
Rainbow Hamilton cycles in random graphs

Alan Frieze ∗ Po-Shen Loh †

Abstract

One of the most famous results in the theory of random graphs establishes that the threshold

for Hamiltonicity in the Erdős-Rényi random graph Gn,p is around p ∼ logn+log logn

n
. Much re-

search has been done to extend this to increasingly challenging random structures. In particular,

a recent result by Frieze determined the asymptotic threshold for a loose Hamilton cycle in the

random 3-uniform hypergraph by connecting 3-uniform hypergraphs to edge-colored graphs.

In this work, we consider that setting of edge-colored graphs, and prove a result which

achieves the best possible first order constant. Specifically, when the edges of Gn,p are randomly

colored from a set of (1 + o(1))n colors, with p = (1+o(1)) logn

n
, we show that one can almost

always find a Hamilton cycle which has the additional property that all edges are distinctly

colored (rainbow).

1 Introduction

Hamilton cycles occupy a position of central importance in graph theory, and are the subject of

countless results. In the context of random structures, much research has been done on many

aspects of Hamiltonicity, in a variety of random structures. See, e.g., any of [3, 4, 5, 19, 24]

concerning Erdős-Rényi random graphs and random regular graphs, any of [6, 14, 20, 21] regarding

directed graphs, or any of the recent developments [9, 11, 12, 13] on uniform hypergraphs. In this

paper we consider the existence of rainbow Hamilton cycles in edge-colored graphs. (A set S of

edges is called rainbow if each edge of S has a different color.) There are two general types of results

in this area: existence whp1 under random coloring and guaranteed existence under adversarial

coloring.

When considering adversarial (worst-case) coloring, the guaranteed existence of a rainbow struc-

ture is called an Anti-Ramsey property. Erdős, Nešetřil, and Rödl [10], Hahn and Thomassen [17]

and Albert, Frieze, and Reed [1] (correction in Rue [25]) considered colorings of the edges of the

complete graph Kn where no color is used more than k times. It was shown in [1] that if k ≤ n/64,

then there must be a rainbow Hamilton cycle. Cooper and Frieze [7] proved a random graph

threshold for this property to hold in almost every graph in the space studied.

There is also a history of work on random coloring (see, e.g., any of [7, 8, 15, 16]), and it has

recently become apparent that this random setting may be of substantial utility. Indeed, a result

of Janson and Wormald [16] on rainbow Hamilton cycles in randomly edge-colored random regular

∗Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, email:

alan@random.math.cmu.edu. Research supported in part by NSF award DMS-0753472.
†Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, e-mail: ploh@cmu.edu.
1A sequence of events En is said to occur with high probability (whp) if limn→∞ Pr En = 1.

1

graphs played a central role in the recent determination of the threshold for loose Hamiltonicity in

random 3-uniform hypergraphs by Frieze [11]. Roughly speaking, a hyperedge (triple of vertices)

can be encoded by an ordinary edge (pair of vertices), together with a color. Hence, a random

3-uniform hypergraph gives rise to a randomly edge-colored random graph. We will discuss this

further in Section 4.

Let us now focus on the random coloring situation, where we consider the following model. Let

Gn,p,κ denote a randomly colored random graph, constructed on the vertex set [n] by taking each

edge independently with probability p, and then independently coloring it with a random color from

the set [κ]. We are interested in conditions on n, p, κ which imply that Gn,p,κ contains a rainbow

Hamilton cycle whp. The starting point for our present work is the following theorem of Cooper

and Frieze.

Theorem. (See [8], Theorem 1.1.) There exist constants K1 and K2 such that if p > K1 logn
n and

κ > K2n, then Gn,p,κ contains a rainbow Hamilton cycle whp.

The aim of this paper is to substantially strengthen the above result by proving the following

theorem:

Theorem 1.1. If p = (1+ǫ) logn
n and κ = (1 + θ)n, where ǫ, θ > 125√

log logn
, then Gn,p,κ contains a

rainbow Hamilton cycle whp.

To discuss the tightness of our main theorem, let us recall the threshold for Hamiltonicity in

Gn,p, established by Komlós and Szemerédi [19]. We find that we must have p > logn+log logn+ω(n)
n

with ω(n) → ∞, or else the underlying uncolored Gn,p will not even be Hamiltonian. We also need

at least n colors to appear on the edges in order to have enough colors for a rainbow Hamilton cycle.

Note that the earlier result came within a constant factor of both of these minimum requirements.

Our theorem drives both constants down to be best possible up to first order. We allow our

error terms ǫ and θ to decrease slowly, although we do not expect our constraints on them to be

optimal. Our discussion above shows that the trivial lower bound for ǫ is around log logn
logn . Then,

if p ∼ logn
n , we need at least n + Ω(n1/2) colors just to ensure that whp at least n distinct colors

occur on the m ∼ 1
2n logn edges in the graph; hence, the trivial lower bound for θ is around 1√

n
.

We leave further exploration to future work, and highlight a potential answer in our conclusion.

This paper is organized as follows. Section 2 provides an outline of our proof. The proofs

of the main steps follow in the section thereafter. We conclude in Section 5 with some remarks

and open problems. The following (standard) asymptotic notation will be utilized extensively.

For two functions f(n) and g(n), we write f(n) = o(g(n)), g(n) = ω(f(n)), or f(n) ≪ g(n)

if limn→∞ f(n)/g(n) = 0, and f(n) = O(g(n)) or g(n) = Ω(f(n)) if there exists a constant M

such that |f(n)| ≤ M |g(n)| for all sufficiently large n. We also write f(n) = Θ(g(n)) if both

f(n) = O(g(n)) and f(n) = Ω(g(n)) are satisfied. All logarithms will be in base e ≈ 2.718.

2 Proof of Theorem 1.1: high level description

In our proofs below we will assume that ǫ, θ are sufficiently small so that various inequalities are

true. In addition we will assume that ǫ, θ > 125√
log logn

.

We will implicitly assume throughout (when convenient) that they are sufficiently small. Our

proof proceeds in three phases, so our parameters come in threes. Let us arbitrarily partition the

2

κ = (1 + θ)n colors into three disjoint groups C1 ∪ C2 ∪ C3, with sizes

|C1| = θ1n, |C2| = (1 + θ2)n, |C3| = θ3n.

We will analyze the random edge generation in three stages, so we define the probabilities

p1 =
ǫ1 log n

2n
, p2 =

(1 + ǫ2) log n

2n
, p3 =

ǫ3 logn

2n
.

The ǫ’s and θ’s are defined by the relations

ǫ1 = ǫ2 = ǫ3 =
ǫ

3
, θ1 = θ3 = min

{

θ

3
,
ǫ2
4

}

, θ2 = θ − θ1 − θ3. (1)

(We would have taken θ1 = θ2 = θ3 =
θ
3 , except that Lemma 3.9 requires θ1 + θ3 ≤ ǫ2

2 .)

2.1 Underlying digraph model

It is more convenient for our entire argument to work with directed graphs, as this will allow

us to conserve independence. Recall that Dn,p is the model where each of the n(n − 1) possible

directed edges appears independently with probability p. We generate a random colored undirected

graph via the following procedure. First, we independently generate three digraphs D◦
1 = Dn,p1 ,

D◦
2 = Dn,p2 , and D◦

3 = Dn,p3 , and color all of the directed edges independently and uniformly at

random from the full set of colors.

We next use the D◦
i to construct a colored undirected graph G, by taking the undirected edge

uv if and only if at least one of −→uv or −→vu appear among the D◦
i . The colors of the undirected edges

are inherited from the colors of the directed edges, in the priority order D◦
1, D

◦
2, D

◦
3. Specifically,

if −→uv or −→vu appear already in D◦
1, then uv takes the color used in D◦

1 even if −→uv or −→vu appear again

in D◦
3, say. In the event that both −→uv and −→vu appear in D◦

1, the color of −→uv is used for uv with

probability 1/2, and the color of −→vu is used otherwise. Similarly, if neither of −→uv nor −→vu appear in

D◦
1, but

−→uv appears in both D◦
2 and D◦

3, the color used in D◦
2 takes precedence. It is clear that the

resulting colored graph G has the same distribution as Gn,p,κ, with

p = 1− (1− p1)
2(1− p2)

2(1− p3)
2 = (1 + ǫ+O(ǫ2))

log n

n
.

2.2 Partitioning by color

In each of our three phases, we will use one group of edges and one group of colors. Since each D◦
i

contains edges colored from the entire set C1 ∪ C2 ∪ C3, for each i we define Di ⊂ D◦
i to be the

spanning subgraph consisting of all directed edges whose color is in Ci.

Our final undirected graph is generated by superimposing directed graphs and disregarding the

directions. Consequently, we do not need to honor the directions when building Hamilton cycles.

To account for this, we define three corresponding colored undirected graphs G1, G2, and G3. These

will be edge-disjoint, respecting priority.

The first, G1, is constructed as follows. For each pair of vertices u, v with −→uv ∈ D1 but
−→vu 6∈ D◦

1,

place uv in G1 in the same color as −→uv. If both −→uv and −→vu are in D1, we still place the edge uv in

G1, but randomly select either the color of −→uv or of −→vu. However, if −→uv ∈ D1 but −→vu ∈ D◦
1 \ D1,

3

then uv is only placed in G1 with probability 1/2; if it is placed, it inherits the color of −→uv. Note

that this construction precisely captures all undirected edges arising from D◦
1, using colors in C1.

We are less careful with G2, as our argument can afford to discard all edges that arise from

multiply covered pairs. Specifically, we place uv ∈ G2 if and only if −→uv ∈ D2\D◦
1 and −→vu 6∈ D◦

1∪D◦
2.

As the pair {u, v} is now spanned by only one directed edge in D◦
2, the undirected edge uv inherits

that unique color. We define G3 similarly, placing uv ∈ G3 if and only if −→uv ∈ D3 \ (D◦
1 ∪D◦

2) and−→vu 6∈ D◦
1 ∪D◦

2 ∪D◦
3.

