinal Numbers. That is, he knew of non-isomorphic orders X and
Y of the form X ∼= Y × A and Y ∼= X × B, and of non-isomorphic orders X ′ and
Y ′ of the form X ′ ∼= C × Y ′ and Y ′ ∼= D ×X ′, though in the latter case he knew
of only uncountable examples. (Here, X and Y are said to be left-hand divisors
of one another, and X ′ and Y ′ are right-hand divisors of one another.) He was
also aware of A.C. Davis’s counterexamples to the unique square root property,
which he, along with Davis, generalized in [2]. All of their examples were pairs of
non-isomorphic orders X,Y with the property that not only X2 ∼= Y 2 but actually
Xn ∼= Y n for all n > 1.

But while Sierpiński was thus able to witness the failure of both Kaplansky prop-
erties for (LO,×), he was not able to adapt the constructions to prove the existence
of some seemingly “near by” counterexamples. He knew of no counterexample to
the cube property [Q1], nor of a single pair of orders witnessing the failure of the
left-sided and right-sided Schroeder-Bernstein properties simultaneously [Q2]. And
he did not know if the “collapse of powers” seen in Davis’s counterexamples to the
unique square root property is a necessary phenomenon [Q3] [Q4]. He wrote on
page 232 of Cardinal and Ordinal Numbers, “We do not know so far any example of
two [linear order] types ϕ and ψ, such that ϕ2 = ψ2 but ϕ3 6= ψ3 [Q4], or of types γ
and δ such that γ2 6= δ2 but γ3 = δ3 [Q3]. Neither do we know of any type α such
that α2 6= α3 = α [Q1].” Then, on page 251, “We do not know. . . whether there
exist two different order types which are both left-hand and right-hand divisors of
each other [Q2].”

A linear order X of the desired type α is a counterexample to the cube property
for (LO,×). If such an X exists, then X (which is isomorphic to X3) and X2

are non-isomorphic orders that are both left-hand and right-hand divisors of each
other, yielding a positive answer to Q2 as well. As mentioned already, such an
order gives a representation of Z2 in (LO,×). If it were also possible to represent
Z6 and Z4 in (LO,×), then orders of the desired types ϕ and ψ would exist, as
would orders of the desired types γ and δ, since elements satisfying these identities
exist in these groups.

It turns out, however, there is no such order type α: (LO,×) is one of the rare
classes for which the cube property holds. It is the unique example, to the author’s
knowledge, of a natural class of structures for which the cube property holds but
Schroeder-Bernstein properties fail. It was proved in [4] that more generally no
finite cyclic group is represented in (LO,×). Hence the easy solutions to Q2, Q3,
and Q4 described in the previous paragraph are not available.

Despite this, we will show that Q2 does have a positive answer, by way of the
following theorem.
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Main Theorem. Let ω denote the natural numbers in their usual order, and let
A = ω∗1 + ω1 be the ordered sum of the first uncountable ordinal and its reverse.
There exist non-isomorphic orders X and Y such that X ∼= A × Y ∼= Y × ω and
Y ∼= A×X ∼= X × ω.

This appears as Theorem 3.1 below. To the author’s knowledge, both questions
Q3 and Q4 remain open. The more general question of precisely what semigroups
are represented in (LO,×) is wide open.

In the next section, we recall the relevant terminology and notation, and review
some previous results that we will need for our construction. In the third section, we
prove the main theorem. The proof is elementary, but makes use of a representation
theorem and fixed point theorem proved in [4].

The work in this paper is an elaboration of the fourth chapter of the author’s
thesis [3].

2. Preliminaries

2.1. Terminology. A linear order is a pair (X,<), where X is a set and < is
an irreflexive, antisymmetric, and transitive binary relation on X. We will always
refer to an order (X,<) by its underlying set X. The empty order is considered a
legitimate linear order.

We use Greek letters to denote ordinals. As usual, ω denotes the first infinite
ordinal and ω1 denotes the first uncountable ordinal. We take ω to include 0.
Ordinals will play two roles in what follows, as linear orders themselves, and as
indexing sets. A sequence is a set of points {xi : i < δ} indexed by an ordinal δ.

If X is a linear order, a subset I ⊆ X is called an interval if for all x, y, z ∈ X,
if x < y < z and x, z ∈ I, then y ∈ I. An interval I is an initial segment of X
if whenever x ∈ I and y < x, then y ∈ I. An interval J is a final segment of X
if X \ I is an initial segment of X, or equivalently if whenever x ∈ J and y > x,
then y ∈ J . If I is an initial segment of X and J = X \ I is the corresponding final
segment, the pair (I, J) is called a cut.

