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Abstract

We study two widely used algorithms, Glauber dynam-
ics and the Swendsen-Wang algorithm, on rectangular sub-
sets of the hypercubic lattice � � . We prove that under cer-
tain circumstances, the mixing time in a box of side length�

with periodic boundary conditions can be exponential
in
� �	��


. In other words, under these circumstances, the
mixing in these widely used algorithms is not rapid; in-
stead, it is torpid. The models we study are the indepen-
dent set model and the � -state Potts model. For both mod-
els, we prove that Glauber dynamics is torpid in the region
with phase coexistence. For the Potts model, we prove that
Swendsen-Wang is torpid at the phase transition point.

1 Introduction

Monte Carlo Markov chains (MCMC) are used in com-
puter science to design algorithms for estimating the size
of large combinatorially defined structures. In statistical
physics, they are used to study the behavior of idealized
models of physical systems in equilibrium. In the latter
case, the models of interest are usually defined on regular,
finite-dimensional structures such as the hypercubic lattice
� � . In both applications, it is necessary to run the chain,

, until it is close enough to its steady state. Thus it is im-
portant to design rapidly mixing algorithms, i.e. algorithms
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for which the mixing time, ��� , is small.
In this paper, we study two statistical physics models,

the � -state Potts model and the independent set problem.
We consider these models on the graphs on which they are
most often studied in physical applications, namely on sub-
sets of � � . For the Potts model, we study two types of
Monte Carlo Markov chains – Glauber dynamics, and the
empirically more rapid Swendsen-Wang dynamics.

Both the Potts model and the independent set model are
characterized by non-negative parameters, the former by a
so-called inverse temperature � , and the latter by a so-called
fugacity � (see definitions below). Both models are known
to undergo phase transitions from a so-called disordered
phase with a unique equilibrium state to an ordered phase
with multiple equilibrium states. Due to the multiple states,
the ordered phase is also known as the region of phase co-
existence.

The point of this work is to relate the mixing times of the
MCMCs to the phase structures of the underlying equilib-
rium models. In particular, we show that Glauber dynamics
is slow, or torpid, for both models in their regions of phase
coexistence, while Swendsen-Wang for the Potts model is
torpid at the phase transition point. This latter result has ap-
parently come as a surprise to some physicists who use the
Swendsen-Wang algorithm to simulate the Potts model, and
who have tacitly assumed that it mixes rapidly for all values
of the inverse temperature.

In addition to this “physically surprising” result, our
work is new in a number of respects. While there has re-
cently been a good deal of work in the theoretical CS com-
munity on slowness of Swendsen-Wang dynamics for the
Potts model (see citations below), this is one of the first
works to consider the physically relevant case of the hy-
percubic lattice � ��� � � and finite portions thereof. (In
� � , two lattice points are joined by an edge if they differ by
1 in one coordinate.) From a technical point of view, the
hypercubic lattice is much more challenging than the com-
plete graph. However, these technical difficulties give us the
opportunity to use some beautiful and deep results. In par-
ticular, our work brings to bear, and to some extent extends,



statistical physics expansion techniques for the problem of
controlling the number of cutsets in graphical expansions
of these models. Specifically, we use so-called Pirogov-
Sinai theory [21] from the statistical physics literature, in
the form adapted to the Potts model by Borgs, Kotecký and
Miracle-Sole ([4], [5]). We also use the new and power-
ful combinatoric estimates of Lebowitz and Mazel [17] for
controlling the number of cutsets. Finally, we use the lovely
isoperimetric inequalities of Bollobás and Leader [2].

In this introduction, we will first describe our work on
MCMC for the Potts model, and then for the independent
set problem.

The � -state Potts Model (see [26], [27]) on an arbitrary
graph � ���������
	 , � � � �� is defined as follows: a coloring� is a map from ����� ��� ������������������� �� . Let ! � � 	 be
the set of edges with endpoints of a different color and let" � � 	 � � ! � � 	 � . The weight of a coloring # � � 	 is $ �&% �(' �*) .
We turn this into a probability distribution + by normalizing
with the partition function , �.- � # � � 	�� To study this
model empirically, one needs to be able to generate � with
probability (close to)

+ � � 	 � # � � 	
, � (1)

The model is said to be ferromagnetic if �0/21 , otherwise
it is anti-ferromagnetic. Note that � �43*5 corresponds to
random proper colorings.

The widely used Swendsen-Wang algorithm [24] for the
ferromagnetic model uses a Markov chain with state space� ���76 which has steady state + – see Section 3. Gore and
Jerrum [13] proved that on the complete graph 8:9 with
�;/=< , there is a certain value of � (inverse temperature)
such that the mixing time of the algorithm is exponential
in � . Jerrum [15] has coined the phrase torpid mixing to
describe this phenomenon. Cooper and Frieze [7] extended
their arguments to show that in the Potts model on the ran-
dom graph �>9@? A , this phenomenon persists with high prob-
ability for B �DCE�F� � 
HGHI 	 . Li and Sokal [18] proved a linear
(in the number of sites) lower bound for finite boxes in Z

�
.

(For positive results on this algorithm see [7], Cooper, Dyer,
Frieze and Rue [6], Huber [14], Martinelli [20].)

Our first result concerns this algorithm and the simpler
Glauber dynamics – see Section 3. Let J � JLKM? � �
� �
N � � 	 � be the

"
-dimensional torus of side

�
. We view

this as a graph where two points are connected by an edge
if they differ by 1 (mod

�
) in one component. It has vertex

set � �2� KM? � and edge set � ��� KM? � . Using the results of
Borgs, Kotecký and Miracle-Solé [5], we prove the follow-
ing negative result:

Theorem 1 For
" / � and sufficiently large � , there exists

�PO � �PO � � � " 	 such that:
(a) The mixing time �RQ�S of the Swendsen-Wang algorithm

on JTKM? � at �TO satisfies

�RQ�S�/U$(VXW K GY'[Z \^] K )7_

for some absolute constant 8 
*` 1 .
(b) The mixing time ��aLb of the Glauber dynamics for
�c/ �PO satisfies

��aLbd/$(V _ K GY'[Z \e] K )7_

for some absolute constant 8gf ` 1 .
For an arbitrary graph � ���������h	 , an independent set is

a set of vertices i:j � such that no pair of vertices k �mlon i
is incident to the same edge $ np� . Dyer, Frieze and Jer-
rum [9] considered the problem of generating a nearly ran-
dom independent set of a bipartite graph. They prove that
Glauber dynamics exhibits torpid mixing on almost all reg-
ular graphs of degree 6 or more and that the problem is NP-
hard for regular graphs of degree 25 or more. In statistical
physics, the independent set problem is called the hard-core
gas model. In general there is a parameter � ` 1 called the
fugacity and one wants to generate independent sets i with
probability proportional to ��q r�q i.e.