In this way, we create three edge-disjoint graphs Gi. By our observations in the previous section,

we may now focus on finding an (undirected) rainbow Hamilton cycle in G1∪G2∪G3. Importantly,

note that in terms of generating colored undirected edges, the digraph D◦
1 has higher “priority”

than D◦
2 or D◦

3. So, for example, the generation of G1 is not affected by the presence or absence of

edges from D◦
2 or D◦

3.

2.3 Main steps

We generally prefer to work with Gi and Di instead of D◦
i because we are guaranteed that the edge

colors lie in the corresponding Ci. This allows us to build rainbow segments in separate stages,

without worrying that we use the same color twice. Let d+i (v) denote the out-degree of v in Di.

We now define a set S of vertices that need special treatment. We first let

S0 = S0,1 ∪ S0,2 ∪ S0,3,

where

S0,1 =

{

v : d+1 (v) ≤
ǫ1θ1
20

log n

}

(2)

S0,2 =

{

v : d+2 (v) ≤
1

20
logn

}

(3)

S0,3 =

{

v : d+3 (v) ≤
ǫ3θ3
20

log n

}

. (4)

Also, define γ = min
{

1
4 ,

1
4ǫ1θ1,

1
4ǫ3θ3

}

, and note that the constraints on ǫ, θ in Theorem 1.1 imply

the bound

γ >
1

4
· 1
3
· 1

12
·
(

125√
log log n

)2

>
1

log logn
. (5)

Lemma 2.1. With probability 1− o(n−1), the set S0 satisfies |S0| ≤ 1
3n

1−γ.

The vertices in S0 are delicate because they have low degree. We also need to deal with vertices

having several neighbors in S0. For this, we define a sequence of sets S0, S1, . . . , St in the following

way. Having chosen St, if there is still a vertex v 6∈ St with at least 4 out-neighbors in St (in any of

the graphs D1, D2, or D3), we let St+1 = St ∪ {v} and continue. Otherwise we stop at some value

t = T and take S = ST .

Lemma 2.2. With probability 1− o(n−1), the set S contains at most n1−γ vertices.

To take care of the dangerous vertices in S, we find a collection of vertex disjoint paths

Q1, Q2, . . . , Qs, s ≤ |S| such that (i) each path uses undirected edges in G2, (ii) all colors which

4

appear on these edges are distinct, (iii) all interior vertices of the paths are vertices of S, (iv) every

vertex of S appears in this way, and (v) the endpoints of the paths are not in S. Let us say that

these paths cover S.

Lemma 2.3. The graph G2 contains a collection Q1, Q2, . . . , Qs of paths that cover S whp.

The next step of our proof uses a random greedy algorithm to find a rainbow path of length

close to n, avoiding all of the previously constructed Qi.

Lemma 2.4. The graph G2 contains a rainbow path P of length n′ = n− n
3
√
logn

whp. Furthermore,

P is entirely disjoint from all of the Qi, and all colors used in P and the Qi are distinct and from

C2.

Let U be the vertices outside P . (Note that U contains all of the paths Qi.) In order to link

the vertices of U into P , we split P into short segments, and use the edges of G3 to splice U into

the system of segments. We will later use the edges of G1 to link the segments back together into

a rainbow Hamilton cycle, so care must be taken to conserve independence. The following lemma

merges all vertices of U into the collection of segments, and prepares us for the final stage of the

proof. Here, d+1 (v;A) denotes the number of D1-edges from v to a set A. Let

L = max

{

10 · e
40

ǫ3θ3 ,
7

θ1

}

, (6)

and note that our conditions on ǫ, θ in Theorem 1.1, together with (1), imply that ǫ3θ3 > 1
3 · 1

12 ·
(

125√
log logn

)2
> 434

log logn , so we have

L < max

{

10 · e 40
434

log logn, 7 · 12
√
log logn

100

}

< 10
√

log n. (7)

Lemma 2.5. With probability 1 − o(1), the entire vertex set can be partitioned into segments

I1, . . . , Ir, with r = (1− o(1))nL , such that the edges which appear in the segments all use different

colors from C2 ∪C3. The segment endpoints are further partitioned into A ∪B, with each segment

having one endpoint in A and one in B, such that every a ∈ A has d+1 (a;B) ≥ ǫ1θ1
200L log n, and every

b ∈ B has d+1 (b;A) ≥ ǫ1θ1
200L log n. All of the numeric values d+1 (a;B) and d+1 (b;A) have already been

revealed, but the locations of the corresponding edges are still independent and uniform over B and

A, respectively.

The final step links together the segments I1, . . . , Ir using distinctly-colored edges from G1. For

this, we create an auxiliary colored directed graph Γ, which has one vertex wk for each segment Ik.

There is a directed edge −−−→wjwk ∈ Γ if there is an edge e ∈ G1 between the B-endpoint of Ij and the

A-endpoint of Ik; it inherits the color of e. Since all colors of edges in Γ are from C1, it therefore

suffices to find a rainbow Hamilton directed cycle in Γ. We will find this by connecting Γ with a

well-studied random directed graph model.

Definition 2.6. The d-in, d-out random directed graph model Dd-in,d-out is defined as follows.

Each vertex independently chooses d out-neighbors and d in-neighbors uniformly at random, and all

resulting directed edges are placed in the graph. Due to independence, it is possible that a vertex u

selects v as an out-neighbor, and v also selects u as an in-neighbor. In that case, instead of placing

two repeated edges −→uv, place only one.

5

Instead of proving Hamiltonicity from scratch, we apply the following theorem of Cooper and

Frieze.

Theorem 2.7. (See [6], Theorem 1.) The random graph D2-in,2-out contains a directed Hamilton

cycle whp.

This result does not take colors into account, however. Fortunately, in equation (6), we define

L to be large enough to allow us to select a subset of G1-edges which is itself already rainbow. The

analysis of this procedure is the heart of the proof of the final step.

Lemma 2.8. The colored directed graph Γ contains a rainbow directed Hamilton cycle whp.

Since each directed edge of Γ corresponds to an undirected G1-edge from a B-endpoint of a

segment to an A-endpoint of another segment, a directed Hamilton cycle in Γ corresponds to a

Hamilton cycle linking all of the segments together. Lemma 2.8 establishes that it is possible to

choose these linking edges as a rainbow set from C1. The edges within the segments were themselves

colored from C2 ∪ C3, so the result is indeed a rainbow Hamilton cycle in the original graph, as

desired.

3 Proofs of intermediate lemmas

In the remainder of this paper, we prove the lemmas stated in the previous section. Although the

first lemma is fairly standard, we provide all details, and use the opportunity to formally state

several other well-known results which we apply again later.

3.1 Proof of Lemma 2.1

Our first lemma controls the number of vertices whose degrees in Di are too small. Recall from

Section 2.1 that the D◦
i are independently generated. Their edges are then independently colored,

and the edges of D◦
i which receive colors from Ci are collected into Di. (Priorities only take effect

when we form the Gi in Section 2.2.) Therefore, the out-degrees d+i (v) of vertices v in Di are

distributed as

d+1 (v) ∼ Bin

(

n− 1, p1 ·
θ1

1 + θ1 + θ2 + θ3

)

≥ Bin

(

0.99n,
0.49ǫ1θ1 log n

n

)

d+2 (v) ∼ Bin

(

n− 1, p2 ·
1 + θ2

1 + θ1 + θ2 + θ3

)

≥ Bin

(

0.99n,
0.49 logn

n

)

d+3 (v) ∼ Bin

(

n− 1, p3 ·
θ3

1 + θ1 + θ2 + θ3

)

≥ Bin

(

0.99n,
0.49ǫ3θ3 log n

n

)

.

Here and in the remainder, we will say that π1 ≥ π2 for distributions π1, π2 if we can find a coupling

of random variables (X,Y) such that X ≥ Y and X ∼ π1, Y ∼ π2.

Thus the expected size of S0 satisfies

E [|S0|] ≤ n(ρ1 + ρ2 + ρ3),

6

where

ρ1 = P

[

Bin

(

0.99n,
0.49ǫ1θ1 logn

n

)

≤ ǫ1θ1 logn

20

]

ρ2 = P

[

Bin

(

0.99n,
0.49 log n

n

)

≤ log n

20

]

ρ3 = P

[

Bin

(

0.99n,
0.49ǫ3θ3 logn

n

)

≤ ǫ3θ3 logn

20

]

.

We will repeatedly use the following case of the Chernoff lower tail bound, which we prove with

an appropriate explicit constant.

Lemma 3.1. The following holds for all sufficiently large mq, where m is a positive integer and

0 < q < 1 is a real number.

P

[

Bin (m, q) ≤ 1

9
mq

]

< e−0.533mq.

Proof. Calculation yields

P

[

Bin (m, q) ≤ 1

9
mq

]

=

mq/9
∑

k=0

(

m

k

)

qk(1− q)m−k <

mq/9
∑

k=0

(emq

k

)k
e−

8
9
mq

where
(emq

k

)k
= 1 by convention for k = 0. The function

(

C
k

)k
= exp {k(logC − log k)} is increasing

in k in the range 0 < k < C/e. Thus

P

[

Bin (m, q) ≤ 1

9
mq

]

<
2mq

9
·
(

emq

mq/9

)mq/9

e−
8
9
mq

=
2mq

9
· (9e)mq/9e−

8
9
mq

= emq(1
9
log 9e− 8

9
+o(1))

< e−0.533mq,

as claimed. �

Returning to the proof of Lemma 2.1, we observe that since 1
20 < 1

9 · 0.99 · 0.49, a direct

application of Lemma 3.1 now gives

ρ2 < P

[

Bin

(

0.99n,
0.49 logn

n

)

≤ 1

9
· 0.99 · 0.49 logn

]

< e−0.533·0.99·0.49 logn

< n−0.258.

A similar argument establishes that ρ1 < n−0.258ǫ1θ1 and ρ3 < n−0.258ǫ3θ3 . This proves that E [|S0|] =
o(n1−γ), where we recall our definition γ = min

{

1
4 ,

1
4ǫ2θ2,

1
4ǫ3θ3

}

. We complete the proof of the

lemma by showing that |S0| is concentrated around its mean. For this, we use the Hoeffding-Azuma

martingale tail inequality applied to the vertex exposure martingale (see, e.g., [2]). Recall that a

martingale is a sequence X0, X1, . . . of random variables such that each conditional expectation

E [Xt+1 | X0, . . . , Xt] is precisely Xt.

