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Abstract

Let the edges of the complete graph Kn be assigned independent uniform [0, 1]
random edge weights. Let ZTSP and Z2FAC be the weights of the minimum length
travelling salesman tour and minimum weight 2-factor respectively. We show that
whp |ZTSP − Z2FAC | = o(1). The proof is via by the analysis of a polynomial time
algorithm that finds a tour only a little longer than Z2FAC .

1 Introduction

The starting point of this line of research is the foundational paper of Karp [10] in 1979.
Karp considered the following problem: The arcs of the complete digraph Dn on vertex
set [n] are given independent uniform [0, 1] random edge weights. ZTSP denotes the weight
of the minimum length (directed) travelling salesman tour and ZAP denotes the minimum
weight of an assignment for the associated n × n matrix M of costs. Karp proved, via
the analysis of an O(n3) time algorithm, that whp |ZTSP − ZAP | = o(1). (By “with
high probability” (whp) we mean “with probability 1-o(1) as n → ∞”.) This gave good
theoretical backing for the empirical observation (see e.g. Balas and Toth [3]) that the
assignment problem provides a good lower bound for use in branch and bound algorithms.
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A sequence of papers, Karp and Steele [11], Dyer and Frieze [5] and Frieze and Sorkin [9]
tightened this result. In particular, [9] proves that

|ZTSP − ZAP | = O

(
(lnn)2

n

)
whp.

It is natural to try to prove a similar result for symmetric problems. Here the edges of the
complete graph Kn are assigned independent uniform [0, 1] random edge weights. Up to
now there has been almost no progress analysing this probabilistic model of the TSP. Let
M = M(i, j) once again denote the matrix of lengths. Here of course M is symmetric i.e.
M(i, j) = M(j, i) for all i, j ∈ [n]. Let ZTSP = ZTSP (M) denote the length of the shortest
Hamilton cycle. It is unlikely that solving the assignment problem for M will yield a good
approximation to ZTSP since its solution (i, π(i)), i ∈ [n] will likely contain many instances
i, j where π(i) = j and π(j) = i. It is perhaps worth conjecturing that ZTSP −ZAP = Ω(1)
whp. It seems more sensible to start with the solution of the minimum weight 2-factor
problem. A 2-factor is a subgraph of Kn in which every vertex has degree 2 and so is a
collection of vertex disjoint cycles which cover all vertices in [n]. A minimum weight 2-
factor can be constructed in polynomial time. It is a classical problem in matching theory,
see e.g. Lovász and Plummer [12]. Let Z2FAC = Z2FAC(M) be the weight of the minimum
weight 2-factor. A tour i.e. a cycle with n edges is a 2-factor and so clearly z2FAC ≤ zTSP .
Our main result is:

Theorem 1
zTSP − z2FAC = o(1) whp. (1)

Furthermore, whp a tour of length z2FAC + o(1) can be constructed by a polynomial time
algorithm.

Now zTSP ≥ zMST , the weight of the minimum spanning tree, and whp zMST ≥ ζ(3) −
o(1) ∼ 1.202 . . ., Frieze [7]. Thus the tour produced by our algorithm is asymptotically
optimal i.e. whp the ratio of the tour produced by the algorithm and the optimum is
1 + o(1).

It as well to point out now what makes the symmetric case seemingly more difficult than
the asymmetric case studied in [10], [11], [5] and [9]. The solution to the assignment
problem can be represented as a permutation (i, π∗(i)), i ∈ [n]. It is straightforward to
show that the distribution of π∗ is uniform over the set of possible permutations. As such,
the number of cycles of π∗ is O(lnn) whp. This is a great help in the analysis. Following
Karp, one tries to merge cycles together until one has a tour. Each merger has to be shown
to entail a small cost whp. One can in fact show in both the symmetric and asymmetric

cases that each merger costs at most O
(

lnn
n

)
whp giving an increased cost of O

(
(lnn)2

n

)
overall in the asymmetric case. When we come the symmetric case things are not so nice.
A random 2-factor will also have O(lnn) cycles whp but it is not at all clear that the
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minimum weight 2-factor has a uniform distribution. If it did, then we could replace the

o(1) in (1) by O
(

(lnn)2

n

)
, and it would be easier to do because of the symmetry. Thus

one of our problems has been to put a high probability bound on the number of cycles in
the minimum weight 2-factor. We have not been too successful. We have only managed a
“miserable” O

(
n

lnn

)
which is just on the borderline of being useful. (This number seems

to be grossly large when compared to the average number of cycles in a random 2-factor.)
Any fewer and the paper would be much shorter. We will however have to content ourselves
with what we have and make the best of it.

Structure of the paper: We first show that ZTSP ≤ 6 whp, which we then use to show
that whp the optimum two factor has O(n/ lnn) cycles whp. We then show that whp
the longest edge in the minimum 2-FACTOR F ∗ = F ∗(M) is of length O

(
lnn
n

)
. This is

achieved by showing that whp one can find short alternating paths which eliminate the
need for longer edges.

In Section 3 we condition on the cycle structure of F ∗ and describe a model for use given
the cycle structure of F ∗. In Section 4 we will describe our algorithm for finding a tour
and prove that it is asymptotically optimal. It consists of two Phases.