If I and J are intervals in X, and every point in I is less than every point in J ,
then we write I < J . If C1 = (I1, J1) and C2 = (I2, J2) are cuts in X, and I1 is
a strict initial segment of I2, then the cut C1 falls to the left of C2 and we write
C1 < C2.

An order X is dense if it is infinite and whenever x, y ∈ X and x < y there is
z ∈ X with x < z < y. An order is scattered if it contains no dense suborder. All
ordinals are scattered.

A strictly increasing sequence of points {xi : i < δ} is cofinal in X if for every
y ∈ X there is an i < δ such that y ≤ x. The cofinality of X is the shortest possible
length λ of a cofinal sequence in X. If X has a right endpoint (also called a top
point, or maximum), then the cofinality of X is 1. Otherwise, the cofinality of X
is an infinite regular cardinal. Similarly, a strictly decreasing sequence of points is
coinitial in X if it eventually goes below every point in X. The coinitiality of X is
the shortest length κ of a coinitial sequence in X. If X has a left endpoint, then
the coinitiality of X is 1, otherwise it is an infinite regular cardinal.

If I ⊆ X is an interval, then viewing I as an order itself we may speak of the
coinitiality and cofinality of I. If I is an initial segment of X and J = X \ I is the
corresponding final segment, then the cut (I, J) is said to be a (κ, λ)-cut if I has
cofinality κ and J has coinitiality λ. If κ and λ are both infinite, the cut (I, J)
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is called a gap. We will use ordinal notation rather than cardinal notation when
referring to cuts, writing for example (ω, ω1)-cut instead of (ℵ0,ℵ1)-cut.

If X is a linear order, then X∗ denotes the reverse order. For every point x ∈ X
there is a corresponding point −x ∈ X∗, and we have x < y in X if and only if
−x > −y in X∗.

If X and Y are linear orders, their lexicographical product X × Y is the order
obtained by replacing every point in X with a copy of Y . Formally, we have
X × Y = {(x, y) : x ∈ X, y ∈ Y }, ordered lexicographically. We usually omit the
symbol × and write XY for X × Y . Every x ∈ X determines an interval in XY of
order type Y , namely the set of points of the form (x, ·) with first coordinate x.

For a fixed n ∈ ω, we may think of n as a linear order by identifying n with the
order 0 < 1 < . . . < n− 1. Thus, nX denotes the order consisting of n copies of X.

The lexicographical product is associative, in the sense that (XY )Z ∼= X(Y Z)
for all orders X,Y, Z. Hence we may unambiguously define longer products as lexi-
cographically ordered sets of tuples. For an order X and n ∈ ω, Xn denotes the set
of tuples (x0, . . . , xn−1) of elements of X, ordered lexicographically, and Xω denotes
the set of sequences (x0, x1, . . .) of elements of X, ordered lexicographically. One
may similarly define Xδ for any ordinal δ. These powers obey the exponentiation
rule XδXγ ∼= Xδ+γ , where + is the ordinal sum.

We remark that if X is a linear order without endpoints, or with only a single
endpoint, then Xω is dense.

The notion of a replacement generalizes the notion of a product by allowing
points to be substituted by orders of multiple order types. If X is a linear order,
and for every every x ∈ X we fix an order Ix, the replacement X(Ix) is the order
obtained by replacing every point x with the corresponding Ix. Formally, X(Ix) =
{(x, i) : x ∈ X, i ∈ Ix}, ordered lexicographically. Every y ∈ X determines an
interval of order type Iy in X(Ix), namely the set of points (y, ·) with first coordinate
y. We allow that for a given y we have Iy = ∅, and in X(Ix) think of y as being
“replaced by a gap.”

We may also define the sum of two linear orders. If X and Y are linear orders,
X + Y denotes the order obtained by putting a copy of X to the left of a copy of
Y . Formally, we view X + Y as a replacement of the order 2 = {0, 1}, where the
left point is replaced by X and the right point is replaced by Y . This operation
agrees with the traditional ordinal sum when X and Y are ordinals.

The notion of a sum is closely related to the notion of a cut. If (I, J) is a cut in
X, then X is isomorphic to I + J . Conversely, if X and Y are orders, then (X,Y )
is a cut in X + Y . We will informally refer to this cut as “the cut at the + sign.”