7

Theorem 3.2. Let X0, . . . , Xn be a martingale, with bounded differences |Xi+1 −Xi| ≤ C. Then

for any λ ≥ 0,

P [Xn ≥ X0 + λ] ≤ exp

{

− λ2

2C2n

}

.

Here we consider |S0| to be a function of Y1, Y2, . . . , Yn where Yk denotes the set of edges−→
jk,

−→
kj ∈ D◦

1 ∪D◦
2 ∪D◦

3, j < k. The sequence Xt = E [|S0| | Y1, . . . , Yt] is called the vertex-exposure

martingale. There is a slight problem in that the worst-case Lipschitz value for changing a single

Yk can be too large, while the average case is good. There are various ways of dealing with this.

We will make a small change in D◦ = D◦
1 ∪ D◦

2 ∪ D◦
3. Let D̂◦ be obtained from D◦ by reducing

every degree below 5 log n. We do this in vertex order v = 1, 2, . . . , n and delete edges incident with

v in descending numerical order. We can show that this usually has no effect on D◦.

Lemma 3.3. With probability 1− o(n−1), every vertex in Gn,p with p < 1.1 log n
n has degree at most

5 log n.

Proof. The probability that a single vertex has degree at least 5 log n is

P [Bin (n− 1, p) ≥ 5 log n] ≤
(

n

5 log n

)(

1.1 log n

n

)5 logn

≤
(

en

5 logn
· 1.1 log n

n

)5 log n

=

(

1.1e

5

)5 logn

= n−2.57,

so a union bound over all vertices gives the result. �

Therefore, P
[

D̂◦ = D◦
]

= 1− o(n−1), and so if we let Ẑ = |Ŝ0| be the size of the corresponding
set evaluated in D̂◦, we obtain E

[

Ẑ
]

= E [|S0|] + o(1) = o(n1−γ). Furthermore, changing a Yk can

only change Ẑ by at most 15 logn. So, we have

P

[

Ẑi ≥ E

[

Ẑi

]

+
1

4
n1−γ

]

≤ exp

{

− n2−2γ/16

2(15 log n)2n

}

< o(n−1),

completing the proof of Lemma 2.1. �

3.2 Proof of Lemma 2.2

We use the following standard estimate to control the densities of small sets.

Lemma 3.4. With probability 1−o(n−1), in Dn,p with p < logn
n , every set S of fewer than 4

e4
· n
log2 n

vertices satisfies e(S) < 2|S|. Here, e(S) is the number of directed edges spanned by S.

Proof. Fix a positive integer s < 4
e4
· n
log2 n

, and consider sets of size s. We may assume that s ≥ 2,

because a single vertex cannot induce any edges. The expected number of sets S with |S| = s and

8

e(S) ≥ 2s is at most

(

n

s

)

·
(

s2

2s

)(

log n

n

)2s

≤
(en

s

)s
·
(

es2

2s

)2s(
logn

n

)2s

=

(

s · e
3 log2 n

4n

)s

.

It remains to show that when this bound is summed over all 2 ≤ s < 4
e4

· n
log2 n

, the result is still

o(n−1). Indeed, for each 2 ≤ s ≤ 2 log n, the bound is at most O
(log6 n

n2

)

, so the total contribution

from that part is only O
(log7 n

n2

)

= o(n−1). On the other hand, for each 2 log n < s < 4
e4

· n
log2 n

, the

bound is at most
(

4

e4
· n

log2 n
· e

3 log2 n

4n

)2 logn

=

(

1

e

)2 logn

= n−2.

Thus the total contribution from 2 log n < s < 4
e4

· n
log2 n

is at most o(n−1), as desired. �

We are now ready to bound the size of the set S which was created by repeatedly absorbing

vertices with many neighbors in S0.

Proof of Lemma 2.2. We actually prove a stronger statement, which we will need for Lemma

3.7. Suppose we have an initial S0 satisfying |S0| < 1
3n

1−γ , as ensured by Lemma 2.1. Consider

a sequence S′
0, S

′
1, S

′
2, . . . where S′

t+1 is obtained from S′
t by adding a vertex v /∈ S′

t for which

d+i (v;S
′
t) ≥ 3 for some i. Note that when this process stops, the final set S′ will contain the set S

which by our definition is obtained by adding vertices with degree at least 4 into previous St.

So, suppose that this process continues for so long that some |S′
t| reaches n1−γ = o

(

n
log2 n

)

.

Note that t ≥ 2
3n

1−γ . Since each step introduces at least 3 edges, we must have e(S′
t) ≥ 3t ≥

2n1−γ = 2|S′
t|. Lemma 3.4 implies that can only happen with probability o(n−1). (By construction,

D1 ∪D2 ∪D3 is an instance of Dn,q for some q < logn
n). �

3.3 Proof of Lemma 2.3

In this section, we show that for each vertex v ∈ S, we can find a disjoint G2-path Q containing v

which starts and ends outside S. We also need all colors appearing on these edges to be different.

Since we are working in a regime where degrees can be very small, we need to accommodate the

most delicate vertices first. Specifically, let S0,0 be the set of all vertices with d2(v) ≤ 1
10 log n,

where d2(v) is the degree of v in G2. Although S0,0 will typically not be entirely contained within

S0,2, we can show that it is still usually quite small.

Lemma 3.5. We have |S0,0| < n0.48 whp.

Proof. By construction, G2 ∼ Gn,q2 , where

q2 = 2p2(1− p2) ·
1 + θ2

1 + θ1 + θ2 + θ3
· (1− p1)

2, (8)

because the first factor is the probability that exactly one of −→uv or −→vu appears in D◦
2, the second

factor is the probability that it receives a color from C2, and the third factor is the probability that

9

neither −→uv nor −→vu appear in D◦
1. Hence for a fixed vertex v, its relevant degree in G2 is distributed

as

d2(v) ∼ Bin (n− 1, q2) ≥ Bin

(

0.99n,
0.99 log n

n

)

.

Since 1
10 < 1

9 · 0.99 · 0.99, Lemma 3.1 implies that

P

[

d2(v) ≤
1

10
log n

]

< P

[

Bin

(

0.99n,
0.99 log n

n

)

≤ 1

9
· 0.99 · 0.99 log n

]

< e−0.533·0.99·0.99 logn

< n−0.522. (9)

Therefore, E [|S0,0|] < n · n−0.522, and Markov’s inequality yields the desired result. �

We have shown that vertices of S0,0 are few in number. Our next result shows that they are

also scattered far apart. This will help us when we construct the covering paths, by preventing

paths from colliding.

Lemma 3.6. Let dist2(v, w) denote the distance between v and w in G2. Then, whp, every pair

v, w ∈ S0,0 satisfies dist2(v, w) ≥ 5.

Proof. Recall that G2 ∼ Gn,q2 with q2 defined as in (8). Consider a fixed pair of vertices v, w. For

a fixed sequence of k ≤ 4 intermediate vertices x1, x2, . . . , xk, let us bound the probability q that

v, w both have d2 ≤ 1
10 log n, and all the edges vx1, x1x2, x2x3, . . . , xkw appear in G2. First expose

the edges vx1, x1x2, . . . , xkw, and then expose the edges between v and [n]\{v, x1, . . . , xk, w}, and
between w and that set.

This gives the following bound on our probability q:

q ≤
(

1.01 logn

n

)k+1

· P
[

Bin

(

n− 2− k,
0.99 log n

n

)

≤ logn

10

]2

(10)

A calculation analogous to (9) bounds the Binomial probability by n−0.52, so taking a union bound

over all O(nk) choices for the xi, for all 0 ≤ k ≤ 4, we find that for fixed v, w, the probability that

dist2(v, w) < 5 is at most

4
∑

k=0

O(nk) ·
(

1.01 logn

n

)k+1

·
(

n−0.52
)2

< n−2.04+o(1).

Therefore, a final union bound over the O(n2) choices for v, w completes the proof. �

The previous result will help us cover vertices in S0,0 with G2-paths. However, the objective of

this section is to cover all vertices of S. Although the analogue of Lemma 3.6 does not hold for S,

it is still possible to prove that S is sparsely connected to the rest of the graph. Recall from (5)

that γ = min
{

1
4 ,

1
4ǫ1θ1,

1
4ǫ3θ3

}

> 1
log logn .

Lemma 3.7. With respect to edges of G2, every vertex v is adjacent to at most 2
γ vertices in S

whp. (This applies whether or not v itself is in S.)

10

Proof. Fix a vertex v. Let S′ be the set obtained by constructing the analogous sequences to S′
0,1,

S′
0,2, S

′
0,3, S

′
1, . . . on the graph induced by [n] \ {v}, where S′

0,i, i = 1, 2, 3 is defined as in (2)–(4),

but the S′
t+1 are obtained by adding vertices with at least 3 (not 4) Di-out-neighbors in S′

t. Clearly,

S′ contains S \{v}, because the effect of ignoring v is compensated for by using 3 instead of 4. The

advantage of using S′ instead of S is that S′ can be generated without exposing any edges incident

to v. As we will take a final union bound over the n choices of v, it therefore suffices to show that

with probability 1− o(n−1), the particular vertex v has at most 2
γ neighbors in S′.

For this, we expose all edges of D◦
1∪D◦

2∪D◦
3 that are spanned by [n]\{v}. Recall that our proof

of Lemma 2.2 already absorbed vertices with 3 out-neighbors (instead of 4), so we have |S′| ≤ n1−γ

with probability 1 − o(n−1). It remains to control the number of edges between v and S′, so we

now expose all edges of D◦
1 ∪D◦

2 ∪D◦
3. The G2-edges there appear independently with probability

q2 as defined in (8), so the probability that at least 2
γ edges appear is at most

P

[

Bin
(

n1−γ , q2
)

≥ 2

γ

]

≤
(

n1−γ

2/γ

)(

1.01 log n

n

)2/γ

≤
(

e · n1−γ

2/γ
· 1.01 log n

n

)2/γ

<

(

2γ log n

nγ

)2/γ

<
(2 log n)2 log logn

n2
= o(n−1). (11)

Taking a final union bound over all initial choices for v completes the proof. �

We will cover each vertex v ∈ S with a G2-path by joining two G2-paths of length up to 2, each

originating from v. It is therefore convenient to extend the previous result by one further iteration.