In the first phase we try to merge small cycles into a long path using short edges. We start
it by deleting an arbitrary edge of the shortest cycle to obtain a path P and a collection
of cycles C. Then we repeatedly, choose the shortest acceptable edge e joining an endpoint
of P to one of the cycles in C ∈ C. We remove an edge of C which is incident with e and
thereby grow P and reduce the number of cycles in C by one. We continue this process
until the number of cycles in C is o

(
n

lnn

)
. The total increase in cost is kept to o(1) in

expectation.

At the end of the first phase we will whp have one long path and o
(
n

lnn

)
cycles. Then,

using an extension-rotation type of algorithm, we merge these cycles together at a cost of
O
(

lnn
n

)
per cycle, a total of o(1) extra cost in all.

It is the first phase which is the most complicated to analyse and if we could prove that
F ∗ had o

(
lnn
n

)
cycles whp, then we would not need it.

2 Preliminary Analysis

2.1 Upper bound on ZTSP

The first thing we shall do is prove a high probability upper bound on zTSP . It is quite
weak and obtaining a more precise bound remains an interesting open problem. (The work
of Aldous [1] combined with Karp [10] shows that for the asymmetric case, zTSP ∼ π2

6

whp).
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Lemma 1
zTSP ≤ 6 whp.

Proof We use an old idea of Walkup [13]. Let Z be a random variable on [0, 1]
with Pr(Z ≤ x) = 1 −

√
1− x for x ∈ [0, 1]. Then if Z1, Z2 are independent copies of Z,

min{Z1, Z2} is distributed as a uniform [0, 1] random variable. So now for i < j let the edge
lengths M(i, j) be generated by min{Z1(i, j), Z1(j, i)} where the set Z1(i, j), 1 ≤ i 6= j ≤ n
are independent copies of Z.

For each integer m ≥ 1 define a random digraph ~Γm with vertex set [n] and a directed arc
(x, y) if Z1(x, y) is one of the m smallest values Z1(x, j), j 6= x. By ignoring orientation in
~Γm we obtain the random graph Γm = Gm−out. Cooper and Frieze [4] showed that Γ4 is
Hamiltonian whp. The expected value of the kth smallest of n independent copies of Z is
(1+o(1))2k

n
, for k = O(1). Thus the expected length of an edge of Γ4 is (1+o(1))2+4+6+8

4n
=

(1 + o(1)) 5
n
. If H is a randomly chosen Hamilton cycle of Γ4 then the expected length of

H is at most 5 + o(1). It will be at most 6 whp since it is the sum of n independent
bounded random variables. (The variables here are sums of the lengths of the zero, one or
two H-edges which are directed out of each vertex. Its length bounds zTSP from above. 2

2.2 The number of cycles in F ∗

We can use Lemma 1 to help bound the number of cycles in a minimum weight 2-factor.

Lemma 2 Whp F ∗ consists of at most 3n
lnn

cycles.

Proof Let Z denote the number of cycles in the minimum weight 2-factor. For
3n/ lnn ≤ r ≤ n/3, we write

Pr(Z = r) ≤ Pr(ZTSP > 6) + Pr(∃ 2-factor with r cycles and total weight at most 6).
(2)

The number An,r of 2-factors in Kn with r cycles is given by

An,r =
∑

k1+···+kr=n

1

r!

(
n

k1, . . . , kr

) r∏
i=1

(ki − 1)!

2
.

The weight of a fixed 2-factor is the sum of n independent uniform [0,1] random variables.
The probability that that this sum is at most 6 is bounded by the volume of the simplex
equal to the intersection of {x1 + x2 + · · ·+ xn ≤ 6} and the positive orthant. The volume
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of this simplex is 6n

n!
. Thus,

Pr(Z ≥ r) ≤ o(1) +

n/3∑
r=3n/ lnn

An,r
6n

n!

= o(1) +

n/3∑
r=3n/ lnn

6n

2rr!

∑
k1+···+kr=n

r∏
i=1

1

ki

= o(1) +

n/3∑
r=3n/ lnn

6n

2rr!
[xn](− ln(1− x))r,

where [xn]f(x) denotes the coefficient of xn in the expansion of f(x) around zero i.e. if
f(x) =

∑
n≥0 fnx

n then [xn]f(x) = fn. Note that fn ≥ 0 for all n and so we have
fn ≤ f(ξ)/ξn for all ξ > 0. So

Pr(Z ≥ r) ≤ o(1) +

n/3∑
r=3n/ lnn

6n

2rr!

(− ln(1− ξ))r

ξn
∀0 < ξ < 1

= o(1) +

n/3∑
r=3n/ lnn

(12)n(ln 2)r

2rr!
ξ = 1/2

≤ o(1) +

n/3∑
r=3n/ lnn

(12)n
( e

2r

)r
≤ o(1) +

n/3∑
r=3n/ lnn

e−n/2 for n large

= o(1).

2

2.3 The longest edge in F ∗

We show that whp the longest edge in F ∗ is of length O
(

lnn
n

)
. For this we define

T = 20000

and let ΓT be as defined in the proof of Lemma 1. The edges of GT will tend to short,
O
(

1
n

)
in length. We show that whp ΓT is a good expander. From this we will see that

any long edge in a 2-factor, can be replaced using alternating paths with O(lnn) edges and
total weight O

(
lnn
n

)
.
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For S ⊆ [n] let

~NT (S) = {w /∈ S : ∃v ∈ S such that (v, w) is an arc of ~ΓT }.
NT (S) = {w /∈ S : ∃v ∈ S such that (v, w) is an edge of ΓT }.

Lemma 3 Whp | ~NT (S)| ≥ 20|S| for all S ⊆ [n], |S| ≤ dn/25e.