+ � i 	 � �sq r�q-0tvu w�x�y{z(y�wYx�y�we| � q t q
� (2)

Our second result concerns this problem. The Glauber dy-
namics chain is a simple chain on the independent sets of
graph � that selects a random vertex and adds/deletes it
to/from the current independent set with some probability
dependent on � – see Section 3. Dyer and Greenhill [10],
Luby and Vigoda [19] have proved that this chain is rapidly
mixing for �U} f~ � f , where � denotes the maximum de-
gree of � .

We also prove bounds on more general Markov chains.
To define this class, let i � i�� be independent sets, and let
! � i � i�� 	 � � i��Xi��m�Y�0� i����Xi�� . For an ergodic Markov chain K on J�K�? � , let ! ��� be the maximum of ! � i � i � 	 over
all i and i�� for which the transition probability is non-zero.
We say that

 K is local if ! ��� is bounded uniformly in�
, and we say that it is � -quasi-local if ! ������� � � for

some ��} � which is independent of
�

.

Theorem 2 For
" / � and � sufficiently large, the mixing

time ��aLb of the Glauber chain on JLK�? � satisfies

��aLbd/$(V�� K��e� W G�'�Z \e] K )7_

for some constant 8 I�` 1 depending only on the dimen-
sion

"
. More generally, let �RK be the mixing time for any

ergodic Markov chain on JLK�? � which is � -quasi-local for
some ��} � . Then

��K�/U$ V�� K��e� W GY'[Z \^] K )�_

for some constant 8�� depending only on
"

and � .



Finally, we want to point out that our techniques for
proving slow mixing are quite robust, and can be applied
to many models exhibiting the phenomenon of phase coex-
istence. All that we require is that the equilibrium model
have energy barriers between different phases that is high
enough to apply the techniques of [3], and that the dynam-
ics is not sufficiently global to permit jumps over these bar-
riers. (An example of a Markov chain which “jumps over”
energy barriers is the Swendsen-Wang algorithm at temper-
atures below the transition temperature.)

2 Mixing Time

Let


be an ergodic Markov chain on a finite state spaceC , with transition probabilities � ���L����	����L���Un0C . Let �
denote the stationary distribution of


.

Let �=n C be an arbitrary fixed state, and denote by���{? 	 ��
 	 the probability that the system is in state 
 at time�
given that � is the initial state.

The variation distance � � � 
�� �Tf 	 between two distribu-
tions � 
�� �Tf on C is defined by

� � � 
�� �Tf 	 � ����Q���� � � 
(���X	s3 �Tf ���X	 �
� 


f
���� � � � 
���
 	 3 �Tf ��
 	 � �

The variation distance at time
�

with respect to the initial
state � is then defined as

��	 � � 	 � � � ���{? 	 � � 	��
We define the function

" � � 	 ���� � 	 � � ��	 � � 	 and the mix-
ing time

� �!�"$#P� �&% � " � � 	 �U$ ��
  �
A property of

" � � 	 given in [1] is that
" �(' � � 	 � � " �('�	 " � � 	��

implying in particular that
" � � 	 �*) �,+L�^3�- � N ��. 	 . It is there-

fore both necessary and sufficient that chains be run for
some multiple of mixing time in order to get a sample which
is close to a sample from the steady state.

For our purposes, the Swendsen-Wang algorithm is
rapidly mixing if its mixing time ��Q�S is bounded by a poly-
nomial in � , the number of vertices of � . Similarly for the
Glauber chain.

Jerrum and Sinclair [23] introduced the notion of con-
ductance to the study of finite time reversible Markov
chains. A chain is reversible if it satisfies the detailed bal-
ance equations:� ���T	 � ���L���&	 � � ����	 � �������T	�� for all �L�/��n�C �
Putting 0 ���L����	 � � ���T	 � ���L�/��	 and 0 �21 ��3 	 �
- ' 	R? 4 ) �6587:9 0 ���L�/��	 , we define the conductance of a set

of states ;=<��� j C as> Q � 0 ��� �@?� 	� ���X	 � �A?��	 where ?� �DC � � � (3)

The conductance
> � of the chain itself is simply�"$# QCBD@E > Q . We prove our lower bounds on mixing time by

showing that
> � is small and then using the well-known

bound [1]

$ � 
HGGFGH / �v3 > � � (4)

3 MCMC Algorithms

There are several MCMC algorithms that are used to
generate a random sample from these distributions corre-
sponding to the hard-core model and ferromagnetic Potts
model. The Glauber dynamics is perhaps the simplest such
Markov chain. Its transitions are as follows: Choose a ver-
tex at random, and modify the spin of that vertex by choos-
ing from the distribution conditional on the spins of the
other vertices remaining the same. We will detail the al-
gorithm for the hard-core model on independent sets.
Glauber Dynamics: From an independent set I ,

G1 Choose J uniformly at random from � .

G2 Let

I � �LK INM � J& with probability �PN �^� � � 	I:� � J� with probability � N �^� � � 	��

G3 If I�� is an independent set, then move to IL� , otherwise
stay at the current independent set I .

For the ferromagnetic Potts model, an alternative
method, the Swendsen-Wang process [24], is often pre-
ferred over other dynamics in Markov chain Monte Carlo
simulations.
Swendsen-Wang Algorithm:

SW1 Let 3 ��� �*! � � 	 be the set of edges joining ver-
tices of the same color. Delete each edge of 3 inde-
pendently with probability �v3 B , where B ���v3 $ �&% .
This gives a subset 1 of 3 .

SW2 The graph �����/1�	 consists of connected components.
For each component a colour (spin) is chosen uni-
formly at random from � ��� and all vertices within the
component are assigned that colour (spin).

The Swendsen-Wang algorithm was motivated by the
equivalence of the ferromagnetic � -state Potts model and
the random cluster model of Fortuin and Kasteleyn [12],
which we now describe.



Given a graph � �������e�
	 , let � �21�	 �c�����/1�	 denote
the subgraph of � induced by the edge set 1��2� . In the
random cluster model, � �21�	 is the measure given by

+ � � �21�	^	 � �
, B q

5 q �^�v3 B 	 q � q � q 5 q � O ' 5 ) � (5)

where � �21�	 is the number of components of � �21�	 and B is
a probability.

The relationship between the two models is elucidated in
a paper by Edwards and Sokal [11]. The Potts and random
cluster models are defined on a joint probability space � ��� 9��� � . The joint probability � � � �/1�	 is defined by

� � � � 1�	 � �
,

�
'�� ? 	 ) � � �^�^�v3 B 	�
 '�� ? 	 ) B�65 � B 
 '�� ? 	 ) �65 
��� D ���	��

(6)

where , is a normalizing constant. By summing over �
or 1 we see that the marginal distributions are correct, and
(remarkably) the normalising constants in both Potts and
Cluster models are the value of , given in the expression
above.