Corollary 3.8. With respect to edges of G2, every vertex v is within distance two of at most
(

2
γ

)2

vertices in S whp. (This applies whether or not v itself is in S.)

Proof. Fix a vertex v. Construct S′ in the same way as in the proof of Lemma 3.7, exposing

only edges spanned by [n] \ {v}. Using only those exposed edges, let T ⊂ [n] \ {v} be the set of all

vertices in S′ or adjacent to S′ via edges from G2. By Lemma 3.3, the maximum degree of G2 \{v}
is at most 5 log n with probability 1− o(n−1), so |T | ≤ n1−γ · 5 log n. A similar calculation to (11)

then shows that with probability 1− o(n−1), v has at most 2
γ neighbors in T .

Taking a union bound over all v, and combining this with Lemma 3.7, we conclude that whp,

every vertex has at most 2
γ neighbors in S ∪N(S), and each of them has at most 2

γ neighbors in S.

This implies the result. �

We are now ready to start covering the vertices of S with disjoint rainbow G2-paths. The most

delicate vertices are those in S0,0, because by definition all other vertices already have G2-degree

at least 1
10 log n. Naturally, we take care of S0,0 first.

Lemma 3.9. The colored graph G2 contains a rainbow collection Q1, Q2, . . . , Qs′ of disjoint paths

that cover S ∩ S0,0 whp.

11

Proof. We condition on the high-probability events in Lemmas 3.5, 3.6, and 3.7, and use a greedy

algorithm to cover each v ∈ S ∩S0,0 with a path of length 2, 3, or 4. Recall that G2 ∼ Gn,q2 , where

q2 was specified in (8). We can bound q2 by

q2 > (1 + ǫ2)
log n

n

(

1− logn

n

)

· (1− θ1 − θ3).

(

1− log n

n

)2

.

Since equation (1) ensures that θ1 + θ3 ≤ ǫ2
2 , and our conditions on Theorem 1.1 force ǫ2 >

1
3 · 125√

log logn
≫ log logn

logn , the minimum degree in G2 is at least two whp, see e.g. [3]. Condition on

this as well.

Now consider a vertex v ∈ S ∩ S0,0, and let x1 and x2 be two of its neighbors. If both xi are

already outside S, then we use x1vx2 to cover v. Otherwise, suppose that x1 is still in S. Since we

conditioned on vertices in S0,0 being separated by distances of at least 5 (Lemma 3.6), x1 cannot be

in S0,0, so it has at least 1
10 log n G2-neighbors. These cannot all be in S, because we conditioned

on the fact that every vertex has fewer than 2
γ < 2 log log n neighbors in S (Lemma 3.7). So, we

can pick one, say y1, such that y1x1v is a path from outside S to v. A similar argument allows

us to continue the path from v to a vertex outside S in at most two steps. Therefore, there is a

collection of paths of length 2–4 covering each vertex in S ∩ S0,0. They are all disjoint, since we

conditioned on vertices of S0,0 being separated by distances of at least 5.

At this point, we have exposed all G2-edges spanned by S and its neighbors, but the only thing

we have revealed about their colors is that they are all in C2. Now expose the precise colors on

all edges of these paths. Since we conditioned on |S0,0| < n0.48 (Lemma 3.5), the total number of

edges involved is at most 4 · n0.48 < n0.49. The number of colors in C2 is (1 + θ2)n, so by a simple

union bound the probability that some pair of edges receives the same color in C2 is at most
(

n0.49

2

)

1

(1 + θ2)n
= o(1).

Therefore, the covering paths form a rainbow set whp, as desired. �

We have now covered the most dangerous vertices of S. The remainder of this section provides

an argument which covers all other vertices in S.

Proof of Lemma 2.3. Condition on the high-probability events of Lemmas 2.2, 3.7, 3.9, and

Corollary 3.8. We have already covered all vertices in S∩S0,0 with disjoint rainbow paths of lengths

up to four (Lemma 3.9). We cover the rest of the vertices in S \S0,0 with paths of length two, using

a simple iterative greedy algorithm. Indeed, suppose that we are to cover a given vertex v ∈ S\S0,0.

Since it is not in S0,0, it has G2-degree at least 1
10 log n, and at most 2

γ of these neighbors can be

within S (Lemma 3.7).

Furthermore, we can show that at most 2(2γ)
2 of v’s neighbors outside S can already have

been used by covering paths. Indeed, for each neighbor w 6∈ S of v that was used by a previous

covering path, we could identify a vertex x ∈ S adjacent to w which was part of that covering path.

Importantly, x is within distance two of v, so the collection of all x obtainable in this way is of

size at most (2γ)
2, as we conditioned on Corollary 3.8. Since every covering path uses exactly two

vertices outside S, the total number of such w is at most 2(2γ)
2. Putting everything together, we

conclude that the number of usable G2-edges emanating from v is at least

1

10
log n− 2

γ
− 2

(

2

γ

)2

>
1

11
logn.

12

Expose the colors (necessarily from C2) which appear on these G2-edges. Of the total of (1 + θ2)n

available, we only need to avoid at most 4|S| which have already been used on previous covering

paths. Since we conditioned on |S| ≤ n1−γ (Lemma 2.2), this is at most 4n1−γ colors to avoid. We

only need to have two new colors to appear among this collection in order to add a new rainbow

path of length two covering v. Taking another union bound, we find that the probability that at

most one new color appears is at most

(1 + θ2)n ·
(

4n1−γ + 1

(1 + θ2)n

)

1
11

logn

= o(n−1).

Here, the first factor of (1+θ2)n corresponds to the number of ways to choose the new color to add

(or none at all). Since we only run our algorithm for o(n) iterations (once per vertex in S \ S0,0),

we conclude that whp we can cover all vertices of S with disjoint rainbow G2-paths. �

3.4 Proof of Lemma 2.4

In this section, we construct a rainbow G2-path which contains most of the vertices of the graph,

but avoids all covering paths from the previous section. In order to carefully track the independence

and exposure of edges, recall from Section 2.2 that G2 is deterministically constructed from the

random directed graphs D◦
1, D

◦
2, and D◦

3. Let us consider the generation of the D◦
i to be as follows.

The probability that the directed edge −→vw appears in D1 is p1 · θ1
1+θ1+θ2+θ3

, so we expose each

D1-out-degree d
+
1 (v) by independently sampling from the Bin

(

n− 1, p1 · θ1
1+θ1+θ2+θ3

)

distribution.

Importantly, we do not reveal the locations of the out-neighbors. Similarly, for D2 and D3, we

expose all out-degrees d+2 (v) and d+3 (v), each sampled from the appropriate Binomial distribution.

By Lemma 3.3, all d+i (v) ≤ 5 log n whp; we condition on this.

Note that from this information, we can later fully generate (say) D1 and D◦
1 as follows. At each

vertex v, we independently choose d+1 (v) out-neighbors uniformly at random. This will determine

all D1-edges. Next, for every edge which is not part of D1, independently sample it to be part of

D◦
1 \D1 with probability p1

(

1− θ1
1+θ1+θ2+θ3

)

. This will determine all D◦
1 edges, and a similar system

will determine all edges of D◦
2 and D◦

3.

Returning to the situation where only the d+i (v) have been exposed, we then construct the S0,i

by collecting all vertices whose d+i (v) are too small, and build the sequence S0, S1, S2, . . . , St. In

each iteration of that process, we go over all vertices which are not yet in the current St. At each

v, we expose all Di-edges incident to St. For this section, we will only care about the D2-out-edges

from v 6∈ S (initially counted by d+2 (v)) that are not consumed in this process. Fortunately, at each

exposure stage, there is a clear distribution on the number of these out-edges that are consumed

toward St, and this will only affect the number, not the location, of the out-edges which are not

consumed.

Therefore, after this procedure terminates, we will have a final set S, and the set of revealed

(directed) edges is precisely those edges spanned by S, together with all those between S and

V1 = [n] \ S. This set of revealed edges is exactly what is required to construct the covering

paths Q1, . . . , Qs in Lemma 2.3. Within V1, the precise locations of the edges are not yet revealed.

Instead, for each vertex v ∈ V1, there is now a number d∗2(v), corresponding to the number of

D2-out-edges from v to vertices outside S.

13

We now make two crucial observations. First, the distributions of where these endpoints lie are

still independent and uniform over V1. Second, every d∗2(v) ≤ 5 log n and d∗2(v) ≥ 1
20 logn − 3 >

1
21 logn, because if there were 4 out-edges from v to S, then v should have been absorbed into S

during the process.

This abundance of independence makes it easy to analyze a simple method for finding a long

path, based on a greedy algorithm with backtracking. (This procedure is similar to that used in

[23] by Fernandez de la Vega.) Indeed, the most straightforward attempt would be to start building

a path, and at each iteration expose the out-edges of the final endpoint, as well as their colors. If

there is an option which keeps the path rainbow, we would follow that edge, and repeat. If not,

then we should backtrack to the latest vertex in the path which still has an option for extension.

We formalize this in the following algorithm. Particularly dangerous vertices will be coded by

the color red (not related to the colors of the edges in the Gn,p,κ). Let V2 ⊂ V1 be the set of all

vertices which are not involved in the covering paths Qi. We will find a long G2-path within V2

which avoids all of the covering paths.

Algorithm.

1. Initially, let all vertices of V2 be uncolored, and select an arbitrary vertex v ∈ V2 to use as

the initial path P0 = {v}. Let U0 = V2 \ {v}. This is the set of “untouched” vertices. Let

R0 = ∅. This will count the “red” vertices.

2. Now suppose we are at time t. If |Ut| < n
2 3
√
logn

, terminate the algorithm.

3. If the final endpoint v of Pt is not red, then expose the first 1
2d

∗
2(v) of v’s D2-out-neighbors.