Proof The arcs leaving S terminate in S ∪ ~NT (S) and so

Pr(∃S : |S| ≤ dn/25e, | ~NT (S)| < 20|S|) ≤
dn/25e∑
s=1

(
n

s

)(
n

20s

)((21s
T

)(
n
T

) )s

≤
dn/25e∑
s=1

(ne
s

)s ( ne
20s

)20s
(

21s

n

)T s

=

dn/25e∑
s=1

(
e21(21)T sT −21

(20)20nT −21

)s
= o(1).

2

We will need to be sure we can connect a pair of alternating paths. For this purpose we
prove that whp every pair of large subsets of ΓT are joined by many edges:

Lemma 4 Whp ΓT contains at least 2n edges joining S and T , for all S, T ⊆ [n], |S|, |T |
≥ n/50 and S ∩ T = ∅.

Proof In the construction of ΓT each vertex makes T distinct choices. Suppose we
instead consider the graph Γ̃T where the T choices at each vertex are made with replacement
and so are independent. We can couple the construction of ΓT , Γ̃T so that, after coalescing
parallel edges, the edge-set of ΓT is a super-set of Γ̃T . Now the expected size of the
difference between the two graphs is at most n

(T
2

)
1

n−1
= O(1) and so whp this difference

is O(lnn). It will therefore be justifiable to continue the rest of the proof of this lemma in
terms of Γ̃T .

For fixed disjoint sets S, T of size n/50, let X be the number of edges joining S and T in
Γ̃T . Each v ∈ S ∪ T makes T choices, and this gives T n/25 independent choices overall.
The probability that a choice for v ∈ S is in T is at least 1/50 and vice-versa. Thus X
dominates the binomial B

(
800n, 1

50

)
. Thus, using the following (Chernoff) tail bound for

the binomial,
Pr(B(N, p) ≤ (1− ε)Np) ≤ e−ε

2Np/2

we see that (with N = 800n and ε = 5/16),

Pr(X ≤ 3n) ≤ e−3n.
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So the probability there exists a pair S, T for which X ≤ 3n is at most(
n

n/50

)2

e−3n = o(1).

(We should take account of multiple edges (x, y) where x chooses y and vice-versa. But
whp there are O(lnn) of these). 2

No two vertices have many common neighbours in ΓT .

Lemma 5 Whp every pair of vertices x, y have at most 2 common neighbours in ΓT .

Proof The probability that there is a pair of vertices x, y with 3 common neighbours
in ΓT is at most (

n

2

)(
n

3

)(
2T
n− 1

)6

= o(1)

since the probability that a pair of vertices are adjacent in ΓT is 2T
n−1
− T 2

(n−1)2
and this

probability is not increased if we are given the existence of other edges. 2

Now let F be an arbitrary 2-factor. We consider alternating paths in ΓT with respect to
F i.e. paths of the form x0, x1, . . . , xk where the edges (x2i, x2i+1) /∈ F for 0 ≤ i ≤ dk/2e
and the edges (x2i−1, x2i) ∈ F for 1 ≤ i ≤ bk/2c.

Lemma 6 Whp for every 2-factor F and for every pair of vertices x, y there is an odd
length alternating path from x to y of length at most 2i0 +1 where i0 = 1+dlog2(n/(50(T −
4))e.

Proof Assume that the conditions of Lemmas 3, 4 and 5 hold.

Fix x, y, F and arbitrarily orient the cycles of F to obtain ~F . For a vertex z let ν(z) be

defined by (z, ν(z)) is an arc of ~F .

We define a collection of sets S0 = {x}, T0 = {y}, Si, Ti, i = 1, 2, . . . , i0 where

(i) The collection of sets Si, ν(Si), Ti, ν(Ti), i = 1, 2, . . . , i0 are pair-wise disjoint, even for
different i.

(ii) Si is reachable from x by an alternating path of length 2i − 1 (number of edges),
1 ≤ i ≤ i0.

(iii) Ti is reachable from y by an alternating path of length 2i− 1, 1 ≤ i ≤ i0.

(iv) |S1| = |T1| = T − 4.

(v) |Si+1| = 2|Si| and |Ti+1| = 2|Ti| for 1 ≤ i < i0.
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Since (Lemma 5) |NT (x) ∩ NT (y)| ≤ 2 we can choose S̃1 ⊆ NT (x), T̃1 ⊆ NT (y) such that
|S̃1| = |T̃1| = T − 2 and S̃1, T̃1 are disjoint. At most 2 of the x, S̃1 edges are in F and so we
can choose T − 4 members of S̃1 to make S1 and similarly we can choose T − 4 members
of T̃1 to make T1.

Now suppose that we have chosen Si, Ti for some 1 ≤ i < i0 and that s = |Si| = |Ti|. Let
A0 = NT (Si), B0 = NT (Ti) and C = NT (Si ∪ Ti) ⊆ A0 ∪ B0. Since |A0|, |B0| ≥ 20s and
|C| ≥ 40s we can choose A1 ⊆ A0, B1 ⊆ B0 such that A1 ∩ B1 = ∅ and |A1| = |B1| = 20s.
By deleting 2s vertices from A1 we obtain a set A2 ⊆ A0 of size 18s such that all Si : A2

edges are not in F . Define B2 analogously.