One may also define infinite sums of orders. Let Z denote the integers in their
usual order. Given orders Xi, i ∈ Z, we write . . .+X−1 +X0 +X1 + . . . to denote
the replacement Z(Xi). Similarly, we write X0 + X1 + . . . to denote ω(Xi) and
. . .+X−1 +X0 to denote ω∗(Xi). It is simple to check that if the Xi are scattered,
then the sums Z(Xi), ω(Xi), and ω∗(Xi) are scattered. In particular, if the Xi are
ordinals, these sums are scattered.

The lexicographical product is right-distributive over the sum, but not left-
distributive. That is (X + Y )Z ∼= XZ + Y Z for all orders X,Y, Z, but it is usually
not the case that Z(X + Y ) ∼= ZX + ZY . More generally, the product distributes



6 GARRETT ERVIN

on the right over any replacement: we always have X(Ix) × Z ∼= X(IxZ). In par-
ticular, we have right-distributivity over the sums of type ω, ω∗, and Z described
above.

A word of warning on exponential notation: there will be a place in our con-
struction where the ordinal ωω appears. Here, ωω has its traditional meaning
as supn<ω ω

n, and not as the set of infinite sequences with entries from ω, as is
otherwise our convention in this paper. We will clearly point when this ordinal
appears, to avoid any confusion that might arise from the ambiguity of notation.
We also note that while traditional ordinal exponents behave as expected with re-
spect to the anti -lexicographical product (the product usually used when studying
ordinals), with regard to the lexicographical product there is some awkwardness.
Namely, if α, γ, δ are ordinals and if αγ and αδ have their traditional meanings,
then αγ ×αδ = αδ+γ (note the reversal in the exponent). As we have noted above,
for sets of δ-sequences Xδ, exponents behave as expected with respect to the lexi-
cographical ordering. When there is no word to the contrary, Xδ is always assumed
to mean the set of δ-length sequences on X, ordered lexicographically.

2.2. Invariance under left multiplication by a given order. Let A be a fixed,
nonempty linear order. We say that an order X is invariant under left multiplication
by A if AX ∼= X. A simple example of such an order is X = Aω. For, the natural
map defined by (a, (a0, a1, . . .)) 7→ (a, a0, a1, . . .) is a bijection of A × Aω with Aω

which is also order-preserving, hence an isomorphism. We will refer to maps of this
kind as flattening maps.

The orders X that are invariant under left multiplication by A are characterized
in [4], and we will need to recall their general form. Before we can write it down,
we need some more terminology. We denote the set of all finite sequences on A as
A<ω. This set includes the empty sequence. The length of a finite sequence r is
denoted |r|. If r ∈ A<ω and u ∈ Aω, then ru denotes the sequence beginning with
r and ending with u. We do not distinguish between elements of A and sequences
in A<ω of length 1.

If u, v ∈ Aω, then u and v are tail-equivalent if there exist finite sequences
r, s ∈ A<ω and an infinite sequence u′ ∈ Aω such that u = ru′ and v = su′. If u
and v are tail-equivalent we write u ∼ v. It is easy to check that ∼ is an equivalence
relation on Aω. It is the finest equivalence relation for which au is equivalent to u
for all a ∈ A and u ∈ Aω. We denote the tail-equivalence class of u by [u].

Using tail-equivalence, we can construct many examples of orders X such that
AX ∼= X, as follows. For every u ∈ Aω, fix an order Iu such that whenever u ∼ v
we have Iu = Iv (modulo this restriction the orders may be chosen arbitrarily).
Let X = Aω(Iu) be the replacement of Aω by these orders Iu. Then we have that
A × Aω(Iu) ∼= Aω(Iu), that is AX ∼= X. To see this, note that for a fixed a ∈ A
and u ∈ Aω, we have in A× Aω(Iu) that the interval of points of the form (a, u, ·)
is of type Iu, and in Aω(Iu) the interval of points (au, ·) is of type Iau. But Iu
and Iau are equal since u ∼ au. Hence the flattening map (a, u, x) 7→ (au, x) is
well-defined. Once we know this map is well-defined, it is easy to see that it is an
order-isomorphism of A×Aω(Iu) with Aω(Iu), that is of AX with X.