If none of them lies in Ut, via an edge color not yet used by Pt or any of the covering paths

Qi, then color v red, setting Ut+1 = Ut, Pt+1 = Pt, and Rt+1 = Rt ∪ {v}.
Otherwise, arbitrarily choose one of the suitable out-neighbors w ∈ Ut. Set Ut+1 = Ut \ {w}.
Expose whether −→vw ∈ D◦

1,
−→wv ∈ D◦

1, or
−→wv ∈ D◦

2. If none of those three directed edges are

present, then add w to the path, setting Pt+1 = Pt ∪ {w} and Rt+1 = Rt. Otherwise, color

both v and w red, and set Pt+1 = Pt and Rt+1 = Rt ∪ {v, w}.

4. If the final endpoint v of Pt is red, then expose the second 1
2d

∗
2(v) of v’s D2-out-neighbors.

First suppose that none of them lies in Ut, via an edge color not yet used by Pt or any of

the covering paths Qi. In this case, find the last vertex v′ of Pt which is not red, color it

red, and make it the new terminus of the path. That is, set Ut+1 = Ut, let Pt+1 be Pt up

to v′, and set Rt+1 = Rt ∪ {v′}. If v′ did not exist (i.e., all vertices of Pt were already red),

then instead let v′ be an arbitrary vertex of Ut and restart the path, setting Pt+1 = {v′},
Rt+1 = Rt, Ut+1 = Ut \ {v′}.
On the other hand, if v has a suitable out-neighbor w ∈ Ut, then set Ut+1 = Ut \{w}. Expose
whether −→vw ∈ D◦

1,
−→wv ∈ D◦

1, or
−→wv ∈ D◦

2. If none of those three directed edges are present,

then add w to the path, setting Pt+1 = Pt ∪{w} and Rt+1 = Rt. Otherwise, color w red, find

the last vertex v′ of Pt which is not red, and follow the remainder of the first paragraph of

this step.

The key observation is that the final path PT contains every non-red vertex which lies in V2 \ UT .

14

Since Lemmas 2.2 and 2.3 imply that |V2| ≥ n− 3|S| ≥ n− 3n1−γ , and we run until UT < n
2 3
√
log n

,

Lemma 2.4 therefore follows from the following bound and the fact that nγ > n1/ log logn ≫ 3
√
log n.

Lemma 3.10. The final number of red vertices is at most n · e− 1
300

3
√
log n whp.

Proof. The color red is applied in only two situations. The first is when we expose whether any

of −→vw ∈ D◦
1,

−→wv ∈ D◦
1, or

−→wv ∈ D◦
2 hold. To expose whether −→vw ∈ D◦

1, we reveal whether −→vw ∈ D1,

using the previously exposed value of d∗1(v), which we already conditioned on being at most 5 log n.

Since v’s D1-out-neighbors are uniform, the probability that −→vw ∈ D1 is at most 5 logn
(1−o(1))n . If it

is not in D1, the probability that it is in D◦
1 \ D1 is bounded by logn

n by the description at the

beginning of Section 3.4. The analysis for the other two cases are similar, so a union bound gives

that the chance that any of −→vw ∈ D◦
1,

−→wv ∈ D◦
1, or

−→wv ∈ D◦
2 hold is at most 3 · 7 logn

n . Note

that this occurs at most n times, because each instance reduces the size of Ut by 1. Hence the

expected number of red vertices of this type is at most O(log n), which is of much smaller order

than ne−Θ(3
√
log n).

The other situation in which red is applied comes immediately after the failed exposure of some

k = 1
2d

∗
2(v) > 1

42 logn D2-out-neighbors, in either of Steps 3 or 4. Failure means that all k of

them either fell outside Ut, or had edge colors already used in Pt or some covering path Qi. Step

2 controls |Ut| ≥ n
2 3
√
logn

, and the total number of colors used in Pt or any covering path Qi is at

most n − |Ut|, out of the (1 + θ2)n available. Further note that because of our order of exposure,

there is a set T of size at most 3 log n such that v’s D2-out-neighbors are uniformly distributed

over V1 \ T . This is because we have exposed whether −→vu was a D2-edge, for the predecessor u of

v along Pt, which eliminates one vertex, and we may also have already exposed the first half of v’s

D2-out-neighbors in a prior round, which could consume up to 1
2 · 5 log n vertices. Therefore, the

chance that a given out-neighbor exposure is successful (i.e., lands inside Ut, via one of the ≥ |Ut|
unused colors), is at least

|Ut \ T |
|V1 \ T |

· |Ut|
(1 + θ2)n

≥
(

n

2 3
√
log n

· 1

(1− o(1))n

)

·
(

n

2 3
√
log n

· 1

(1 + θ2)n

)

>
1

5(log n)2/3
.

We conclude that the chance that all k ≥ 1
42 logn fail is at most

(1 + o(1))

(

1− 1

5(log n)2/3

)
1
42

logn

< e−
1

210
3
√
logn.

Since we will not perform this experiment more than twice for each of the n vertices, linearity of

expectation and Markov’s inequality imply that whp, the final total number of red vertices is at

most n · e− 1
300

3
√
logn, as desired. �

3.5 Proof of Lemma 2.5

At this point, we have a rainbowG2-path P of length n′ ≥ n− n
3
√
logn

, which is disjoint from the paths

Qi which cover S. Recall from (6) and (7) that we defined L = max
{

10e40/(ǫ3θ3), 7
θ1

}

< 10
√
log n.

Split P into r = n′

L segments of length L, as in Figure 1. If n′ is not divisible by L, we may discard

the remainder of P , because L < 10
√
log n.

15

Partition the 2r endpoints into two sets A1 ∪ B1 so that each segment has one endpoint in

each set, but there are no vertices a ∈ A1 and b ∈ B1 which are consecutive along P . By possibly

discarding the final segment (which will only cost an additional L < 10
√
log n), we may ensure that

the initial and final endpoints are both in A1.

The reason for our unusual partition is as follows. In our construction thus far, we already

needed to expose the locations of some D◦
1-edges, since they had priority over the D◦

2. In certain

locations, we have revealed that there are no D◦
1-edges. In particular, between every consecutive

pair of vertices u, v on the path P , we found a D2-edge, and confirmed the absence of any D◦
1-edges.

Fortunately, our construction did not expose any D◦
1-edges between non-consecutive vertices of

the path P . In particular, if we now wished, for any vertex a ∈ A1, we could expose the number

N of its D1-out-neighbors that lie in B1; then, the distribution of these N out-neighbors would be

uniform over B1. This uniformity is crucial, and would not hold, for example, if some vertex of B1

were consecutive with a along P .

The proof of Lemma 2.5 breaks into the following steps. Recall that d+1 (v;T) denotes the number

of D1-edges from a vertex v to a subset T of vertices. Say that v is T -good if d+1 (v;T) ≥ ǫ1θ1
181L log n;

call it T -bad otherwise.

Step 1. For every vertex v ∈ P \ (A1 ∪ B1), as well as for the initial and final endpoints of P ,

expose the value of d+1 (v;B1). We show that whp, the initial and final endpoints of P are

B1-good, and at most n · e−
√
logn vertices of P \ (A1 ∪B1) are B1-bad.

Step 2. We will describe below a procedure that will allow us to absorb all remaining vertices and

covering paths into a new system of segments, using G3-edges that are aligned with B1-good

vertices. (See Figure 2.) This removes some segment endpoints, while adding other new

endpoints. Let A2 ∪ B2 be the new partition of endpoints. Crucially, B2 = B1, while |A2| =
|A1| by losing up to 2n

3
√
logn

vertices, and then adding back the same number. Importantly,

every new vertex in A2 \A1 will be B2-good.

Step 3. We will then show that the system of segments can be grouped into several blocks of

consecutive segments, in the sense that between successive segments in the same block, there

is an original edge of P . (See Figure 3.) Also, the initial and final endpoints of each block are

always of type A, and are all B2-good, and each block will contain at least
3
√
logn
L2 segments.

Step 4. For every vertex a ∈ A2, expose the value of d
+
1 (a;B2), and for every vertex b ∈ B2, expose

the value of d+1 (b;A2). We show that whp, at most n · e−
√
logn vertices of B2 are A2-bad,

and every block contains a string of four consecutive segments, each of whose A2-endpoints

and B2-endpoints are B2-good and A2-good, respectively.

Step 5. For each consecutive pair of segments along the same block (from Step 3) which has either

an A2-endpoint which is B2-bad or a B2-endpoint which is A2-bad, merge them, together

A
1

B
1
B
1

A
1
A
1

B
1
B
1

A
1

B
1

A
1

Figure 1: The long path P , divided into consecutive segments of length L. Endpoints of successive segments are

adjacent via original edges of P . The set of segment endpoints has been partitioned into A1∪B1. Note that endpoints

that are adjacent via an edge of P are always assigned to the same set.

16

with a neighboring segment in order to maintain parity between A’s and B’s. (See Figure

4; the final claim of Step 4 ensures there is a way to accomplish this without running out of

segments.) Let A3∪B3 be the final partition of segment endpoints after the merging. We show

that whp, all a ∈ A3 have d+1 (a;B3) ≥ ǫ1θ1
200L logn, and all b ∈ B3 have d+1 (b;A3) ≥ ǫ1θ1

200L log n.

Furthermore, if we were to expose the D1-edges between A3 and B3, then each vertex a ∈ A3

would independently sample d+1 (a;B3) uniformly random neighbors in B3, and similarly for

b ∈ B3.

This will complete the proof because the final number of segments is |A3| = (1− o(1))nL .

3.5.1 Step 1

By construction, |B1| = (1− o(1))nL . Now consider an arbitrary vertex v ∈ P \ B1. We have only

exposed the numeric value of d∗1(v) thus far in our construction, and not where theD1-out-neighbors

are. So let us now expose the numeric value of d+1 (v;B1), but again, not precisely where the out-

endpoints are. As we observed in the beginning of Section 3.4, we have d∗1(v) ≥ ǫ1θ1
20 logn− 3. Our

work in the previous section consumes up to one D1-out-edge at each vertex v ∈ P , when we reveal

whether −→vw ∈ D◦
1 in the third step of the algorithm. Therefore, d+1 (v;B1) stochastically dominates

Bin
(

ǫ1θ1
20 log n− 4, 0.999L

)

. Hence we can use Lemma 3.1 to bound the probability that d+1 (v;B1) is

too small.