Next let A3 = ν(A2) and B3 = ν(B2). At this point the only possible intersections among
A2, A3, B2, B3 are between A3 and B2 or between A2 and B3. Now choose 6s vertices
A4 ⊆ A3 and let A5 = ν−1(A4). Next choose 6s vertices B4 from B3 \ (ν(A4) ∪ A5). By so
doing we have A4, A5, B4, B5 = ν−1(B4) disjoint.

Since ∣∣∣∣∣
i−1⋃
j=0

(Sj ∪ ν−1(Sj) ∪ Tj ∪ ν−1(Tj))

∣∣∣∣∣ ≤ 4s

we can find Si+1 ⊆ A4, Ti+1 ⊆ B4 so that (i) above holds and so complete the inductive
step.

Now |Si0|, |Ti0| ≥ n/50 and so (Lemma 4) there are at least 2n edges joining these 2 sets, at
least one of which is not in F . This proves the existence of the required alternating path.

2

We now define the effect of an alternating path P w.r.t. F ∗ to be the difference between
the sum of the lengths of the edges of P which are not in F ∗ and the sum of the lengths of
the edges of P which are in F ∗.

Lemma 7 There exists an absolute constant A1 > 0 such that whp for every 2-factor F
and for every pair of vertices x, y there is an odd length alternating path from x to y of
effect at most A1 lnn

n
.

Proof We will need the following inequality, Lemma 4.2(b) of Frieze and Grimmett
[8].

Suppose that k1 + k2 + · · · + ks ≤ a, and Y1, Y2, . . . , Ys are independent random variables
with Yi distributed as the kith minimum of N independent uniform [0,1] random variables.
If µ > 1 then

Pr

(
Y1 + · · ·+ Ys ≥

µa

N + 1

)
≤ ea(1+lnµ−µ). (3)
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Let

W1 = max

{
k∑
i=0

M(x2i, x2i+1)−
k∑
i=1

M(x2i−1, x2i)

}
, (4)

where the maximum is over sequences x0, x1, . . . , x2k+1 where k ≤ i0 and M(x2i, x2i+1), i =
0, 1, . . . , k is stochastically dominated by the ρith smallest (ρi ≤ T ) of n − 3 independent
copies of the random variable Z of Lemma 1. Here we can use the fact that in our definition
of an alternating path the weight of (x2i, x2i+1) is stochastically dominated by the minimum
of the (at least) n−3 Z1(x2i, y)’s corresponding to edges not in F . Notice that this quantity
is independent of the length of (x2i+1, x2i+2) ∈ F . Because we are taking the maximum over
all possible sequences, the remaining edge lengths are uniform and all lengths can be taken
as independent. Because 1 −

√
1− x ≥ x/2 for x ∈ [0, 1] we see that Z is stochastically

dominated by 2U where U is uniform [0, 1].

We estimate the probability that W1 is large. Indeed, for any ζ > 0 we have

Pr

(
W1 ≥ ζ

lnn

n

)
≤

i0∑
k=1

n2k+2 1

(n− 3)k+1
×

∫ ∞
y=0

 1

(k − 1)!

(
y lnn

n

)k−1 ∑
ρ1+···+ρk+1≤(k+1)T

q(ρ1, . . . , ρk+1; ζ + y)

 dy
where

q(ρ1, . . . , ρk+1; η) = Pr

(
X1 + · · ·+Xk+1 ≥ η

lnn

n

)
,

X1, . . . , Xk+1 are independent and Xj is distributed as twice the ρjth minimum of n − 3
independent copies of Z.

Explanation: We have at most n2k+2 choices for the sequence x0, x1, . . . , x2k+1. The

term 1
(k−1)!

(
y lnn
n

)k−1
dy bounds the probability that the sum of k independent uniforms,

M(x1, x2)+· · ·+M(x2k−1, x2k), is in lnn
n

[y, y+dy]. (We approximate this probability by the

area of the simplex face
{
y1 + y2 + · · ·+ yk = y lnn

n
, y1, y2, . . . , yk ≥ 0

}
multiplied by dy.)

We then integrate over y. 1
n−3

bounds the probability that (x2i, x2i+1) is the ρith shortest
(in terms of Z1) edge leaving x2i, and these events are independent for 0 ≤ i ≤ k − 1. The
final summation bounds the probability that the associated edge lengths sum to at least
(ζ+y) lnn

n
.

It follows from (3) with N = n − 3, a = (k + 1)T and µ = n−2
n

(ζ/2+y) lnn
a

, that if ζ is
sufficiently large then for all y ≥ 0, we have µ ≥ 3(1 + lnµ) and so

q(ρ1, . . . , ρk; ζ + y) ≤ e−2aµ/3 ≤ n−(ζ+y)/3.
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Thenumber of choices for ρ1, ρ2, . . . , ρk+1 is
(

(k+1)T
k+1

)
and so

Pr

(
W1 ≥ ζ

lnn

n

)
≤ 2n2−ζ/3

i0∑
k=1

(lnn)k−1

(k − 1)!

(
(k + 1)T
k + 1

)∫ ∞
y=0

yk−1n−y/3dy

= 2n2−ζ/3
i0∑
k=1

(lnn)k−1

(k − 1)!

(
(k + 1)T
k + 1

)
3k(k − 1)!

(lnn)k

≤ 2n2−ζ/3
i0∑
k=1

(3T e)k

≤ 2n2−ζ/3(3T e)i0+1

= o(1).

for sufficiently large ζ. 2

The following lemma is almost immediate:

Lemma 8 Whp F ∗ contains no edge longer than A1
lnn
n

.