We will denote orders X of this form by Aω(I[u]), thinking of I[u] as denoting
the single order type of all Iv with v ∈ [u]. We say that X is a replacement of Aω

up to tail-equivalence. We have just argued that for such an X we have AX ∼= X.
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It turns out the converse is also true: if AX ∼= X then X is isomorphic to an order
of the form Aω(I[u]). This is Theorem 3.5 of [4].

In our proof of the main theorem, we will actually be interested in orders that are
invariant under left multiplication by two factors of A, that is, orders X satisfying
A2X ∼= X. A very similar construction can be used to build such orders, using a
finer equivalence relation.

For u, v ∈ Aω we say that u and v are 2-tail-equivalent and write u ∼2 v if there
exist finite sequences r, s ∈ A<ω with |r| ≡ |s| (mod 2) and an infinite sequence
u′ ∈ Aω such that u = ru′ and v = su′. One may check that this defines an
equivalence relation. It is the finest equivalence relation for which abu is equivalent
to u for all a, b ∈ A and u ∈ Aω. The equivalence class of u under this relation is
denoted [u]2.

If u ∼2 v, then u ∼ v as well. Hence the 2-tail-equivalence relation refines the
tail-equivalence relation. On the other hand, for a given u ∈ Aω and a ∈ A, observe
that for any v ∈ [u] either v ∼2 u or v ∼2 au. Hence [u] = [u]2 ∪ [au]2. For “most”
u ∈ Aω we have that u 6∼2 au, so that the classes [u]2 and [au]2 are disjoint. But for
certain u whose entries eventually form repeating blocks, we have u ∼2 au, in which
case [u]2 = [au]2 = [u]. Specifically, by Proposition 3.7 of [4], we have that u ∼2 au
if and only if there exists r, s ∈ A<ω with |s| ≡ 1 (mod 2) such that u = rsss . . ..
We say that such a sequence is eventually periodic, of odd period.

Whereas replacements of Aω up to tail-equivalence are invariant under left mul-
tiplication by A, replacements up to 2-tail-equivalence are invariant under left mul-
tiplication by A2. More precisely, suppose that for every u ∈ Aω we fix an order Iu
such that if u ∼2 v then Iu = Iv. Let X = Aω(Iu). Then A2X ∼= X, as witnessed
by the map (a, b, u, x) 7→ (abu, x). This map is well-defined since Iu = Iabu for
all a, b ∈ A, u ∈ Aω. Conversely, it can be shown that any order invariant under
left multiplication by A2 is of this form. This is Theorem 3.10 of [4]. We write
X = Aω(I[u]2).

Replacements of the form Aω(I[u]2) are “finer” than replacements of the form
Aω(I[u]), in the sense that in replacements of the former type there may be tail-
equivalent sequences u, v which are not 2-tail-equivalent that are replaced by dis-
tinct orders. This is reflected in the fact that while an order X that is invariant
under left multiplication by A is necessarily invariant under left multiplication by
A2, the converse need not hold: there are orders A and X such that A2X ∼= X but
AX 6∼= X. Indeed, in our proof of the main theorem we will construct such orders.

If X is isomorphic to A2X, so that X is of the form Aω(I[u]2), then while it
need not be true that X is isomorphic to AX, these orders have closely related
representations. Specifically, AX is isomorphic to the order Aω(J[u]2), where for
all a ∈ A and u ∈ Aω we have J[u]2 = I[au]2 . It follows that we always have
I[u]2 = J[au]2 as well. That is, AX is the order obtained by interchanging the roles
of I[u]2 and I[au]2 in the replacement Aω(I[u]2). This is Proposition 3.11 in [4].

2.3. A fixed point theorem. The last result we will need for our construction is
a fixed point theorem from [4]. For the remainder of the paper, let A denote the
order ω∗1 +ω1. For simplicity, we identify the top point of ω∗1 and the bottom point
of ω1, and write

A = . . . < −α < . . . < −ω < . . . < −1 < 0 < 1 < . . . < ω < . . . < α < . . .

The proof of Theorem 6.1 from [4] establishes the following result.
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Theorem 2.1. Suppose that f : Aω → Aω is an order-automorphism. Then f has
a fixed point of the form u = (α0,−α1, α2,−α3, . . .), where for all i ∈ ω we have
αi 6= 0.

The appearance of ω∗1 +ω1 in this theorem is not accidental. If X is a countable
linear order, then there are always automorphisms of Xω without fixed points. Even
if X is not countable, but has either countable cofinality or coinitiality, then it is
usually possible to produce a fixed point free automorphism of Xω. In this sense,
A = ω∗1 +ω1 is the simplest candidate for an order for which we can guarantee that
every automorphism f : Aω → Aω has a fixed point. The theorem tells us that
indeed this holds.