The Swendsen-Wang algorithm can be seen as given � ,
(i) choose a random 1 � according to � � � �/1 � 	 and then (ii)
choose a random � � according to � � � � � 1 � 	 .

After Step SW1 we say that we are in the FK represen-
tation of the chain.

4 Minimal Cutsets

Let � � �������h	 be a connected graph. For � j �
we define � S as the graph � � �e� S 	 , where � S is the set
of all edges in � that join two vertices in � . We say that� j�� is a component of � if

�
is the vertex set of a

component of � S . As usual, we define a subset � j � to
be a cutset if �����e� ��� 	 is disconnected. We define � to be
a minimal cutset if all cutsets contained in � are identical to
� . If � is minimal, ������� ��� 	 has exactly two components.
For � j � , we let � denote the complement of � , i.e.
� � � ��� . We denote the set of edges between two
disjoint sets of vertices � and ��� by � � % �0� 	 . Finally,
we use � � � 	 to denote the set of components of � .

We consider the cutset ��� �2� � % � 	 and decompose
it as ��� � M�� ��� ' S ) � � . We will further decompose � �
into minimal cutsets, see Lemma 1 below. In order to state
the lemma, we introduce the sets

� � ����� � % ! 	 � ! n � � � 	  ����� ! % ! 	 � ! n � � � 	  
and

� � � 	 � �
� ��� ' S ) � � �

Lemma 1 Consider � j � .
(a) Let

� � � � be different components of � . There ex-
ist unique ! n � � � 	 and !�� n � � � � 	 such that ! �
! � or equivalently ! � � ! .
(b) For

� n � � � 	 , � � has a unique decomposition into
minimal cutsets as � � � M! ��"$# � .
(c) If � , �M� n � � � 	 are distinct then they are disjoint.
(d) Let

�
and

� � be two (not necessarily distinct) compo-
nents of � j � . If % or % is a component of

�
and & or

& is a component of
� � then

%(')& � ; � %�' & � ; � %(')& � ; � or %�' & � ; �
Proof:

(a) We will first prove uniqueness. Since
� ' � � � ; ,� �Lj � and

� j � � . Furthermore,
�

is connected. Hence,
there exists a unique ! � n � � � � 	 such that

� jU! � . For all
! n � � � 	 , � j ! . Therefore, if there exists a !�� n � � � � 	
with !=jp! � , !�� must be the unique component containing�

. The uniqueness of ! is proved similarly. Next, we prove
existence. Let ! � be as above, so that ! � j �

. Since� M�! � � is connected for all !�� � n � � � � 	 , the set ! � �� ��M+* � ! � � n � � � � 	 % ! � � <� !��7 is connected. As a
consequence, ! � j � must lie in one of the components !
of
�

.
(b) Obviously, � � � M! ��" # is a decomposition of � �

into minimal cutsets of � . To prove uniqueness, assume
that �pj,� � is a minimal cutset of � . Then there exists a
! n � � � 	 such that � ! % ! 	 j-� . Otherwise,

� M�! is
connected in � �.� for every ! n � � � 	 , which would imply
that �D�/� is connected. Since � is minimal, � ! % ! 	 j0�
implies � ! % ! 	 � � .

(c) For cutsets � and �P� corresponding to the same com-
ponent

�
, disjointness follows from the explicit form given

in (b). Assume that �/'1�P� <� ; for two different components�
and

� � . This would imply that � � '2� � �&<� ; , which in
turn implies that

�
and

� � are connected in � , and hence in
� S . But this contradicts the assumption that

�
and

� � are
different components of �hS .

(d) Without loss of generality % n � � � 	 and & n
� � � � 	 . We consider several cases:

3 If % � & then %�' & � ; .

3 If
� � � � and % <� & , then % and & are different

components of
�

which implies that %�'4& � ; .

3 If
� <� � � then we use part (a) of this lemma. We

condition on whether % and/or & are the unique ! n
� � � 	 and !�� n � � � � 	 such that ! � !�� .

– % <� ! � & <� ! � % Since & j ! � and part (a)
implies that % j !�jD! � , so we have that %5'
& � ; .



– % <� ! � & � ! � : We saw in the previous case
% j ! � and thus %�' & � ; . The case when
% � ! � & <� ! � is symmetric.

– % � ! � & � !�� : Since %�j & by part (a),
%(' & � ; .

�
Let � �4� ! % ! 	 be a minimal cutset of � , in particular

! and ! are connected. We then define Int � as the smaller
(in terms of cardinality) of ! and ! . If ! and ! have
the same size, we can define Int � as either ! or ! . For
definiteness, we define Int � as the one containing a fixed
point ����n�� . For a cutset � we define Ext � = � � Int � , and
for a collection � of minimal cutsets, we define the interior
of � and the common exterior of � as

Int � � �
 � " Int � and Ext � ���

 ��" Ext � �

Note that Int � M Ext � �0� for all sets � of minimal cutsets.

Lemma 2 Let � j � .
(a) Let � � � � n � � � 	 . If Int � ' Int � � <� ; , then either
Int � j Int �P� or Int �P��j Int � .
(b) Either � or � is a subset of Int � � � 	 .
Proof:

(a) Let % � Int � and & � Int �P� , and assume without
loss of generality that % ' & <� ; . Applying the previous
lemma, we have three cases:

(i) %(' & � ; , which is equivalent to % j & ,
(ii) %�'4& � ; , which is equivalent to & j % , and
(iii) % ' & � ; which is equivalent to % j5& . No-

tice that � %p�M/�� � � N � which implies that � & �M/�� � � N � and
� & ����� � � N � . This contradicts the fact that � & � � � Int �P�H���
� & � unless equality holds, i.e. unless � & � � � & � � � %p� �
� % � � � � � N � . Together with % j & , this implies % � &
in contradiction to our assumption %�'4& <� ; .

(b) We consider two cases. Suppose that for every
� n

� � � 	 there is a cutset � n � � � 	 with
� j Int � . Then,

clearly
� � �

� ��� ' S ) � j �
 � " ' S ) Int � �

Suppose instead that there is
� n � � � 	 such that

� <j Int �
for all � . Then since

�
is a subset of ! for every component

! of
�

, the interior of the corresponding cutset ��� �4� ! %
! 	 must be ! . Thus

� � M b ��� ' � ) Int � � . In particular,
since

�
is a component of � ,

� j � j �
 � " ' S ) Int � �

�
Next we specialize to the torus JLK�? � � ��� KM? ����� KM? � 	 .