Proof Suppose that F ∗ contains an edge e = (x, y) of length greater than A1
lnn
n

.
Construct the alternating P path from x to y promised by Lemma 7. By removing e and
the F ∗ edges of P from F ∗ and replacing them with the non-F ∗ edges of P we obtain a
2-factor of lower weight. 2

Note that whp F ∗ contains an edge of length ≥ lnn
n

. The distribution of the subgraph
induced by edges of length ≤ p is the random graph Gn,p for any p ∈ [0, 1] and we need
p ≥ lnn

n
in order that δ(Gn,p) ≥ 2 whp.

We use the notation

p0 = A1
lnn

n

for the remainder of the paper.

As consequence of Lemma 8, we see that whp F ∗ does not contain many very short cycles.

Lemma 9 Whp F ∗ contains at most n3/4 cycles with fewer than lnn
2 ln lnn

edges.

Proof Let Zk denote the number of cycles of Kn, with k or fewer edges, all of whose
edges are of length at most p0. Then

E(Zk) =
k∑
l=3

(
n

l

)
(l − 1)!

2
pl0 ≤

k∑
l=3

(A1 lnn)l

2l
≤ (A1 lnn)k ≤ n1/2+o(1)

if k ≤ lnn
2 ln lnn

. Now use the Markov inequality. 2
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2.4 Long and short edges

We can divide the edges (x, y) of Kn into long, length M(x, y) ≥ p0 and short edges. From
the previous section we see that whp it is enough to find a minimum weight 2-factor in
the graph induced by the short edges. If for each short edge (x, y) we generate an extra
parallel edge with length uniform in the range [p0, 1] then we can consider that we start
with Gn,p0 , with edge weights uniform in [0, p0] plus an independent Kn with edge weights
uniform in [p0, 1] where we always use the shortest edge between a pair of vertices x, y.

We further divide the long edges into very long, length ≥ 2p0 and medium length edges.
Thus we will obtain another Red copy of Gn,p0 with weights in the range [p0, 2p0] and a
Blue copy of Kn with edge lengths in the range [2p0, 1].

It is important to realise that when we say we use an edge of a particular graph, say a Red
edge, we are really just upper bounding the length of the edge in the original Kn.

3 A Conditional Model

For a permutation π of [n] and matrix of weights M we define Mπ by

Mπ(i, j) = M(π(i), π(j)).

Clearly M and Mπ have the same distribution. So for any 2-factor F ,

Pr(F ∗(M) = F ) = Pr(F ∗(Mπ) = F ).

But F ∗(Mπ) = F iff F ∗(M) = F ◦ π where (i, j) is an edge of F ◦ π iff (π(i), π(j)) is an
edge of F . So

Pr(F ∗ = F ) = Pr(F ∗ = F ◦ π).

Now as π ranges over the n! permutations of [n], F ◦ π ranges over all 2-factors having the
same cycle structure as F – cycle i1, i2, . . . , il, i1 of F is mapped to cycle
π−1(i1), π−1(i2), . . . , π−1(il), π

−1(i1) of F ◦π. By symmetry each of these 2-factors appears
the same number of times.

For a sequence k = 3 ≤ k1 ≤ k2 ≤ · · · ≤ km we let Ωk denote the set of 2-factors with these
cycle sizes. If we compute F ∗ by first choosing a random permutation π, then computing
F ∗(Mπ) and then taking F ∗(Mπ) ◦ π then we see that:

Given F ∗ ∈ Ωk, F
∗ is a uniform random member of Ωk. (5)

So we will now fix the cycle sizes k and assume that the conditions of Lemmas 2, 9 hold.
We will run our proposed algorithm under the assumption that we know A = Mπ and
F̃ = F ∗(Mπ) but that π is a random permutation that we will expose as necessary. More
precisely we assume that
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(i) F ∗(A) ∈ Ωk.

(ii) The conditions of Lemma 10 below are satisfied.

(iii) We have the graph decomposition of Section 2.4.

It will help to imagine that we have m cycles C1, C2, . . . , Cm where |Ci| = ki, i = 1, 2, . . . ,m.
We can imagine these as being drawn in a plane. The vertices of these cycles are X =
{x1, x2, . . . , xn}. We will assume that these cycles have an (arbitrary) orientation. Then
for each x ∈ X there is a predecessor ν(x) on the same cycle as x. As we go we expose a
random mapping f from [n]→ X and then π = f−1νf . If we establish that f(i) = xk and
f(j) = xl then we will also establish the length of the edge (xk, xl) as A(i, j).

The vertices of X and [n] are divided into exposed and unexposed. v ∈ [n] is exposed iff
f(v) has been determined and x ∈ X is exposed iff f−1(x) has been determined.

4 The algorithm

We break our algorithm into 2 phases: A Greedy Phase and an Extension-Rotation Phase.

4.1 The Greedy Phase

We start by deleting an edge of C1. This leaves a path P0. In general, we have a path P ,
with endpoints a0, a1. Initially P = P0. We further have a collection of cycles C = CS ∪ CL
where CS = {C ∈ C : |C| ≤ (log n)2} and CL = {C ∈ C : |C| > (log n)2}. Initially
C = C2, C3, . . . , Cm. We define the set of vertices R =

⋃
C∈CS C. At each iteration we find

a short edge e from a1 to a vertex x in a cycle C ∈ C. Then we delete an edge of C incident
with x. This lengthens P and reduces the number of cycles in C by one.