P

[

d+1 (v;B1) <
1

9
· 0.998

L
· ǫ1θ1
20

log n

]

< e−0.533· 0.998
L

· ǫ1θ1
20

log n

P

[

d+1 (v;B1) <
ǫ1θ1
181L

log n

]

= o(e−
ǫ1θ1
40L

logn)

= o(e−(log n)8/9),

since ǫ1, θ1 = Ω
(

1√
log logn

)

and L < 10
√
logn. The expected number of such vertices in P is at

most n times this probability. Applying Markov’s inequality, we conclude that whp, the number

of B1-bad vertices in P \ (A1 ∪B1) is at most n · e−
√
logn, with room to spare. This also shows that

the initial and final endpoints of P are B1-good whp.

3.5.2 Step 2

At this point, our entire vertex set is partitioned as follows. We have a collection of rainbow

segments I1, . . . , Ir, each of length exactly L. These already consume at least n − n
3
√
logn

vertices.

Since we discarded the remainder of P , as well as possibly the final segment, we have r ≥ 1
L

(

n −
n

3
√
log n

)

− 2. A separate collection of rainbow paths Q1, . . . , Qs covers all vertices of S. There are

also some remaining vertices. In this section, we will use G3-edges to absorb the latter two classes

into the rainbow segments.

Since we will not use any further G2-edges, but edges from D◦
2 take precedence over those from

D3, we also now expose all edges in D◦
2. Lemma 3.3 ensures that whp, no vertex is incident to

more than 5 log n edges of D◦
2. Condition on this outcome. Note that by construction, we have not

exposed the locations of any D◦
3-edges between vertices outside S, although vertices outside S may

have up to three exposed D3-neighbors located in S.

17

A
1

B
1
B
1

A
1
A
1

B
1
B
1

A
1
A
1

B
1
B
1

A
1

Covering

path for S

G3 G3

B -good1 B -good1

A1 B1B1 A1A1 B1B1 B1B1 A1A2 A2

Merged two

consecutive intervals

New interval

Shortened intervals

Figure 2: A covering path of S is absorbed into the system of segments using G3-edges. Note that the resulting

endpoint partition still has one A-endpoint and one B-endpoint in every segment. Importantly, the direction of the

splicing is such that all new endpoints are of type-A, as indicated by the A2-vertices. This is why we continue the

new segment rightward, through to the next B-endpoint.

A2 B1B1 A1A1 B1B1 A1 B1 A1

A1 B1B1 A1A1 B1B1 A1 B1 A2

A2 B1B1 A1A1 B1B1 A1 B1 A2

A2

A2

x

y

U

*

Figure 3: Evolution of block partition during absorption. Each horizontal row represents an original block, within

which the successive segments have their endpoints connected by edges of the original path P . The vertical gray path

from x to y represents the absorption of a new vertex into the collection of segments, involving two different blocks.

This operation cuts the two edges between x, y and their adjacent A2-vertices, and adds back the P -edge marked

by the asterisk. Afterward, the segments can be re-partitioned into new blocks (see the gray dotted lines), with all

initial and final endpoints in each block of type-A, and B1-good.

A2 B2B2 A2A2 B2 A2 B2

Merged consecutive intervalsA -bad2

Figure 4: Original edges of P are used to merge consecutive segments in the same block, so that a bad endpoint

can be eliminated.

18

We now use a simple greedy algorithm to absorb all residual paths and vertices into our collection

of segments. In each step, we find a pair of G3-edges linking either a new Qi or a new vertex to

two distinct segments Ix and Iy, using two new colors from C3. We will ensure that throughout the

process, all segments Iw used in this way are separated by at least
3
√
log n
L2 full segments Iz along P .

The specific procedure is as follows. Suppose we have already linked in t paths or vertices, and

are considering the next path or vertex to link in. Suppose it is a path Qi (the vertex case can

be treated in an analogous way). Let u, v be the endpoints of Qi. We need to find vertices x, y

in distinct segments Ix and Iy such that (i) according to P , Ix and Iy are separated by at least
3
√
log n
L2 full segments from each other, and from all Iz previously used in this stage, (ii) x and y are

separated from the endpoints of Ix and Iy by at least two edges of P , and (iii) if x′ ∈ Ix is the vertex

adjacent to x in the direction of the B1-endpoint of Ix, and y′ ∈ Iy is the vertex adjacent to y in

the direction of the B1-endpoint of Iy, then both x′ and y′ are B1-good. We choose the direction

of the B1-endpoint because x
′ and y′ will become the new A2-endpoints of shortened segments; see

Figure 2 for an illustration.

So, let F be the set of vertices in the segments which fail properties (ii) or (iii). By Step 1, the

dominant term arises from the endpoints because n · e−
√
logn ≪ n

10
√
logn

< n
L , so |F | < 5n

L . Also

let T be the set of vertices contained in segments that are at least
3
√
logn
L2 full segments away from

any segments which have previously been touched by this algorithm. Since we observed at the

beginning of this section that the total number of segments was at least 1
L

(

n− n
3
√
log n

)

− 2, we have

|T | ≥
(

1

L

(

n− n
3
√
logn

)

− 2−
(

2 3
√
log n

L2

)

· (2t)
)

L > n− 4.5n

L
,

since t < 1.1n
3
√
logn

and L < 10
√
log n. Let us now find a newly-colored G3-edge from u to a vertex of

T \ F . Note that the number of vertices outside T \ F is at most 9.5n
L .

We have not yet exposed the specific locations of the D3-neighbors of u, but only know (since

u 6∈ S) that d+3 (u) ≥ ǫ3θ3
20 log n, and up to three of those D3-out-neighbors lie within S. Consider

what happens when we expose the location w of one of u’s D3-out-neighbors which is outside S.

This will produce a useful G3-edge uw if (i) w lands in T \ B, (ii) neither −→uw or −→wu appeared in

D◦
1 or D◦

2, (iii)
−→wu does not appear in D◦

3, and (iv) the color of the edge is new.

Let us bound the probability that w fails any of these properties. We may consider (i)-(iii)

together, since we showed that at most 9.5n
L vertices were outside T \ B, and we conditioned on u

being incident to at most 5 log n edges of D◦
2. After sampling the location of w, we expose whether

−→uw or −→wu appear in D◦
1; by the same argument as used in Lemma 3.10, the probability of each is

at most 7 log n
n = o

(

1
L

)

. So, the probability of failing either (i) or (ii) is at most 9.6
L . We conditioned

at the beginning of Section 3.4 on d+3 (w) ≤ 5 log n, so when we expose whether −→wu is in D◦
3, we

again fail only with probability at most 7 logn
n = o(1L). Finally, when we expose the color of the

new edge, we know that it will be in C3, so the probability that it is a previously used color is at

most

(2t) · 1

θ3n
<

2n
3
√
log n

· 1

θ3n
=

2

θ3
3
√
logn

= o

(

1

L

)

.

Therefore, the probability that all of the at least ǫ3θ3
20 logn− 3 D3-out-edges of u fail is at most

(

10

L

)

ǫ3θ3
20

log n−3

=

(

L

10

)3

n− ǫ3θ3
20

log L
10 ≤

(

L

10

)3

n−2,

19

where we used the definition of L in (6) for the final bound. A similar calculation works for v,

and for the separate case when we incorporate a new vertex into the segments. Therefore, taking a

union bound over the o(n) iterations in linking vertices and paths, we conclude that our procedure

completes successfully whp. �

3.5.3 Step 3

Step 1 established that whp, the initial and final vertices of the long path P are both B1-good, so

the original system of segments can be arranged as a single block, with successive segments linked

by edges of P . We now prove by induction that after the absorption of each path or vertex in Step

2, the collection of segments can be re-partitioned into blocks of segments, such that within each

block, consecutive segments have their endpoints linked via P , and the initial and final endpoints

in each block are of type-A, and B1-good.

There are two cases, depending on whether the absorption involves two segments in the same

block (as in Figure 2), or in different blocks (as in Figure 3). If the segments are in the same block,

then we can easily divide that block into two blocks satisfying the condition. Indeed, in Figure 2,

one of the new blocks is the string of segments between the vertices indicated by A2 in the diagram,

and the other new block is the complement. This works because within each of the two new blocks,

every edge between successive segments was an edge between successive segments of the original

block, hence in P . Also, of the four initial/final endpoints among the two new blocks, two of them

were the initial/final endpoints of the original block, and the other two were identified as B1-good

vertices, now in A2. Therefore, the new block partition satisfies the requirements.

On the other hand, if the absorption involves two segments from different blocks, then one can

re-partition the two blocks into three new blocks, as illustrated in Figure 3. A similar analysis

to above then completes the argument. Clearly, since the intervals chosen for the splicing are

separated by at least
3
√
logn
L2 segments, it also easily follows that the resulting blocks contain at least

that many segments as well.

3.5.4 Step 4

We have not yet revealed anything about the D1-out-neighbors of any vertices in B2 = B1; the

only thing we know is that they had d+1 ≥ ǫ1θ1
20 log n. For each vertex b ∈ B1, let us now expose

the numeric value of d+1 (b;A2), but again, not precisely where the out-endpoints are. Since our

absorption procedure maintained |A2| = |A1| = (1 − o(1))nL , the same argument that we used for

Step 1 now establishes the bound for Step 4, with plenty of room to spare.

It remains to show that every block contains a string of 4 consecutive segments, all 8 of whose

endpoints are good. Consider an arbitrary block. Step 3 ensures that this block has at least
3
√
log n
L2 segments, which constitute at least

3
√
logn
4L2 disjoint strings of 4 consecutive segments. By

the argument in Step 1, the probability that a particular endpoint is bad is o(e−(log n)8/9), so the

probability that a particular string of 4 segments has a bad endpoint is at most 8 times that bound,

which is also o(e−(logn)8/9). Therefore, the probability that all of these disjoint strings are bad in

this block is at most
(

e−(logn)8/9
)

3√logn

4L2

< e−(logn)1.02 = o(n−1) ,

20

where we used L < 10
√
log n. Taking a union bound over the o(n) blocks, we find that whp, every

block contains a string of 4 consecutive segments, all of whose endpoints are good.