Consider a set � j � KM? � and a fixed minimal cutset �

corresponding to � . For $ n � we define a dual � " 3��	 -
dimensional cube $	� which is (i) orthogonal to $ and (ii)
bisects $ , when J�K�? � is considered as immersed in the con-
tinuum torus ��
 N � 	 � . (In dimension

" � < , the two-
dimensional dual cells are referred to as plaquettes). We
define a graph ��� ��� �� ��� � 	 where �� � � $	� % $ n �L 
and � $�� 
 � $��f 	 n � � iff $�� 
 ' $��f is a cube of dimension

" 3 � .
The components of ��� are called the co-components of � .
These co-components are connected hypersurfaces of dual� " 3 ��	 -dimensional cells.

In the following, we will call cutsets with one co-
component topologically trivial, and cutsets with more than
one co-component topologically non-trivial. Small compo-
nents which can be embedded in , � give rise to cutsets with
only a single co-component, which are therefore topolog-
ically trivial. Topologically non-trivial cutsets arise from
certain components which are large enough to “feel” the
non-trivial topology of the torus. For example, the com-
ponent

� ��� �dnd� K�? � � � � � 
 � � N �  gives rise to a
cutset whose two co-connected components are two parallel
interfaces, each of which has size

� �	��

.

Lemma 3 (a) Given a fixed edge $ n�� K�? � there are at
most ��� � � � �"$#M� < � "�� � G �  , distinct co-components � of
size � with $ n � .
(b) If a cutset is non-trivial, each of its co-components con-
tains at least

� �	� 

edges.

Proof:
(a) This follows from the observation that the proofs in

[22] and [17] may be applied without changes to the torus.
(b) We need some notation. Consider a set of edges

% and its dual % � . Define the boundary � % � of % � as
the set of (

" 3�� )-dimensional hypercubes which belong
to an odd number of (

" 3 � )-dimensional cells in %�� . If
� %�� � ; , define the ,Xf winding vector of %�� as the vector� � % � 	 ����� 
������������ ��	 , where � � is the number of times
%�� intersects an elementary loop in the k th lattice direction
mod � .

Let % be a cutset, % � � � % � 	 , where � j � .
Let � j ��
 N � 	 � be the union of all closed unit cubes
with center # n � . Then %�� is the boundary of the set
� , and hence � %�� � ; . Obviously, each elementary loop
must leave and enter the set � the same number of times,
implying that the winding vector of %�� is 1 . On the other
hand, it is not difficult to prove that each set of edges %
with � %�� � ; and

� � %�� 	 � 1 is a cutset for some set of
points � j � , % �=� � % � 	 . Indeed, the assumptions
� %�� � ; and

� � %�� 	 � 1 imply that every closed loop in
JTKM? � intersects %�� an even number of times. Considering
an arbitrary vertex #�� n � and the set of all “walks” of the
form � # � � # 
��������Y� # � 	 , � # �H� # �"! 
  n$# K�? � , we then define
� as the set of points which can be reached from #%� by a
walk which intersects %�� an odd number of times.



Consider now a non-trivial minimal cutset � and one of
its co-components �� . Since � is a cutset, �.� � � ; . This
property is inherited by all its co-components, implying that
����� � ; . Obviously,

� � �� � 	 is different from zero, since
otherwise �� would be a cutset itself, in contradiction to the
assumption that � is minimal. Let l be a direction for which� 	 � ��� 	 <� 1 . Then ��� intersects any fundamental loop in
the l -direction an odd number of times, giving that �� � con-
tains at least

� �	� 

dual (

" 3p� )-dimensional cells.
�

5 Independent Sets

In this section, we give a proof of Theorem 2. We start
with some notation. For a bipartite graph � � �������
	 we
arbitrarily call the vertices in one partition even, and those
in the other partition odd. We write � ����� 9 for the set of even
vertices in � , and ��� � � for the set of odd vertices in � . We
denote the collection of independent sets of � by C . Let i
be an independent set in C . We then define � � � ��� i 	 as the
set of vertices in or adjacent to a vertex in the set i ' � � � � .
Similarly � ����� 9 � i 	 is defined for i ' � ����� 9 . We define
the set � � � ��� i 	 as the set of minimal cutsets corresponding
to � � � ��� i 	 , � � � ��� i 	 � � � � � � ��� i 	^	 , and similarly for the
set � ����� 9 � i 	 . Finally, for a cutset � , we define � � � 	 �
*�� 	R? 4
	 �  � �L�/�  .
Lemma 4 (a) If � n � � � ��� i 	 , then �
� � 	 '�i � ; .
(b) For � n � � � ��� i 	 , the vertices in the set �o� � 	 ' Int � are
either all even or all odd.
(c) For � n � � � ��� i 	 , there exists an independent set i  such
that � � � ��� i  	 � � �L .
(d) Either i ' ��� � � or i ' � ����� 9 is a subset of Int � � � ��� i 	 .
Proof:

(a) We have to prove that � �L���  ';i � ; whenever� �L���  n �j ��� � � ��� i 	 . First notice that for an odd ver-
tex J , J n � � � ��� i 	�� J n i , whereas if J is even thenJ n � � � ��� i 	� J has a neighbor # n i . Suppose that� n i ��� <n i . If � is odd then �L���gn � � � ��� i 	 . If � is even,
then �L��� <n � � � ��� i 	 . In either case, we have the contradic-
tion that � �L���  �<n ��� � � ��� i 	 .

(b) If � n � � � ��� i 	 , then � �=� ! % ! 	 ��� � % ! 	 for
some component

�
of � � � ��� i 	 and some component ! of�

. As a consequence, either ���o� � 	 ' Int � 	1� � � � ��� i 	 , or���o� � 	 ' Int � 	 � � � � ��� i 	 . If an odd vertex J is in the set
� � � ��� i 	 then J n i and # n � � � ��� i 	 for all neighbors #
of J . Thus an odd vertex J n � � � ��� i 	 cannot be incident
to an edge in ��� � � ��� i 	 . As a consequence, the vertices of�o� � 	 ' Int � are even if ���
� � 	 ' Int � 	/� � � � ��� i 	 and odd
otherwise.

(c) If the vertices of the set � � � 	 ' Int � are even then let
i  ������� � � ' Int � 	 M ��� ����� 9 ' Int � 	 . Otherwise, exchange
the sets ��� � � and � ����� 9 in the definition of i  .

(d) Lemma 2 implies that either

� � � ��� i 	 j Int � � � ��� i 	 or � � � ��� i 	 j Int � � � ��� i 	��
Since i ' ��� � � j � � � ��� i 	 and i ' � ����� 9 j � � � ��� i 	 , the
result follows.