All of the vertices of P will be exposed. Most of R will be unexposed. We end the Greedy
Phase when |R| first drops below n√

lnn
.

UR denotes the set of unexposed vertices in R and Un denotes the unexposed vertices of
[n]. We never allow the number of exposed vertices in R to reach more than 6 n

lnn
. We

terminate the algorithm and fail if we expose this number.

A general step of this phase involves the following substeps:

(S1) Determine f−1(a1) by a random choice from Un.

(S2) Determine the shortest acceptable (defined below) edge (a1, x) from a1 to a vertex ξ
of CS for which ν(ξ) is unexposed. Assume that x lies in cycle C. Delete the edge
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(x′ = ν(x), x) from C to create a path Q. Now replace P by P + Q and delete C
from C.

Thus each step reduces the number of cycles left by one, at a cost of less than the length
of the edge (a1, x).

In step S2 above, a1 is replaced by x′. So we want x′ to be unexposed and to have many
unexposed vertices which are close to it. The following values are used in the definition of
acceptable. The justification for choosing these values comes from Lemma 10 below.

ω1 = 2(lnn)1/4 ω2 = (lnn)1/3 ε = (lnn)−1/5

ω′1 = 2(lnn)5 ω′2 = (lnn)7 ε′ = (lnn)−1

ξ ∈ R is good if

(i) ξ is unexposed.

(ii) Let the unexposed vertices of R be enumerated as x1, x2, . . . where
A(ξ, xi) ≤ A(ξ, xi+1) for i ≥ 1. Also, let Y1 = {ξ1, ξ2, . . . , ξω1} and let Y ′1 =
{ξ1, ξ2, . . . , ξω′

1
}

(a) A(ξ, ξω1) ≤ ω2

|R| .

(b) A(ξ, ξω′
1
) ≤ ω′

2

|R| .

(iii) Let the cycle containing v be C. Then either

(a) |R \ C| ≤ n√
lnn

or

(b) |R \ C| > n√
lnn

, and |f(Y1) ∩ C| ≤ |Y1|/2 and |f(Y ′1) ∩ C| ≤ |Y ′1 |/2

We define the edge (a1, x) to be acceptable if x′ is good.

We check now that the search for x can actually be done without exposing too many
vertices: We know ã = f−1(a1). We go through ξ ∈ f−1(R) in increasing order of A(ã, ξ).
If ξ is exposed then we go on to the next ξ. If ξ is unexposed then we choose η = f(ξ)
randomly from UR. Let η′ = ν(η). If η′ has been exposed, we go onto the next ξ. Otherwise
we expose η′ by randomly choosing ν = f−1(η′) from Un. We then check to see whether or
not η′ is good. We go through ξ ∈ f−1(R) in increasing order of A(ν, ξ) and we examine
the first ω′1 unexposed ξ and see whether conditions (ii), (iii) of goodness are satisfied. We
do not expose these ξ unless η′ passes this test and we take x′ = η′.

We need to be sure that in Step S2 we are likely to find a short acceptable choice of edge.
Before considering the expected length of the accepted edge, we mention what are the only
possibilities: Recall that C is the cycle containing x.

(A) |R \ C| ≤ n√
lnn

.
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(B) |R \ C| > n√
lnn

and |f(Y1) ∩ C| ≤ ω1/2 and |f(Y ′1) ∩ C| ≤ ω′1/2.

(C) |R \ C| > n√
lnn

and |f(Y1) ∩ C| > ω1/2

(D) |R \ C| > n√
lnn

and |f(Y ′1) ∩ C| > ω′1/2.

In Case A we terminate the Greedy Phase and begin the Extension-Rotation phase. Oth-
erwise we can expose the vertices of C and determine which of Cases B–D we are in.
Now,

Pr(C or D) ≤
(
ω1

ω1/2

)(
(lnn)5/2

n

)ω1/2

+

(
ω′1
ω′1/2

)(
(lnn)5/2

n

)ω′
1/2

≤ n−10. (6)

Explanation If S ⊆ Y1 then Pr(f(S) ⊆ C) =
(|C|
|S|

)
/
(|R|
|S|

)
≤
(

(lnn)5/2

n

)|S|
.

The probability in (6) is small enough that we can afford to fail if either Case C or D
happens. We assume therefore that we do not come across these cases. They would cause
trouble, because when we extend P by adding C, we would find that many of the unexposed
vertices close to x′ are on the new path and are therefore unusable.

We next need to estimate the expected length of the edge (a1, x) in Case B.

Lemma 10 Suppose the following holds as n→∞,

α0 → 0,
αβ2

ln lnn
→∞, β2

β1 ln β2

→∞ β2 ≤ (log n)10.

Then whp, for every K ⊆ [n], k = |K| ≥ n/
√

lnn and L ⊆ K, |L| ≤ α0k there are at
most αk vertices v for which |{w ∈ K \ L : A(v, w) ≤ β2

k
}| < β1 i.e. whose β1th closest

neighbour in K \ L is at A distance ≥ β2
k

.

