6. y'=x+5y = y -5y
€quation by J(z) 8ives =52y _ 56757y = ge~5z

—52 -
€ Ty= fre~Sog, ~3ze~s=

=z — of P(z)dr —_ - -
(z)=e =el(=8)dz _ Sz, Muitiplying the differentia]
= (e‘sry)' =gze %
— L5z
B¢ T +C [by parts) = y=—§z—%+Cesz

8. 2%y 4 2zy = cos? = o \oszz
T v+ ; = 2 I(.’E) - ejP(z) dzx [2/zds 2 In|z| In(z2
] . T =gt
Mu tiplying by 1 (z) gives ug our origina] -

! ticed this immediate]y, since P(z) js
¥) = cos?z, Thus,

2 2
= [¢ =f1
¥= [cos?zdr f2(1+cos2z)dz=%z+4lsin2:1:+C' = y:i—f-isian-l-C
= 2i i Sinz cos + © - - - )
T 272 z2

T

Wory 4y 6 >0 = 4,1 = = = =
x, +—y=3 =elV/(22)dz _ _(1/9) 102 z1/2
Y+5,v=3 Iz)= =el/A Mz _ in =/z. Multiplying
by VT gives 4 +\1 = "= = =
Vzy 2\/53/‘3\/5 => (Vzy) =3V = \/Ey—f3\/5dz—21‘3/2

C C
y=21-+§. 4) — —_ = = = -
7 v4) =20 = 8+2—2O = C-24,soy_2:c+j;

» the concentration of chlorine at time ¢ js () £ Chlorine docsn'

400 - 6¢ L
. ) g L 10y(¢) 5y(t)
enter the tank, but jt leaves at a rate of [L =10 =] = Y& 8 =_2Ub g fore,
4006t L| |7 5| T 30067 s = 300 gt 5 Mhercfore

dy 5y

- dy _ [ —5dt .
N = —_— =_1 -3
it 200-3t /y /200_3t = Iny=35$m200-3t)+C =

20
y = exp(5In(200 - 3¢) + C) = €°(200 — 3¢)5/*. Now 20 — Y(0) = -200%° = = 200573 *°

(200 — 3¢)5/3

y(t) = 20—W— =20(1-0.015t)% g for 0 < ¢ < 66% s, at which time the tank i empty.
5 (a) % + %v =gand I(t) = efle/m)dt _ (e/ ™" and multiplying the differential equation by I(¢) gives
(c/m)t '
ele/mit % + vcem = gelo/mit [e(c/m)‘vJ = ge®/™ Hence,

u(t) = e~(e/m)t [f gel/™t gy 4 KJ =mg/c+ Ke (¢/™ Byt the object is dropped from rest, so v(0) =0
and K = —mg/c. Thus, the velocity at time ¢ js v(t) = (mg/c) [1 - e‘(c/m)‘J.

b) lim v(t) = mg/c

(€ 5(t) = [ v(t) dt = (mg/c) [t + (m/c)e—<°/m>t] + e where ¢ = 5(0) — m?g/c?. 5(0) is the initial position,

50 5(0) = 0 and s(t) = (mg/c) [t + (m/c)e‘(c/"‘)‘] - m?g/c?.

, _ dv _ mg - ct 9 -
Xor= . ct/m —_— - et/m. - - etrm). =
v=(mg/c)(l1—e ) = dm ¢ (0 € m2) + c (1 € ) 1

e G em _ g (S = I
m c (&

c m
de_ ct —et/m _ 1+ct/m_ 1+@Q _ct . Q
o _(1+;)e —-1— i =1- 3 ,whereQ—EZO. Since ¥ > 1 + Q for all

Q> 0, it follows that dy /dm > 0fort > 0. In other words, for all £ > 0, v increases as m, increases,



3y =y—1. The slopes at each point are independent of , so the slopes are the same along each line parallel to the
z-axis. Thus, IV is the direction field for this equation. Note that for y=1,¢y =0.

4 ¥ =y — 2z = 0on the line Y =z, when z = 0 the slope is Yy, and when y = 0 the slope is —z. Direction field II
satisfies these conditions. [Looking at the slope at the point (0,2), IT looks more like it has a slope of 2 than does
direction field 1.]

5.9=¢"-2°=0 = Yy = Xx. There are horizontal tangents on these lines only in graph II, so this equation
corresponds to direction field III.

6. ¥ =% — 2° = 0 on the line Y = z, when z = 0 the slope is y°, and when ¥ = O the slope is —z3. The graph is
similar to the graph for Exercise 4, but the segments must &et steeper very rapidly as they move away from the
origin, because z and y are raised to the third power. This is the case in direction field L

’
Note that y’ = ¢ fory = 1z 1f [z < |y|, then ¥’ < 0; that

is, the slopes are negative for afl points in quadrants ] and If
above both of the lines y = ¢ ang ¥ = —z, and all points i
Quadrants III and 1V below both of the linesy = —z ang

Y = z. A similar Statement holds for positive slopes,

2h=02 4 =0,y =O,andF(:c,y) =1-zy
Note that 7, = To+h=0+02= 02,2, =04, 73 =06,andz, = 0.8
V=40 +hF(zo,y0) = 0 +0.2F(0,0) = 0.2]1 - (0)(0)) = 0.2.
R=0 4 hF (e, y) = 0.2 4 0-2F(0.2,0.2) = 0.2+ 0.2]1 (0.2)(0.2)] = 0.392.
B =12+ hF(2, ) = 0,392 1 0.2F(0.4,0.392) = 0.3 0-2[1 ~ (0.4)(0.392)] = 0.56064
=4+ hF(25,45) = 0.56064 4 0-2[1 - (0.6)(0.56064)] = 0.693363, o

=y 4+ hF(z, Ya) =0 6933632 + 0 21—
, . .2[1 - 0.8)(0.6933632)] = 0.782425088
Thus, ¥(1) 0.7824, |