�
From now on, we specialize to the graph JLKM? � . For

a vertex J � � J 
��������Y� J � 	pn.� and a “direction” � n
��� ������������� "  , we define the shift I�� � J 	 as the vertex with
coordinates J � for k=<� � � � and J � � sign � � 	:������ � 	 for
k � � �v� , where sign � � 	 � ��N&� � � . For a cutset � n � � � ��� i 	 ,
we define ��� ����� J � # 	 � � J � # 	 n � � J n Int � � # � I�� � J 	  .
Lemma 5 For any cutset � n � � � ��� i 	 and any direction � ,
� ��� � � � � � N � " .

Proof: We first prove the lemma for
" ��� . Let � � be the

set of edges dual to the edges in � . The set � � is a union of
cycles, and each edge in the � � or 3�� direction in any of
these loops is followed by an edge in the � � or 3 � direction
by Lemma 4 (b). We therefore have that � � � �@� � � � � � is
independent of the direction k . Since � is a cutset, � � � � must
be equal to � � � � � , which implies the claim. For

" ` � ,
we consider the intersection of Int � with a two-dimensional
plane � �m� � �  	 � � ��n J2� � � � � �^� k�Nn �������   . Since also
the points in ���o� � 	 ' Int � 	 ' � �m� � �  	 are all even or all odd,
the above arguments can be applied to the intersection of �
and � �m� � �  	 , implying that � � 
 � � � � ��
 � � � ��f�� � � � � f��
since it is true for the intersection of these sets with any
of the hyperplanes � �m� � �  	 . Applying this argument for an
arbitrary pair of directions, we get the lemma.

�
The next lemma is a generalization of a lemma first

proved by Dobrushin in [8].

Lemma 6 Let � be a set of minimal cutsets, and let C " �� i % ��j � � � ��� i 	  . Then

+�� C "�� � � ��� �"!$#�' q  q G f � )

Proof: We first note that it is enough to prove there exists
an injective map % " % C " � C such that

+ � i 	 � � ��� q  � q G f � + � % " � i 	^	��
Indeed, given such a map, we have

+ �{C " 	 � � ��� q  � q G f � + � % " �{C " 	^	 � � ��� q  � q G f � �
In order to construct such a map % " , we introduce the

partial order �2���M� � Int �2j Int �P� . We then observe
that, by induction, it is enough to prove that for any � and
any � n � such that � is minimal in � with respect to the
partial order, we have an injective map %  % C " � C "�& �  '	
such that + � i 	 � � � q  q G f � + � %  � i 	^	 .



We will now construct such a map. Consider i n�C " .
Let I � I�� . The proof holds for any choice of � . Defining

%  � i 	 ��� i ' Int � 	 M�I � i ' Int � 	 M � Int �o�&I � Int � 	^	��
we will have to show that %  is an injection, that i�� � %  � i 	
is an independent set with + � i�� 	 � + � i 	 �sq  q G f � and that
i�� n�C " & �  	 .

The first statement is obvious from the fact that the three
sets i 
 � i.' Int � , i(f � I � i.' Int � 	 and i I � Int ��� I � Int � 	
are pairwise disjoint (use Lemma 4 (a) to see that i 
 and i(f
are disjoint).
i 
�� i�f are obviously independent and the independence

of i I follows from i I � �o� � 	 and Lemma 4(b). To then
prove that i�� is an independent set, we use that, again by
Lemma 4 (a), the sets i 
 M i(f and i 
 M i I are independent
sets. It remains to show that i�f8M i I is also an independent
set. Consider J n Int � � I � Int � 	 and # n I � i�' Int � 	 .
Then J�Nn I � Int � 	 and hence I � � � J 	 Nn Int � . On the other
hand, I � � � # 	 n i ' Int � . Therefore, I � � � J 	 and I � � � # 	
cannot be adjacent by Lemma 4 (a), which implies that J
and # cannot be adjacent.

To prove + � i�� 	 � + � i 	 �sq  q G f � , we notice that � � i '
Int � 	 MNI � i ' Int � 	 � � � i�� . Thus %  has increased the size
of the independent set by exactly � Int � � I � Int � 	 � which is
� � � ��� � � � � N � " by Lemma 5.

To see that i�� n C " & �  '	 note that � � � ��� i�� 	 � � � � ��� i 	 �
Int � . There are two possibilities for �P� n � � � �L :
Int � ' Int �M� � ; implying that dist � Int � � Int �P� 	 / � and
i ' Int �P� � i�� ' Int �M� . Otherwise, Int � � Int �P� implying
dist � Int � � Ext �M� 	 / � and i ' Ext �M� � i��$' Ext �M� . �

Lemma 7 Let CE� � 
��������T� � � 	 be the set of independent sets
i n C which contain a set of odd trivial cutsets of sizes
� 
��������T� � � . Then for � � �" # 
�� ��� � � � , � � �� � 
�� ��� � � �
and � �0- �� D 
 � � , we have

+ �{CE� � 
��������T� � � 	^	 � � $ � � 3 � � ��	 � � N � 	 � � � � ��
mGY' f � ) 	 � �
Let C 9 � be the set of i npC such that � � � ��� i 	 contains at
least one non-trivial cutset. Then

+ �{C 9 � 	 � � � � � � � ��
mG f � 	 K&�e� W�v3 � � ��
mG f �
	 f ) �,+ � � � � � � � 
HG f � 	 K��e� W�v3 � � � 
HG f �
	 �
Proof: To generate � � 
������ ��� �A�^ with � � � � � � � , we first
choose edges $ � in a certain fixed direction, e.g. direction 1,
and then cutsets � ��� $ � . (Every cut set contains an edge in
direction 1 – see Lemma 5) In this way, each � � 
���� ��� � �,�^ is
counted ��	 D�� � 	�� times, where

� 	 is the number of � � with
� � � l . The previous lemma and Lemma 3 (a) yield

+ �{CE� � 
��������T� � � 	^	 � � � �
 �	 D�� � � 	�� 	 � � � ��
mGY' f � ) 	 � �

(Note that it is safe to use the bound from Lemma 3(a)
to bound the number of trivial cutsets, since for each
trivial cutset, the dual is a single co-component.) Since- �	 D�� � 	 � �

,

��
	 D�� � � 	�� 	 / ��

	 D��
� � 	
$ 	

� �
/ �

�
$ � � 3 � � ��	 � �

and hence the result follows.
To prove the second statement, we use the previous

lemma and the fact that each non-trivial cutset has at least
two co-connected components to bound

+ �{C 9 � 	 ����
� D f

�
 ��������� �

� q  �������� q G f � �
Here the sum -  �������� goes over minimal cutsets with � co-
components. Using Lemma 3, and the fact that there are
at most

� � � possibilities for the � starting edges for the �
co-components of � ' � )9 � , we conclude that

+ �{C 9 � 	 � ��
� D f

�
� �
� ��! D K �e� W � � � � � � f � 	 ! 	 �

� ��
� D �

�
� �
� ��! D K �e� W � � � � � � f � 	 ! 	 �

! f �

which concludes the proof of the second statement.
�

Lemma 8 Let 1o} � } � , and let

C � ��� i n C % � � � ��� i 	 contains only trivial cutsets,
and "" Int � � � ��� i 	 "" / � � �  �

If � is sufficiently large, say � 
mGY' f � ) / � 1 1 ��N � , then

+ �{C � 	 � � � O�#�K&�^� W GY'[Z \^] K )7_
for some constant � � depending on � and

"
.