Proof Fix S, L ⊆ K ⊆ [n] with |K| = k ≥ n/
√

lnn and |L| = α0k and |S| = αk. The
probability that for each v ∈ S, |{w ∈ K \ L : A(v, w) ≤ β2

k
}| < β1 is at most β1∑

i=0

(
k(1− α0)

i

)(
1−

√
1− β2

k

)i(
1− β2

k

)(k(1−α0)−i)/2
αk

. (7)

Explanation: We can express A(x, y) as min{ZA(x, y), ZA(y, x)} where the ZA(x, y) are

independent copies of Z. For x ∈ S, the term

(
1−

√
1− β2

k

)i (
1− β2

k

)(k(1−α0)−i)/2
is

the probability that exactly i of the quantities ZA(x, y), y ∈ K \ L are at most β2
k

. The
expression in (7) is then the probability that for each x ∈ S, at most β1 of the quantities
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ZA(x, y), y ∈ K \L are at most β2
k

. This event is implied by the event that for each x ∈ S,

at most β1 of the quantities A(x, y), y ∈ K \ L are at most β2
k

.

We now bound

β1∑
i=0

(
k(1− α0)

i

)(
1−

√
1− β2

k

)i(
1− β2

k

)(k(1−α0)−i)/2

≤
β1∑
i=0

ki(1− α0)i

i!

(
β2

k

)i
e−β2(1−α0)/3

≤((1− α0)β2)β1e−β2(1−α0)/3.

Thus the probability that there exist K,L not satisfying the conditions of the lemma is at
most (

n

k

)(
k

αk

)(
k

α0k

)
(((1− α0)β2)β1e−β2(1−α0)/3)αk

≤
(
ne

k
·
( e
α

)α
·
(
e

α0

)α0 (
((1− α0)β2)β1e−β2(1−α0)/3

)α)k
≤
(
(lnn)1/2 · e · e · e−β2α/4

)k
= o(1).

2

We know that a1 was either obtained from C1 or was a good vertex chosen in the previous

step. In both cases there were at least ω1 (resp. ω′1) edges of length ≤ ω2

|R| (resp. ≤ ω′
2

|R|)

to unexposed members of R. Because cases C, D are ruled out, at most 1/2 of these are
absorbed into P . Using Lemma 10 with α0 = 6√

lnn
(a bound on the proportion of exposed

vertices in R, see (10) below) and α = ε, ε′ we see that the expected length of the edge
(a1, x) is at most

ω2

|R|
+ (α0 + ε+ ε′)ω1/2

ω′2
|R|

+ (α0 + ε+ ε′)ω
′
1/2 ≤ 2(lnn)1/3

|R|
. (8)

Explanation Assume the condition of Lemma 10 hold with α0, α = ε, β1 = ω1, β2 = ω2

and with α0, α = ε′, β1 = ω′1, β2 = ω′2. Let K = R and L = R \ UR. α0 + ε+ ε′ bounds the
probability that a randomly chosen vertex x of R has ν(x) /∈ UR (prob. ≤ α0) or ν(x) fails
tests (iia) (prob. ≤ ε), (iib) (prob. ≤ ε′). of goodness.

Thus the number of vertices υi exposed in the ith step before finding an acceptable edge,
given the previous history is dominated by a geometric random variable with probability
of success p = 1− (α0 + ε+ ε′). Thus for any λ > 0 such that (1− p)eλ < 1 we have

E(eλυi | υj, j < i) ≤ 1 +
eλ − 1

1− (1− p)eλ
. (9)
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Now let TG denote the number of steps in the Greedy Phase. Now we know from Lemma 2
that whp T ≤ T0 = 3n

lnn
. Defining υi = 0, T < i ≤ T0 we see that (9) holds for 1 ≤ i ≤ T0.

Now let Υ =
∑T0

i=1 υi be the total number of vertices exposed (whp). Then

Pr(Υ ≥ 2T0) ≤ e−2λT0E(eλΥ) ≤ exp

{
−2T0λ+ T0

eλ − 1

1− (1− p)eλ

}
= o(e−T0/5), (10)

if we put λ = 1. Thus whp the number of exposed vertices in R is always at most 2T0.

This explains why we can take as our upper bound on |R\UR|
|R| , the value α0 = 6√

lnn
. The

probabilistic bound on the number of exposed vertices will hold throughout the Greedy
Phase.

We now return to the main cost of the Greedy Phase (as defined in (8)).

We remind the reader that the lengths of the cycles in the optimal 2-factor F ∗ are k1, k2, . . .
, km where m ≤ 3 n

lnn
and k1 = mini ki.

We can take k1 ≤ (lnn)2 for otherwise m ≤ n/(lnn)2 and we can dispense with a Greedy
Phase and just use the Extension-Rotation Phase. In latter this Phase whp we remove a
cycle at the cost of O

(
lnn
n

)
per cycle. Thus in the case of k1 ≥ (lnn)2 we can whp find a

tour of length O((lnn)−1) more than the length of F ∗.

We now wish to bound the expected sum of the lengths of the edges added. Suppose that
we have re-ordered the cycles so that they are absorbed into P in order 1,2,. . . . Assume
that CL = {Cρ+1, Cρ+2, . . . , Cm} and let KL =

∑m
i=ρ+1 ki.

Let Li = n − k1 − k2 − · · · − ki −KL = ki+1 + ki+2 + · · · + kρ, m
′ = min{i : Li ≤ n√

lnn
}.

We note that the Greedy Phase is only concerned with the first m′ − 1 cycles. Next let
I = {i : ki ≤ L = lnn

2 ln lnn
}. We can assume (Lemma 9) that |I| ≤ n3/4. Then let

S(m′) =
m′−1∑
i=1

(lnn)1/3

Li
.

