Test 3
August 11
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1. Solve each of the following differential equations
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2. A tank initially contains 100L of water, with 10 kg of salt. Brine with a
concentration of 0.1 kg/L enters the tank at a rate of 10 L/min. The tank
drains at a rate of 20 L/min. Find a function describing how much salt is
in the tank as a function of time. What is the domain of your function?
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3. Suppose pure sodium (Na) is pumped into a tank at a constant rate 5
kg/min. As it is pumped in, it reacts with chlorine (Cl) and it is converted
into salt (NaCl) at a rate proportional to the concentration at the time
(assume there is an infinite supply of Cl), with a proportionality constant
of 2. Let y(t) = the amount of pure sodium in the tank at time ¢

(a) Explain why y is a solution to the following differential equation:
Yy =5-2y

(b) Solve this differential equation, and explain what happens as time
goes on.
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4. A spring has a weight with a mass of 5 attached to the end of it. If z is

the distance the weight is away from equilibrium, the resisting force of the
spring is —5z.

(a) Give an equation desctibing the position of the mass as a function of
time.

(b) You intend to damp the vibrations with a viscous fluid with damping

force —cz’. Descibe what consequences choosing different values of ¢
will have.

0\') Ma:@
stz =5 ¥

/40\)( (Cbi/\ p