We note that a fixed point u of the form guaranteed by the theorem need not
be eventually periodic. But even if u is eventually periodic, its only possible period
is 2. Hence by the remarks in Section 2.3, for any a ∈ A the equivalence classes
[u]2 and [au]2 are disjoint. We will use the existence of such a fixed point to show
that the orders X and Y we construct in the proof of the main theorem are not
isomorphic.

3. Proof of the main theorem

We are now ready to prove the main theorem. First, we give a brief overview
of the construction. Sierpiński’s Q2 from the introduction asks if there are non-
isomorphic orders X and Y such that X ∼= AY , Y ∼= A′X and X ∼= Y B, Y ∼= XB′

for some orders A,A′, B,B′. Results from [4] show that the identities X ∼= AY and
Y ∼= A′X already necessitate that at least one of the orders A and A′ is uncountable
(so that both X and Y must be uncountable as well). We will prove the stronger
statement that there are such orders X,Y , but with the lefthand divisors A and A′

equal (to ω∗1 + ω1) and the right-hand divisors B,B′ equal as well (to ω).
It follows from the isomorphisms X ∼= AY and Y ∼= AX that X ∼= A2X. Hence,

our X will be of the form Aω(I[u]2) for some collection of orders I[u]2 . As noted in
Section 2.2, it must then be that Y ∼= AX will be of the form Aω(J[u]2), where for
every u ∈ Aω and a ∈ A we have J[u]2 = I[au]2 . Since for suchX,Y we automatically
have that Y ∼= AX and X ∼= AY , it remains only to specify the orders I[u]2 , show
that Xω ∼= Y and Y ω ∼= X, and prove X 6∼= Y .

We will build the I[u]2 so that the interchange between I[u]2 and I[au]2 effected
by multiplying X on the left by A, is also effected by multiplying X on the right
by ω. In fact, we will have that I[au]2 = I[u]2ω for all a ∈ A and u ∈ ω. The I[u]2
will Z-sums of orders that are sometimes called surordinals: orders all of whose
non-trivial final segments are ordinals, but are not ordinals themselves.

The final step of the proof is to use Theorem 2.1 to prove that the orders X and
Y we construct are non-isomorphic.

Theorem 3.1. There exists a pair of non-isomorphic linear orders that are left-
hand and right-hand divisors of one another. Specifically, there exist non-isomorphic
orders X and Y that satisfy the four isomorphisms X ∼= AY , X ∼= Y ω, Y ∼= AX,
and Y ∼= Xω, where A = ω∗1 + ω1.

Proof. As just noted, we are left only to construct the orders I[u]2 , show that
Xω ∼= Y and Y ω ∼= X, and prove X 6∼= Y .

In what follows, ωω has its traditional meaning as an ordinal, and not as the
collection of ω-length sequences on ω. That is, ωω = supn<ω ω

n = ω+ω2 +ω3 + . . .
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The ordinals ωn also appear, though in this case there is no ambiguity in the
notation, since ωn (as an ordinal) is isomorphic to ωn (as the collection of n-
sequences on ω, ordered lexicographically). In several places we will use the fact
that if α is an initial segment of ωω, then α+ ωω ∼= ωω.

We first define, for every i ∈ Z, an order Li. For the non-negative integers, we
let

L0 = . . .+ 3ω3 + 2ω2 + ω + ωω

L1 = . . .+ 3ω4 + 2ω3 + ω2 + ωω

...
Ln = . . .+ 3ωn+3 + 2ωn+2 + ωn+1 + ωω

...

On the other side, let

L−1 = . . .+ 4ω3 + 3ω2 + 2ω + ωω

L−2 = . . .+ 5ω3 + 4ω2 + 3ω + ωω

...
L−n = . . . (n+ 3)ω3 + (n+ 2)ω2 + (n+ 1)ω + ωω

...

Observe that each of these orders is scattered, since they are ω∗-sums of ordinals.
We claim that for i, j ∈ Z with i 6= j we have Li 6∼= Lj . This follows from more
general results due to Jullien [6] and independently Slater [12]. We will give a proof
using Slater’s results below. However, for the sake of completeness, we sketch the
argument that L0 6∼= L1, since it is not too difficult and contains the essential ideas
needed to prove more generally that the Li are pairwise non-isomorphic.

