Quiz 5
July 21

Name:

Test each of the following series for convergence. Explain why each is convergent
or divergent, and find the exact sum if possible.

1.

oo

1
Z nlnn

Since 1/nlnn is continuous, decreasing, and positive, we can use the in-
tegral test:
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The integral diverges, and thus so does the series.



The dominant term on the top is n2, and the dominant term on the bottom
is n%, so the bottom behaves like n3. Thus the series should behave like
> %, and thus diverge. We use the limit comparison test to prove this:
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Since 0 < 1 < oo, the limit comparison test tells us that our series diverges.
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The series diverges by the test for divergence, since
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This is an alternating series, and converges by the alternating series test,
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since the terms are decreasing and approach zero as n gets large.



7;3 5n

This is a geometric series with ratio 4/5, and thus it converges. The first
term is 12/5, and so the sum is
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Since
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and Y (e/4)™ is a convergent geometric series (e/4 < 1), the series con-
verges by the comparison test.