Proof: For i n C � , the isoperimetric inequality of Bollobás
and Leader [2] implies that � � ��/�� Int � � ' �	��
 ) G � and hence�

 � "%$ ��� ' r ) � � �
��GY' �	��
 ) / �

 ��"%$ �m� ' r ) � Int � �

/ � �
 � "%$ ��� ' r ) Int � �

/ � � � �
If there is a cutset in � � � ��� i 	 of size at least

� �	��

, then

Lemma 7 directly gives the desired bound. Assume all cut-
sets are of size at most

� �	� 

. Let � �^� i 	 ��� � n � � � ��� i 	 %



� � � 
 ��� � ��} � �  , k ����������� ��� ��� ����� ��� f � ��� 
 � �	� . Then
since - �� D 
 
� _ � � f N�
 , there exists k such that�

 � " �{' r ) � � �
��GY' ��� 
 ) / � �# � � N�k f

where � �# � 
���N � f . Thus i is in CE� � 
������ � � � � 	 for some
�

and � 
���� ��� � � � with � � ��
 � � 	 � � � and - �	 D 
 � ��GY' ��� 
 )	 /
� �# � � N�k f . Let ' � � � �# � � N � k f � � ��G�' �	� 
 ) 	 . The fact that ��	 �� � implies that

� / ' � . This together with Lemma 7 gives

+ �{C � 	 �
��
� D 
 ����� � �

_ � � W�� � ��� _ ���� W�� � � ��� �
+ �{CE� � 
������ � � � � 	^	

�
��
� D 
 ����� � �

_ � � W�� � ��� _ ���� W�� � � ��� �
� $ � � � � N � 	 � � � � � 
HGY' f � ) 	 � � � �

Since - ��	�/ � � � 
 � and there are at most � � � choices for
� 
�� ��f �������T� � � ,
+ �{C � 	 �

��
� D 
 ����� � � $ � f � � � N � 	 � � � � � 
HGY' f � ) 	 f

� � W �
�

��
� D 
 ����� � ��$�k f � f � � � ��G�' �	� 
 ) � � �� 	 � 
 � � � ��
mGY' f � ) 	 f

� � W � �
�

��
� D 
 ����� � ��� $�k f � f � � � ��GY' �	��
 )�� f W �

�
� � � 
HGY' f � ) N�� ��! f

� � W � �
where we have used the fact that � ���� 	 � 
 / � in the last

step. Bounding
�
$�k f � f � � � ��GY' �	��
 ) � f W � � � �

$�k f �^� 
 	 � � f W � � �
� $ �^� 
�$ 	 � � f W � � � � 
 $ f we see that for � large enough (e.g.
for � 
HG f � /U< � $ f ��N�� �� ) , one gets

+ �{C � 	 �
��
� D 
 ����� � � � f

� � W �
� � � 
 � O#"# f#$^� W K&� GY' � _ f�$m��% � �e� W � )
� � � O�# K&�^� W GY'[Z \e] K )�_ �

�
We show next that if i is chosen from the probability

distribution (2), then � i�� is unlikely to be small.

Lemma 9 Let 1o} 
 } � . Then

+
�
� i���� �^� 3 
�	

� �
�  � �{� � �'&�G f 	 K&� �

Proof: There are at most � K&� independent subsets in J�KM? �
and so the weight of those of size at most �^� 3 
�	 � � N � is at
most � K&� � ' 
 �(& ) K�� G f . On the other hand, the set of all even
points has weight � K�� G f . The lemma follows immediately.�

Lemma 10 For any � } � , there is a constant ���) such that
for � sufficiently large,

+ � ��� i ' ��� � � � 3 � i ' � ����� 9s� ��� � � � N ��	
� ) �A+s�^3 � �* � ��� 
 N ��� ��� � 	 f 	��

Proof: Let 
 � �^�*3 � 	 N � . Lemma 7 and Lemma 9 imply
that + �{C 9 � 	 and + � � iT��� �^��3 
�	 � � N ��	 are small enough.
Moreover, Lemma 8 for � �2�^��3 � 	 N�+ implies that + �{C � 	 is
also small enough. If none of the three events whose proba-
bilities we discuss above occurs, then � iT� `0�^��3 
�	 � � N � and
� Int � � � ��� i 	 ��} � � �^��3 � 	 N�+ . The latter and Lemma 4(d)
imply that either � i�' ��� � � ��} � � �^��3 � 	 N�+ or � i�' � ����� 9s��}� � �^�@3 � 	 N�+ . This together with the former yields that either

� i ' ��� � � � 3 � i ' � ����� 9 � � � iT� 3�� � i ' � ����� 9 �
` �^�v3 
�	 � � N �E3 � � �^�v3 � 	 N-,

or

� i ' � ����� 9 � 3 � i ' ��� � � � � � iT� 3�� � i ' ��� � � �
` �^�v3 
�	 � � N �E3 � � �^�v3 � 	 N-, �

Since �^��3)
�	 � � N �X3 � � �^��3 � 	 N-, � � � � N � , this concludes
the proof.

�
Proof of Theorem 2: We now partition C �DC ' * )\ x�x M C ' * )y�.^y�w M
C ' * )/ y�07| where

C ' * )\ x�x ��� i n C % � i ' ��� � � � 3 � i ' � ����� 9s� ` � � � N �  
C ' * )y�.ey{w ��� i n C % � i ' � ����� 9 � 3 � i ' ��� � � � ` � � � N �  
C ' * )/ y�07| �DC � �{C ' * )\ x�x M C ' * )y�.ey{w 	
By the last lemma + �{C ' * )/ y�07| 	 � ) �,+L�^3 � �* � �	��
 N ��� ��� � 	 f 	 ,

and by symmetry + �{C ' * )\ xYx 	 � + �{C ' * )y�.ey{w 	 . Now consider

Glauber dynamics. Clearly, if i n�C ' * )\ x�x and i � is obtained

by a single transition then i � n C ' * )\ x�x M C ' * )/ y�07| . The same is
true if we generalize from Glauber dynamics to an ergodic
Markov chain that is � -quasi-local. (See the paragraph be-
fore Theorem 2 for the definition of � -quasi-local.) To com-
plete our proof by estimating

> Q (see (3)) for � �=C \ x�x ,
first notice + ���X	 + � ��	 / � N21 � Furthermore,

0 ����� �X	 � �3 !�465�7�78 !�469;:=<;> + � i 	 � � i ��?�	
� �3 !�465�7�78 !�469;:=<;> + ��?�	 � ��?&� i 	
� + �{C / y�07| 	��

The theorem now follows.
�



6 Swendsen-Wang Algorithm on a � -
dimensional Torus

In this section we combine the methods and results of [5]
and [4] with those of the last section to prove Theorem 1.