For this, we introduce some local terminology. Suppose that C = (I, J) is a
cut in some linear order L. We say that C has type n (where n ∈ ω), and write
tp(C) = n, if I has a final segment isomorphic to ωn. (C has type 0 if I has a
top point.) In general, a cut C need not have a type, but if tp(C) = n then C is
not of type m for any m 6= n. This is because, for each fixed n, the ordinal ωn

has the property that all of its nonempty final segments are isomorphic to ωn, and
ωn 6∼= ωm for n 6= m. Observe that in each Li defined above, if C = (I, J) is a cut
with neither I nor J empty, then C has a type.

Now, we have that L0 = . . .+3ω3+2ω2+ω+ωω and L1 = . . .+3ω4+2ω3+ω2+ωω.
Let us write these orders as longer sums by separating, for every k ∈ ω, the copies
of ωk appearing in these representations. We write

L0 = . . .+ ω3 + ω3 + ω3 + ω2 + ω2 + ω + ωω,

L1 = . . .+ ω4 + ω4 + ω4 + ω3 + ω3 + ω2 + ωω.

The coinitial sequences of cuts at the + signs in these representations possess a
particular recursive property that will allow us to distinguish these orders.

Suppose that L is a linear order in which every cut has a type. Suppose that
. . . < C2 < C1 < C0 is a decreasing sequence of cuts in L. We denote such a
sequence by (Ck)k∈ω or simply (Ck). Such a sequence is called a ladder if

(1) (Ck) is coinitial in L,
(2) for all k ∈ ω, we have tp(Ck+1) ≥ tp(Ck),
(3) for all k ∈ ω, if D is a cut with Ck+1 < D < Ck, then tp(D) < tp(Ck).
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Conditions (2) and (3) say that Ck+1 is the rightmost cut to the left of Ck whose
type is at least as large as the type of Ck.

In a given order L, a ladder need not exist. However, if a ladder does exist, then
it is an invariant of the order, in the sense that any two ladders eventually coalesce.
That is, if (Ck) and (Dl) are ladders in L, then there exist k0, l0 ∈ ω such that for
all n ∈ ω we have Ck0+n = Dl0+n.

To see this, let us first show that there must exist k0, l0 such that Ck0 = Dl0 .
If not, the ladders are disjoint. But then, since they are both coinitial in L, there
must be two consecutive cuts Ci+1 < Ci strictly between which lies at least one
D-cut. Let Dj be the leftmost such cut, so that Ci+1 < Dj < Ci and Dj+1 ≤ Ci+1.
Then actually we must have have Di+1 < Cj+1 since the ladders are disjoint, so
that Dj+1 < Ci+1 < Dj < Ci. Now, from conditions (2) and (3) in the definition
of ladder, and from the inequality Ci+1 < Dj < Ci, we obtain tp(Dj) < tp(Ci+1).
But from condition (2) and Dj+1 < Ci+1 < Dj we obtain tp(Ci+1) < tp(Dj), a
contradiction.

Hence for some k0, l0 we have Ck0 = Dl0 . But then it must be that Ck0+1 =
Dl0+1, since these are each the rightmost cuts to the left of Ck0 = Dl0 of at least
as large a type. Inductively we obtain Ck0+n = Dl0+n for every n, as claimed.

We can express this fact in a different way. Fix a sequence u = (n1, n2, . . .), where
nk ∈ ω for all k. We say that a given ladder (Ck) has spectrum u if tp(Ck) = nk
for all k ∈ ω. Suppose that in a given order, (Ck) is a ladder with spectrum v and
(Dl) is a ladder with spectrum v′. Then by what we have just proved, we must
have that v and v′ are tail-equivalent. (The appearance of tail-equivalence here is
entirely coincidental, and has nothing to do with its appearance elsewhere in this
paper.)

Finally, returning to our context, we again write L0 and L1 as above:

L0 = . . .+ ω3 + ω3 + ω3 + ω2 + ω2 + ω + ωω,

L1 = . . .+ ω4 + ω4 + ω4 + ω3 + ω3 + ω2 + ωω.

The cuts at the + signs in this representation of L0 form a ladder with spec-
trum v = (1, 2, 2, 3, 3, 3, . . .), and the cuts at the + signs in L1 form a ladder with
spectrum v′ = (2, 3, 3, 4, 4, 4, . . .). If L0 and L1 were isomorphic, then any ladder
in L0 and any ladder in L1 would have tail-equivalent spectra. But v 6∼ v′, and so
it must be that these orders are not isomorphic.