3.5.5 Step 5

By Steps 1 and 4, the total number of merges which occur in Step 5 is well below O(n · e−
√
logn) =

o(n/L). It is therefore easy to see that the merging can be done so that there are (1 − o(1))n/L

segments at the end. Also, since Step 4 ensures that every block contains a string of 4 well-behaved

segments, the merging is possible even though the procedure absorbs neighboring segments in order

to preserve parity between A’s and B’s. To see this, start from the endpoint at the very beginning

of the block, and move toward the string of 4 well-behaved segments. When a bad endpoint is

encountered, merge the two adjacent segments, as well as the next segment in the direction that

we are traveling. The endpoint of the resulting segment is then the other endpoint of the merged

neighboring segment. If that is also bad, then merge in the next segment after that as well, and

even the following segment to maintain parity. (In this example, we have now merged four segments

into one.) Keep proceeding in this way until the string of 4 well-behaved segments is reached. Since

all endpoints of those 4 segments are good, at worst this procedure will merge in the first two of

those well-behaved segments before stopping at good endpoints. Then, start from the very last

endpoint of the entire block, and move backwards toward the 4 well-behaved segments, following

the same procedure. Again, at worst the last two of the well-behaved segments will be merged

by this procedure. Importantly, the two procedures will not interact with each other, due to the

sufficiently long well-behaved region in the middle.

Since B3 ⊂ B2 = B1 and A3 ⊂ A2, for every a ∈ A3 we can independently sample d+1 (a;B3)

using only the value of d+1 (a;B1). Indeed, since a ∈ A3 was B1-good, it had d+1 (a;B1) ≥ ǫ1θ1
181L log n.

We will only have d+1 (a;B3) < ǫ1θ1
200L log n if at least ǫ1θ1

181L log n − ǫ1θ1
200L log n > ǫ1θ1

2000L log n of those

out-neighbors land in B1 \B3 as opposed to B3. Let

q =
|B1 \B3|

|B1|
= O

(

n · e−
√
logn

n/L

)

= e−(1−o(1))
√
logn.

Note that

P

[

Bin

(

ǫ1θ1
181L

log n, q

)

≥ ǫ1θ1
2000L

log n

]

≤
(ǫ1θ1

181L logn
ǫ1θ1
2000L log n

)

q
ǫ1θ1
2000L

logn

≤ (12eq)
ǫ1θ1
2000L

logn

= e−(1−o(1))
√
logn· ǫ1θ1

2000L
log n

< e−(log n)4/3

= o(n−1).

Therefore, a final union bound establishes that whp, every a ∈ A3 has d+1 (a;B3) ≥ ǫ1θ1
200L log n.

A similar argument establishes the bound for d+1 (b;A3), for b ∈ B3, because we had A3 ⊂ A2,

and had only previously exposed the value of d+1 (b;A2). The last claim in Step 5 is clear from our

order of exposure.

21

3.6 Proof of Lemma 2.8

In this final stage of the proof, we use G1 to link together the endpoints of the system of segments

I1, . . . , Ir created by Lemma 2.5. As described in the overview (Section 2.3), we construct an

auxiliary directed graph Γ. Importantly, no D◦
1-edges have been revealed between the endpoint

sets A and B, so we may now specify a model for the random r-vertex digraph Γ.

Indeed, consider a vertex wk ∈ Γ, 1 ≤ k ≤ r, and let a, b be the A- and B-endpoints of

the corresponding segment Ik. We first generate a set E1 of Γ-edges by sending exactly d+1 (b;A)

directed edges out of wk, and exactly d+1 (a;B) directed edges into wk. This is analogous to the d-in,

d-out model, except that not all degrees are equal. Some directed edges will be generated twice

and for these edges we keep only one copy in E1. Let F1 ⊆ E1 be these edges that are generated

exactly twice in the algorithm. Color every edge of E1 independently from C1. Finally, generate

a random subset F2 ⊂ E1 \ F1 by independently sampling each edge of E1 \ F1 with probability
1
2p1 ·

(

1+θ2+θ3
1+θ1+θ2+θ3

)

. Let E1 \ F2 be the final edge set of Γ.

The reason for the removal of F2 is that some of the initially-generated edges of Γ will find

conflicts once D◦
1 is generated. Indeed, every edge −−−→wjwk that we have placed in Γ corresponds to

an edge
−→
ba ∈ D1 or

−→
ab ∈ D1 (or both), for some b ∈ B, a ∈ A. When both do not occur, and only−→

ba ∈ D1 (say), then we need to expose whether
−→
ab ∈ D◦

1 \D1; if it is in D◦
1 \D1, it removes −−−→wjwk

from Γ with probability 1/2.

To simplify notation, let δ+(wk) and δ−(wk) be the numbers of out- and in-edges that are

generated at wk to build the initial edge set E1. They correspond to d+1 (b;A) and d+1 (a;B) above,

and have therefore been revealed by our previous exposures. Importantly, we have the bounds

ǫ1θ1
200L

log n ≤ δ±(wk) ≤ 5 logn.

It is more convenient to restrict our attention to a smaller subset E2 ⊂ E1 which is itself already

rainbow; then, every ordinary directed Hamilton cycle will automatically be rainbow. For this, we

expose at every vertex wk what the colors of the δ+(wk) out-edges and δ−(wk) in-edges will be,

but not their locations.

Lemma 3.11. Suppose that δ±(wk) ≥ ǫ1θ1
200L log n for all 1 ≤ k ≤ r. Then whp, it is possible to

select 3 out-edges Ok and 3 in-edges Ik from each wk so that all 6r selected colors are distinct.

Furthermore, the endpoints of the edges in the sets Ok, Ik are independent of wk and the endpoints

of Ol, Il, l 6= k.

Proof. Construct an auxiliary bipartite graph H with vertex partition W ∪ C1, where W =

{w+
1 , w

−
1 , . . . , w

+
r , w

−
r }. Place an edge between w+

k and c if one of wk’s δ
+(wk) out-edges has color

c. Edges between w−
k and c are defined with respect to wk’s in-edge colors. The desired result is a

perfect 1-to-3 matching in H. For this, we apply the 1-to-3 version of Hall’s theorem: we must show

that for every X ⊂ W , we have |N(X)| ≥ 3|X|, where N(X) is the union of the H-neighborhoods

of all vertices of X.

This follows from a standard union bound. Indeed, fix an integer 1 ≤ x ≤ 2r, and consider an

arbitrary pair of subsets X ⊂ W and Y ⊂ C, with |X| = x and |Y | = 3x. The probability that

N(X) ⊂ Y (in H) is at most

(

3x

θ1n

)

ǫ1θ1
200L

logn

x

.

22

The innermost term is the probability that a random color from C1 is in Y . The exponents come

from the fact that each vertex of wk ∈ X samples at least δ±(wk) ≥ ǫ1θ1
200L log n colors for its out-

and in-neighbors.

Multiplying this bound by the number of ways there are to select X and Y , and using r ≤ n
L ,

we find that the probability of failure for a fixed x is at most

(

2r

x

)(

θ1n

3x

)

(

3x

θ1n

)

ǫ1θ1
200L

logn

x

≤
(

2er

x

)x(θ1n

3x

)3x

(

3x

θ1n

)

ǫ1θ1
200L

logn

x

=

(

2en

Lx

)(

θ1n

3x

)3(3x

θ1n

)

ǫ1θ1
200L

log n

x

.

We will sum this over all 1 ≤ x ≤ 2r. The outer exponent allows us to bound this by a decreasing

geometric series, so it suffices to show that the interior of the square bracket is uniformly o(1) for

all 1 ≤ x ≤ 2r. Indeed, observe that the exponent of x inside the bracket is ǫ1θ1
200L log n − 4 > 0, so

it is maximized at x = 2r ≤ 2n
L . Yet

(

2en

L(2n/L)

)(

θ1n

3(2n/L)

)3(3(2n/L)

θ1n

)

ǫ1θ1
200L

logn

= (e)

(

6

θ1L

)

ǫ1θ1
200L

log n−3

Since (6) ensures that L ≥ 7
θ1
, we have 6

θ1L
≤ 6

7 . Yet the exponent ǫ1θ1
200L log n − 3 tends to infinity

as n grows, so we indeed obtain a uniform upper bound of o(1) for all 1 ≤ x ≤ 2r. Therefore, whp,

every subset X ⊂ W has |N(X)| > 3|X|, and the 1-to-3 version of Hall’s theorem establishes the

desired result.

Observe that our bipartite graph H does not depend on the neighbors of each wk, only the

colors of the edges of the vertices incident with wk. Hence the output of the construction is also

independent of the neighbors of each wk. �

Recall from the beginning of this section that the final edge set of Γ is E1 \F2. Let E2 be the set

of 6r edges selected by Lemma 3.11. This corresponds to a copy D3 of D3-in,3-out. Unfortunately,

in our model we still need to expose the locations of the remaining δ±(wk) − 3 remaining in- and

out-edges at every vertex wk, where we can assume that δ±(wk) ≤ 5 log n. It is still possible that

an edge in E2 may be generated again in this stage. That edge would then have 1/2 probability

of receiving the color of the new copy, which would not be in our specially constructed rainbow

set. To account for this, let F3 be the set of edges generated by exposing these remaining in- and

out-edges. These edges will be deleted from D3 if they duplicate an edge of D3.

Here the construction isD3-in,3-out plus some more randomly chosen edges, which can be thought

of as a sub-graph of D4 = D(5 log n)-in,(5 logn)-out, where some D4 edges cause their duplication in

D3 to be deleted. The only dependencies between D3 and D4 are that if a vertex v chooses w as

an out-neighbor in D3, then w will not be chosen again as an out-neighbor by v in D4. We handle

these dependencies by allowing extra edges:

(i) We embed D4 in D5 = D(6 logn)-in,(6 logn)-out where we ignore D3 in the construction of D5.