It will suffice to show that S(m′) = o(1). For then (8) will imply that the expected weight
of the edges added in the Greedy Phase is o(1) and so is o(1) whp by the Markov inequality.
Let J = d(L1 − n/

√
lnn)/Le. Then

m′−1∑
i=1

1

Li
≤ |I|

√
lnn

n
+

J∑
j=0

1

L1 − jL

since |Li| ≥
√

lnn
n

for i ∈ I and if j, j′ ∈ [m′ − 1] \ I = {j1, j2, . . . , } we have dL1−Lj

L
e 6=

dL1−Lj′

L
e and Lj ≥ L1 − JL.
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(11)

≤ O(n−1/4
√

lnn) +

∫ J

x=0

dx

L1 − xL

= O(n−1/4
√

lnn) +
1

L
ln

(
L1

L1 − JL

)
. (12)

Now
L1 − JL ≥

n

2
√

lnn
.

Thus we have
1

L
ln

(
L1

L1 − JL

)
≤ 2(ln lnn)2

lnn
.

Plugging this into (12) we see that

S(m′) = O

(
(ln lnn)2

lnn

)
and we are done with the Greedy Phase.

4.2 Final Extension-Rotation Phase

We enter this phase with a path P and, most importantly, only m′′ = m − m′ + |CL| =

O
(
n ln lnn
(lnn)3/2

)
cycles. We will absorb each cycle into P at an expected cost of O

(
lnn
n

)
and

with the same cost turn the final Hamilton path into a tour and so complete the proof of
Theorem 1.

We will use rotations and ΓT of Section 2.3 for this task. At a general stage we have, as
usual, a path P plus a collection of vertex disjoint cycles C which cover a set of vertices R.
Let the endpoints of P be a, b.

If a (or b) has a ΓT -neighbour x in R then we replace P by P + C − (x, x′) where C is
the cycle containing C and x′ is a neighbour of x on C. We do not need to be concerned
anymore with good or bad vertices. We call this operation, extending P and for every
path obtained by rotation, we also see if an extension is possible. So, in the discussion of
rotations below, assume that no extension is possible for any path produced.

For a path P = (a = a0, a1, . . . , ah) and edge ahai we say that the path P ′ = a0, a1, ...ai, ah,
ah−1, . . . , ai+1 is obtained from P by a rotation with a0 as fixed endpoint. For a vertex
v ∈ P let ρ(v) be the minimum number of rotations, with a fixed, needed to construct a
path with v as an endpoint. ρ(v) =∞ if it is not possible to construct such a path. Then
let

S(P, a, t) = {v ∈ P : ρ(v) = t}.
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It follows from Lemma 3 that

|S(P, a, t)| ≤ n/25 implies |S(P, a, t+ 1)| ≥ 9|S(P, a, t)| (13)

Indeed, assuming no extensions are possible, and proceeding inductively,

|S(P, a, t+ 1)| ≥ 1

2

(
|NT (S(P, a, t))| −

t∑
τ=0

|S(P, a, τ)|

)
≥ 1

2

(
20− 9

8

)
|S(P, a, t)|.

It follows that for some t∗ ≤ log9 n/25 we find that |S(P, a, t∗+1)| ≥ 9n/25. Let END(a) =
S(P, a, t∗ + 1).

Now we have for each v ∈ END(a) a path Pv with endpoints a, v which goes through
all vertices of P (unless we have found an extension). For each such v construct the
set END(v) = S(Pv, v, tv), tv ≤ 1 + log9 n/25 for which |END(v)| ≥ 9n/25. Putting
END = {a}∪END(a) we see that we have created a collection of sets END(v), v ∈ END,
each of size ≥ 9n/25 with the property that

v ∈ END, w ∈ END(v) implies that there is a path P [v, w] with endpoints v, w going

through all vertices of P and such that P [v, w] differs from P in at most (14)

2(1 + log9 n/25) edges

Now we can use the Red copy of Gn,p0 (see Section 2.4) to find a Red edge joining some
v ∈ END to w ∈ END(v). Whp we only need to check O(lnn) such pairs v, w for each
cycle before finding a red edge, O(n) pairs altogether. Thus we will whp find a Red edge
each time we need to.

Once we have turned P into a cycle C, we can use the fact that whp Γm is connected for
m ≥ 2, Fenner and Frieze [6], to assert the existence of a ΓT edge joining C to C. In the
event that C is empty, we have finished. Otherwise, we choose an edge (x, y) with x ∈ C
and y ∈ C ′ ∈ C. We then remove an edge adjacent to x from C and an edge adjacent to y
from C ′. This gives us a path P , from which to continue with the process of reducing the
number of cycles.

The cost of the added Red edges is O(m′′p0) = o(1). We can use (3) and (14) to see that
whp the total weight of ΓT edges used in this phase is O

(
m′′ lnn

n

)
= o(1).

4.3 Running Time

We now summarize the running time of our algorithm. It takes O(n3) time to find the
minimum weight 2-factor and as we will see, this dominates the rest of the algorithm. Each
iteration of the Greedy Phase requires a search for an acceptable edge and this takes O(n)
time and so the Greedy Phase requires O(n2) time. We finally consider the Extension-
Rotation phase. For a path P , it needs O(n2) rotations to create the sets END and
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END(v) for v ∈ END). Angluin and Valiant [2] describe a data structure which allows a
rotation to be done in O(lnn) time. Thus the total time for the Extension-Rotation phase

is O
(

n
(lnn)3/2

n2 lnn
)

= o(n3).

The proof of Theorem 1 is now complete.
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