Slater gives a more formal version of this argument, and we argue from his paper
to show more generally that Li 6∼= Lj whenever i 6= j. Suppose that we have orders
L and M such that

L = . . .+ l2ω
k2 + l1ω

k1 + ωω

M = . . .+ l′2ω
k′2 + l′1ω

k′1 + ωω,

where the ln, l
′
n, kn, k

′
n are all positive integers, and furthermore k1 < k2 < . . . and

k′1 < k′2 < . . . are strictly increasing sequences. In the terminology of Slater’s paper,
L and M are RJ types of type 4 (see Theorem 2 of [12]). By Theorem 4 of [12], if
L ∼= M , then there exists an r ≥ 0 and N , such that for every n ≥ N , we either
have that k′n = kn+r and l′n = ln+r, or we have that kn = k′n+r and ln = l′n+r.
That is, for L and M to be isomorphic, it is necessary that the coefficients ln, l

′
m

and exponents kn, k
′
m eventually agree, up to some shift of index.
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If we compare Li and Lj for i 6= j, we see that while these orders are of the same
form as L and M , they do not satisfy the condition necessary for their isomorphism.
Hence Li 6∼= Lj , as claimed.

Though they are pairwise non-isomorphic, the Li are all closely related. Namely,
we claim Liω = Li+1 for all i ∈ Z. There are three cases to verify. If i ≥ 0, we have

Liω = (. . .+ 2ωi+2 + ωi+1 + ωω)ω
∼= . . .+ 2ωi+2ω + ωi+1ω + ωωω
∼= . . .+ 2ωi+3 + ωi+2 + ωω

∼= . . .+ 2ω(i+1)+2 + ω(i+1)+1 + ωω

= Li+1,

where, in going from the second to third line, we have used the fact that ωωω ∼= ω1+ω

(reversing the exponent, as noted in Section 2.2) ∼= ωω.
For i = −1 we have

L−1ω = (. . .+ 3ω2 + 2ω + ωω)ω
∼= . . .+ 3ω3 + 2ω2 + ωω

∼= . . .+ 3ω3 + 2ω2 + ω + ωω

= L0.

where, in going from the second to third line, we have used that ω + ωω ∼= ωω.
Similarly, if i < −1, so that i = −n for some n > 1 we have

Liω = L−nω
= (. . .+ (n+ 2)ω2 + (n+ 1)ω + ωω)ω
∼= . . .+ (n+ 2)ω3 + (n+ 1)ω2 + ωω

∼= . . .+ ((n− 1) + 3)ω3 + ((n− 1) + 2)ω2 + ((n− 1) + 1)ω + ωω

= L−(n−1)
= Li+1,

where, in going from the third to fourth line, we use that ((n−1) + 1)ω+ωω ∼= ωω.
Hence Liω = Li+1 in all cases, as claimed.

We are now almost ready to define the orders I[u]2 that will appear in the replace-
ment X = Aω(I[u]2). These orders will each be one of the three orders Ieven, Iodd,
and I, defined as follows:

Ieven = . . .+ L−2 + L0 + L2 + . . .
Iodd = . . .+ L−1 + L1 + L3 + . . .
I = . . .+ L−1 + L0 + L1 + . . .

Before defining the I[u]2 , we prove that these three orders are pairwise non-
isomorphic. Note first that for a given i, every cut in Li is either a (1, 1)-cut or
(ω, 1)-cut. The only cuts in the orders Ieven, Iodd, and I that do not fall in the
midst of an Li occur at the + signs in the above representations, and these cuts
are (ω, ω)-cuts. Hence these are the only (ω, ω)-cuts appearing in these orders.

Now suppose, for example, that there exists an isomorphism f : Ieven → Iodd.
It must be, then, that f [L0] ⊆ Lk for some odd integer k. This is because f [L0]
is an interval in Iodd, and every interval in Iodd is either a subinterval of some Lk
or contains an (ω, ω)-gap. It cannot be that f [L0] contains an (ω, ω)-gap, since
L0 does not. But then we must actually have f [L0] = Lk, since by a symmetric
argument f−1[Lk] must be a subinterval of Lm for some even integer m, and the
only possible m is m = 0.
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This is a contradiction. It cannot be that f [L0] = Lk since this would mean that
the orders L0 and Lk are isomorphic. But L0 is never isomorphic to Lk for k odd.
Hence Ieven 6∼= Iodd. By similar arguments, Ieven 6∼= I and Iodd 6∼= I, as claimed.