Recall the standard representation of the Potts model in
Section 1. On the graph � � , " / � , this model is known
to undergo a phase transition as the inverse temperature, � ,
passes through a certain critical temperature �LO � �PO � � � " 	 .
To make this statement precise, we introduce finite-volume
distributions with boundary conditions. We consider the
graph � � �����e�
	 , where � � � � � � and � consists of
all pairs of vertices in � whose coordinates differ by �
in one coordinate. We say that a vertex lies in the (in-
ner) boundary of � if one of its coordinates is either � or�

. For a coloring � of � , we then introduce the weights
# KM? � � � 	 � $ ��% ��' �*) !M% 9 � ' �*) , where � � � � 	 is the number
of vertices in the boundary of � that have color � . With
, K�? � �4- � # KM? � � � 	 , the finite-volume distributions + KM? �
with boundary condition � are then defined as +�KM? � � � 	 �# KM? � � � 	 N�, K�? � , and the spontaneous magnetization ��� � � 	
is defined as the

� � 5 limit of the finite-volume magne-
tizations � K � � 	 � � � � - 	 � 6 � +sKM? 
(� IC	 �2�(	�3p� N	� 	 . The
above-mentioned phase transition can then be characterized
as a transition between a high-temperature, disordered re-
gion �d} �TO where the spontaneous magnetization is zero,
and a low-temperature, ordered region � ` �LO where the
spontaneous magnetization is positive.

As a first step towards proving Theorem 1, we define the
contours corresponding to a configuration 1 n�C �D� � . To
this end, we embed the vertex set � of the torus J �2�����e�
	
into the set � � ��� N � � � 	^	 � . For a set % j�� , we define
its diameter diam � % 	 � "$#�� 4 �
	��� + 	 ��� dist ���L����	 , where
dist ���L����	 is the � � -distance between the two points � and� in the torus � . For an edge $ � � �L���  n � , let � be
the set of points in � that lie on the line between � and� . Given 1 , we call a closed � -dimensional unit hyper-
cube ��j�� with vertices in � occupied if all edges $
with �j�� are in 1 . We then define the set � �21�	 j��
as the 1/3-neighbourhood of the union of all occupied � -
dimensional hypercubes, � � ����������� " , i.e., � �21�	 � � ��n
� %�� � occupied, such that dist ���L� � 	 } � N�<� , and the set�o�21�	 as the intersection of � �21�	 with the vertex set � of
the discrete torus J . Note that � �21�	 � * � 	R? 4
	 �65 � �L�/�  .
The set � �21�	 of contours corresponding to a configuration1�n C are then the components of the boundary of � �21�	 .

Following [5], we decompose the set of configurationsC into three sets C ord, C dis and C Big. To this end, we de-
fine a contour � to be small if diam � � 	 � � N�< . The setC

Big is then just the set of configurations 1 n�C for which
� �21�	 contains at least one contour that is not small. Next,
restricting ourselves to small contours � , we define the set
Ext � as the larger of the two components of � ��� , the set

Ext � as the intersection of Ext � with � , and the set Int �
as � � Ext � . For 1 n C � C Big, let Int 1 � *  � " ' 5 ) Int �
and Ext 1 �0� � Int 1 . The sets C ord, C dis and C Big are then
defined as

C
Big

����1 j � % � � n � �21�	 such that
diam � � 	 ` � N�<� C

ord
����1 j � %

diam � � 	 � � NR<�� � n � �21�	
and � �21�	 ' Ext 1 <� ;� C

dis
����1 j � %

diam � � 	 � � NR<�� � n � �21�	
and � �21�	 ' Ext 1 � ;� �

Lemma 11 Let 1 n�C
ord, and let 1 Ext 5 ��� � n�� % �
j

Ext 1  . Then
(a) Ext 1 �0�o�21�	 ' Ext 1 <� ; , and
(b) � Ext 1 �/1 Ext 5 	 is connected.

Proof:
(a) Proceeding as in the proof of Lemma 2 (b), we obtain

that either �o�21�	 j Int 1 or �o�21�	 j Int 1 . Since 1 n�C
ord,

we conclude that the latter is the case, which is equivalent
to the statement that Ext 1 ���
�21�	 ' Ext 1 .

(b) The proof of this statement, which is implicit in [5],
is straightforward but tedious. We leave it to the reader.

�
In the next lemma we summarize some of the results of

[5] used in this paper. We need some notation. Let 1 n
C � C Big, and let � n � �21�	 . We say that � is an exterior
contour in � �21�	 if ��j Ext � � for all � � n � �21�	 � � �L ,
and denote by � ext

�21�	 the set of exterior contours in � �21�	 .
Also, we define the size � ��� of a contour � as the number
of times � intersects the set * � � � � . In order to motivate
this definition, assume for a moment that the definition of
the set � �21�	 had involved an � -neighborhood, instead of
the 1/3-neighborhood used above. With such a definition,
the � " 3p��	 -dimensional area of a contour � would actually
converge to � ��� as � � � N � .
Lemma 12 For all

" / � there are constants � ` 1 and
� ��} 5 such that the following statements hold for �
/ ��� .
(a) �PO � � ��� ��N " ��� � � � O 	 .
(b) For all � ` 1 ,

+ �{C Big
	 � � � OmK �

(c) If � � �TO , then

+ �{C ord
	 � �

�*� � ��� � �
� OmK 	�� and

+ �{C dis
	 � �

�*� � ��� � �
� OmK 	��

(d) If � / �TO , then

+ �{C ord
	 / �

�*� � ��� � �
� OmK 	��

(e) If �;/ �TO and � is a set of contours, then

+
� 1�n C � C big and ��j � ext

�21�	  � � � O ���"! #��  � �



Observing that for 1 n C � C Big, the set Ext 1 can be
written as *  ��" ext

Ext � , which in turn implies that Int 1 ��  ��" ext
Int � , we can now continue as in Section 5 to prove

an analog of Lemma 8. Defining

C ' � )
ord

� ��1 n C
ord

% � � � n 1 % �Ej Ext 1  ���/ �^� 3 � 	 " � �  �
C ' � )

dis
� ��1 n C

dis
% � Int 1 ��� � � �  �

and C ' � )Big
�DC � �{C ' � )ord M C ' � )dis

	 , we therefore get the following
lemma.