(ii) We then simplify matters by embedding D5 in a copy D6 of D
r, 120 logn

r
.

23

For (ii) we observe a simple coupling which realizes D(6 logn)-in,(6 logn)-out as a subgraph of D
r, 120 logn

r

whp. For this, consider the following system for generating a random directed graph. For every

ordered pair of vertices (u, v), generate two independent Bernoulli random variables I+u,v and I−u,v,

each with probability parameter 60 logn
r . Create the directed edge −→uv, if and only if at least one

of I+u,v or I−v,u took the value 1. For each vertex u, let D+(u) be the number of other vertices

v for which I+u,v = 1, and let D−(u) be the number of I−u,v = 1. These are all distributed as

Bin
(

r − 1, 60 lognr

)

. Lemma 3.1 establishes that for fixed u, the probability that D+(u) < 6 logn

is at most e−0.533·(60−o(1)) logn, and similarly for D−(u). Therefore, a union bound establishes that

whp, all D+(u), D−(u) ≥ 6 log n. Conditioning on the values of D+(u) and D−(u), we see that

when the indicators are revealed, this indeed contains D(6 logn)-in,(6 logn)-out. The result then follows

by recalling that r = (1 − o(1))nL , and taking the union of D
r, 120L logn

n
with another independent

D
r, logn

n
to cover F2.

There are now two ways in which an edge e of D3 can be deleted: either from F2 or from D6.

The event e ∈ F2 is independent of all events involving other edges.

It suffices to find a directed Hamilton cycle in what is left of D3 without regard to color. At

each vertex u, some subset of its 6 edges are in F2 ∪ D6. These choices for possible deletion are

independent. Furthermore, the probability that more than one of the 6 in- or out-edges is deleted

is at most
(

6

2

)(

1

2
p1 ·

(

1 + θ2 + θ3
1 + θ1 + θ2 + θ3

)

+
K log n

r

)2

= o(n−1),

so a union bound establishes that whp, E2 \ (F2∪D6) contains a copy of D2-in,2-out. This is known

to be Hamiltonian whp by Theorem 2.7 from Section 2.3. This completes the proof of the final

lemma in our proof of Theorem 1.1, and so our entire proof is complete. �

4 Concluding remarks

Our main contribution, part (b) of Theorem 1.1, sharpens the earlier result of Cooper and Frieze

[8] to achieve optimal first-order asymptotics. As we mentioned in the introduction, we suspect

that our result can be further sharpened within the o(1) term. We do not push to optimize our

bounds on ǫ, θ because it is not clear that incremental improvements upon our current approach

will be sufficiently interesting. Instead, we would be more interested in determining whether one

can extend the celebrated “hitting time” result of Bollobás [4] , which states that one can typically

find a Hamilton cycle in the random graph process as soon as the minimum degree reaches two.

Question 4.1. Consider the edge-colored random graph process in which e1, e2, . . . , eN , N =
(

n
2

)

is

a random permutation of the edges of Kn. The graph Gm is defined as ([n], {e1, e2, . . . , em}). Let

each edge receive a random color from a set C of size at least n. Then whp, the first time that a

rainbow Hamilton cycle appears is precisely the same as the first time that the minimum degree of

Gm is at least two and at least n colors have appeared.

Although this may be out of reach at the moment, another natural challenge is to settle the

problem in either the case when the number of edges is just sufficient for an ordinary Hamilton

cycle, or in the case when the number of colors is, say, exactly n. The following argument comes

tantalizingly close to proving that Kn logn edges are sufficient when we have exactly n colors.

24

Let Hn,p;3 denote the random 3-uniform hypergraph where each potential hyperedge appears

independently with probability p. In this object, a loose Hamilton cycle is a permutation of the

vertices (v1, . . . , vn) such that {v1, v2, v3}, {v3, v4, v5}, . . . , {vn−1, vn, v1} all appear as hyperedges

(n must be even).

Theorem 4.2. (See [11], Theorem 1.) There is an absolute constant K such that if p > K logn
n2 , then

for all n divisible by 4, the random hypergraph Hn,p;3 on the vertex set {x1, . . . , xn/2, y1, . . . , yn/2}
contains a loose Hamilton cycle whp. Furthermore, one can find such a cycle of the special form

(xσ(1), yτ(1), xσ(2), yτ(2), . . . , xσ(n/2), yτ(n/2)), for some permutations σ, τ ∈ Sn/2.

As mentioned in the introduction, this theorem was proven by connecting loose Hamilton cycles

in random 3-uniform hypergraphs with rainbow Hamilton cycles in randomly edge-colored random

graphs, and applying a result of Janson and Wormald [16]. We will now consider the reverse

connection.

Let K be the constant in Theorem 4.2. We are given an even integer n, and a graph G ∼
Gn,p with p > K log n

n on vertex set {v1, . . . , vn}, whose edges are randomly colored from the set

{c1, . . . , cn}. Construct an auxiliary 3-uniform hypergraph H with vertex set {v1, . . . vn, c1, . . . , cn},
by taking the hyperedge {vi, vj , ck} whenever the edge vivj appears in G, with color ck. Note that

every such hyperedge appears independently with probability p
n > K logn

n2 , since vivj appears in G

with probability p, and receives color ck with probability 1
n . There is a small difference between the

distribution of H and Hn,p;3. In the latter we can have edges {v, w, c1} and {v, w, c2} where c1 6= c2,

whereas this cannot happen in H. So we cannot apply Theorem 4.2 directly to argue that H has a

loose Hamilton cycle whp, of the form (vσ(1), cτ(1), vσ(2), cτ(2), . . . , cτ(n/2)). This would correspond

to the Hamilton cycle (vσ(1), . . . , vσ(n/2)) in G, with edges colored cτ(1), . . . , cτ(n/2), hence rainbow.

To fix this unfortunate situation, we must re-prove Theorem 4.2, changing the model to disallow

edges {v, w, c1} and {v, w, c2} to occur. This would, we think involve amending the proof of a special

case of the main result of Johannson, Kahn and Vu [18]. This can probably be done, but we don’t

feel that it is right to merely say so.

References

[1] M. Albert, A.M. Frieze and B. Reed, Multicoloured Hamilton cycles, Electronic Journal of

Combinatorics 2 (1995), R10.

[2] N. Alon and J. Spencer, The Probabilistic Method, 3rd ed., Wiley, New York, 2007.

[3] B. Bollobás, Random Graphs, 2nd ed., Cambridge University Press, 2001.

[4] B. Bollobás, The evolution of sparse graphs, in: Graph Theory and Combinatorics, Proc.

Cambridge Combinatorial Conf. in honour of Paul Erdős (B. Bollobás, ed.), Academic Press,

1984, 35–57.

[5] B. Bollobás and A. Frieze, On matchings and Hamiltonian cycles in random graphs, in: Ran-

dom Graphs ’83 (Poznan, 1983), North-Holland Math. Stud., 118, North-Holland, Ams-

terdam (1985), 23–46.

25

[6] C. Cooper and A.M. Frieze, Hamilton cycles in random graphs and directed graphs, Random

Structures and Algorithms 16 (2000), 369–401.

[7] C. Cooper and A.M. Frieze, Multicoloured Hamilton cycles in random graphs: an anti-Ramsey

threshold, Electronic Journal of Combinatorics 2 (1995), R19.

[8] C. Cooper and A.M. Frieze, Multi-coloured Hamilton cycles in random edge-coloured graphs,

Combinatorics, Probability and Computing 11 (2002), 129–134.

[9] A. Dudek and A.M. Frieze, Loose Hamilton cycles in random k-uniform hypergraphs, Elec-

tronic Journal of Combinatorics 18 (2011), P48.

[10] P. Erdős, J. Nešetřil, and V. Rödl, Some problems related to partitions of edges of a graph,

in: Graphs and Other Combinatorial Topics, Teubner, Leipzig (1983), 54–63.

[11] A.M. Frieze, Loose Hamilton cycles in random 3-uniform hypergraphs, Electronic Journal of

Combinatorics 17 (2010), N28.

[12] A.M. Frieze and M. Krivelevich, Packing Hamilton cycles in random and pseudo-random hy-

pergraphs, submitted.

[13] A.M. Frieze, M. Krivelevich, and P. Loh, Packing tight Hamilton cycles in 3-uniform hyper-

graphs, Random Structures and Algorithms, to appear.

[14] A.M. Frieze, An algorithm for finding Hamilton cycles in random digraphs, Journal of Algo-

rithms 9 (1988), 181–204.

[15] A.M. Frieze and B. D. McKay, Multicoloured trees in random graphs, Random Structures and

Algorithms 5 (1994), 45–56.

[16] S. Janson and N. Wormald, Rainbow Hamilton cycles in random regular graphs, Random

Structures Algorithms 30 (2007), 35–49.

[17] G. Hahn and C. Thomassen, Path and cycle sub-Ramsey numbers, and an edge colouring

conjecture, Discrete Mathematics. 62 (1986), 29–33.

[18] A. Johansson, J. Kahn and V. Vu, Factors in random graphs, Random Structures and Algo-

rithms 33 (2008) 35-49.

[19] J. Komlós and E. Szemerédi, Limit distribution for the existence of Hamiltonian cycles in a

random graph, Discrete Mathematics 43 (1983), 55–63.

[20] C.J.H. McDiarmid, General percolation and random graphs, Adv. Appl. Probab. 13 (1981),

40–60.

[21] C.J.H. McDiarmid, General first-passage percolation, Adv. Appl. Probab. 15 (1983), 149–161.

[22] B.D. McKay and N.C. Wormald, Asymptotic enumeration by degree sequence of graphs with

degree o(n1/2), Combinatorica 11 (1991), 369–382.

26

[23] W. Fernandez de la Vega, Long paths in random graphs, Studia Math. Sci. Hungar. (1979),

335–340.

[24] R.W. Robinson and N.C. Wormald, Almost all regular graphs are Hamiltonian, Random Struc-

tures and Algorithms 5 (1994), 363–374.

[25] R. Rue, Comment on [1]. Electronic Journal of Combinatorics 2 (1995).

27