However, it is easy to see that we have Ievenω ∼= Iodd, Ioddω ∼= Ieven, and Iω ∼= I.
For example, to verify the first isomorphism, we check

Ievenω = (. . .+ L−2 + L0 + L2 + . . .)ω
∼= + . . .+ L−2ω + L0ω + L2ω + . . .
∼= + . . .+ L−1 + L1 + L3 + . . .
= Iodd,

and similarly for the other two isomorphisms. It follows that all three orders are
invariant under right multiplication by ω2, that is Ievenω

2 ∼= Ieven, Ioddω
2 ∼= Iodd,

and Iω2 ∼= I.
Now we can define the I[u]2 . For every tail-equivalence class C ⊆ Aω, fix a

representative uC (so that C = [uC ]). There are two cases. If uC 6∼2 auC , so
that [uC ]2 ∩ [auC ]2 = ∅, we let I[uC ]2 = Ieven and I[auC ]2 = Iodd. If uC ∼2 auC ,
so that [uC ]2 = [auC ]2 = [uC ], we let I[uC ]2 = I. Then by above, we have that
I[u]2ω

∼= J[u]2 for all u ∈ Aω. Depending on the u, this is just the isomorphism
Ievenω ∼= Iodd, Ioddω ∼= Ieven, or Iω ∼= I.

Let X = Aω(I[u]2), and let Y = AX. Then Y ∼= Aω(J[u]2), where for every
u ∈ Aω and a ∈ A we have J[u]2 = I[au]2 . From our remarks in Section 2.2, it is
automatic that X ∼= AY . We claim that these orders have the remaining desired
properties, namely, that X ∼= Y ω, Y ∼= Xω, and X 6∼= Y .

The first two are easy to verify. First, we have

Xω = Aω(I[u]2)ω
∼= Aω(I[u]2ω)
∼= Aω(J[u]2)
= Y.

Likewise we may show Y ω ∼= X.
So it remains to prove X 6∼= Y . First note that since A has no endpoints, the

order Aω is dense. Thus every interval of Aω is dense. It follows that, in general,
if Aω(Mu) and Aω(Nu) are replacements of Aω with none of the Mu, Nu empty,
and g : Aω(Mu) → Aω(Nu) is an isomorphism, then for a given u we must have
that either f [Mu] ⊆ Nv for some v, or that f [Mu] (and hence Mu) contains a dense
suborder. (The “or” here is non-exclusive.)

Now, suppose that f : X → Y is an isomorphism. We view f as an isomorphism
of Aω(I[u]2) with Aω(J[u]2). None of the orders Lk contains a dense suborder, and
so neither do the I[u]2 , J[u]2 , as these are just Z-sums of the Lk. By our observation
above, it must be that for every u ∈ Aω there is a v such that f [Iu] ⊆ Jv. Conversely,
for every v ∈ Aω there must be a u such that f−1[Jv] ⊆ Iu. Combining these
observations gives that in fact for every u there is a v such that f [Iu] = Jv. In
particular, for such a pair u, v we have that Iu ∼= Jv as linear orders. We will
assume for convenience that f is actually the identity on each Iu, that is, that
f((u, x)) = (v, x), since if f ever acts non-trivially on the right coordinates we can
replace f with another isomorphism that does not, but still sends Iu onto Jv.

This means there is an automorphism g : Aω → Aω such that for every u ∈ Aω
and x ∈ Iu we have f((u, x)) = (g(u), x). By Theorem 2.1, the automorphism g
has a fixed point u = (α0,−α1, α2,−α3, . . .), where the αi are non-zero ordinals in
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ω1. For such a u we have u 6∼2 au, and hence I[u]2 6∼= I[au]2 : one of these orders is
Ieven, and the other is Iodd. Thus one of Iu, Ju is Ieven and the other is Iodd. But
then since g fixes u it must be that f [Iu] = Ju, a contradiction, as these orders are
non-isomorphic. Hence X 6∼= Y , and the theorem follows. �
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[14] V. Trnková and V. Koubek, Isomorphisms of products of infinite graphs, Commentationes
Mathematicae Universitatis Carolinae 19.4 (1978): 639-652.