Lemma 13 Let
" / � and 1d} � } � . Then there are

constants � ` 1 and � � ` 1 such that for � large enough
the following statements hold.
(a) If � / �TO , then

+ �{C ' � )Big
	 � � � � � OmK 	 � � � � � O�#�K&�^� W GY'[Z \e] K )�_ 	

and

+ �{C ' � )ord
	 / �

� � � � � � �
� O�K 	 ��� � � � O # K��e� W GY'[Z \^] K )7_ 	��

(b) If � � �TO , then

+ �{C ' � )ord
	 � �

� � � � � � �
� O�K 	 ��� � � � O�#�K��e� W GY'[Z \^] K )7_ 	��

Proof of Theorem 1(a): Let � � C ' � )
ord . The conductance> Q�S of the Swendsen-Wang chain can then be estimated as

follows:> Q�S�� > Q � �
+ � �X	���� �21 � Nn C ' � )ord � 1 n�C ' � )

ord
	�� (7)

Here 1 is chosen according to the measure + defined in (5)
and 1 � is constructed from 1 by one step of the Swendsen-
Wang algorithm. We have

��� �21 � Nn�C ' � )ord � 1 n C ' � )
ord
	 �

��� �21 � n C ' � )dis � 1�n C ' � )ord
	

� ��� �21 � n C ' � )Big � 1 n C ' � )
ord
	��

Observing that 1�n C ' � )
ord implies � 1 ��/ �^� 3 � 	 " � � while1 � npC ' � )dis implies � 1 �m�L� " � �o�21 � 	 �L� " � Int 1 �m�L� " � � � ,

we see that 1 � can only be in C ' � )dis if at least �^� 3;� � 	 " � �
edges are deleted in Step (SW1) of Swendsen-Wang. But
the number of edges deleted is dominated by the binomial3:� " � � ���v3 BMO 	 and so

��� �21 � n C ' � )dis � 1 n�C ' � )
ord
	

�
� " � �
�^�v3�� � 	 " � � 	 �^�v3 BMO 	 ' 
 � f � ) � K&�

�
� $ �^�v3 BMO 	�v3�� � 	 ' 
 � f � ) � K&�

� $ � � '7'�Z \e]�� ) K&� ) �

where we have used Lemma 12(a) to bound �g3 B�O �
$ �&%�� � $ � � '[Z \e]�� ) . Also

��� �21 � n C ' � )Big � 1�n C ' � )ord
	

� ��� �21 � n C ' � )Big
	

�	� �21 n C ' � )
ord
	

� � � � � OmK 	 � � � � � O�#�K&�^� W GY'[Z \^] K )7_ 	��
by Lemma 13(a). Using Lemma 13(b) to bound + � � 	 �
�v3 + �{C ' � )ord

	 from below, we obtain that> Q�S � � � � � OmK 	 � � � � � O�#�K&�^� W GY'[Z \e] K )7_ 	��
�

Proof of Theorem 1(b):
Let 
C �.� ��� 6 be the set of colorings, and let � � � � 	 �� ��n�� % IC	 � �& be the set of vertices that have color �

in the coloring � n 
C . We then define the sets


C ' � )� ��� � n 
C % � � � ��/ �^�v3 � 	 � � �  � � � n�� ��� �

C ' � )ord

� �
� ��� �� 
C

' � )
� �


C ' � )dis
��� � n 
C % � � � ��/ �^�v3 � 	 f

� � � � for all � n�� ���� �
and


C ' � )Rest
� 
C � � 
C ' � )ord M�
C ' � )dis

	��
To estimate the probability of 
C ' � )ord in the measure (1),

we use the fact that both the measure (1) (denoted 
+ in this
section) and the measure (5) (denoted + in this section) are
marginals of the Edwards-Sokal measure (6). Thus


+ � 
C
' � )
ord
	 � �5�� � � � 
C ' � )ord � 1�	 + �21�	�� (8)

where � � 
C ' � )ord � 1�	 is the conditional measure of 
C ' � )ord ,

given 1 n�C . Observing that 1 n4C ' � )
ord implies that all

vertices in Ext 1 have the same color by Lemma 11 and the
definition (6) of � , we have that� � 
C ' � )ord � 1�	 ��� if 1 n C ' � )

ord
� (9)

For 1cnDC ' � )
dis , on the other hand, all � 5 � �Ext 1 ��/�^�E3 � 	 � � � vertices in Ext 1 are colored independently of

each other, so that� �
� � � � � 	 ' � ��� �^�v3 � 	 f � 	 """ 1  
� � �

� � � � � 	 ' Ext 1 ��� �^�v3 � 	�� 5 	 """ 1  
� �

� �s' 
 � � ) q 9��
� � 5
� 	 � �

�  � � �v3 �
�  9��

� �

� $ � O�"^K&�



for some constant � � depending on � and � . As a conse-
quence,� � 
C ' � )dis � 1�	 / �v3 � � $ � O�"^K�� 	 if 1 n C ' � )

dis
� (10)

Combining (8) – (10) with Lemma 13 and the fact that

C ' � )dis ' 
C

' � )
ord

� ; if � is chosen small enough, we then get


+ � 
C
' � )
� 	 � �

� 
+ � 
C
' � )
ord
	

� �
� + �{C

' � )
ord
	 ��� � $ � O#"HK�� 	 ��� � � � OmK 	

� � � � � O�#�K&�^� W GY'[Z \e] K )7_ 	��

+ � 
C

' � )
dis
	 � + �{C ' � )dis

	 ��� � $ � O�"HK�� 	 ��� � � � O�K 	
� � � � � O�#�K&�^� W GY'[Z \e] K )7_ 	��


+ � 
C
' � )
Rest
	 � � � $ � O�"^K�� 	 ��� � � � O�K 	

� � � � � O�#�K&�^� W GY'[Z \e] K )7_ 	��
We complete our proof by estimating

> Q (see (3)) for� � 
C ' � )
 . First notice 
+ ���X	 
+ � �X	 / �^�E3D� N�� 	 N � � � Since
the heat bath algorithm can only change one vertex at a time,
it does not make transitions between the different sets 
C ' � )� ,

nor does it make transitions between 
C ' � )
 and C ' � )dis . Thus0 ��� � � 	 � �
r ���� � # �W ? t � � � # �Rest


+ � i 	 � � i ��?�	
� �

r � �� � # �W ? t � � � # �Rest


+ ��?�	 � ��?&� i 	
� 
+ �{C

' � )
Rest
	��

The theorem now follows.
�
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