On the expected performance of a parallel algorithm for finding maximal independent subsets of a random graph

Neil J. Calkin and
A. M. Frieze*
Department of Mathematics
Carnegie Mellon University
Pittsburgh, PA
and
L. Kucera
Faculty of Mathematics, Dept. of Applied Mathematics, Charles University, Malostranske' na'm.25, 11800 Prague
Czechoslovakia

Abstract

We consider the parallel greedy algorithm of Coppersmith, Raghavan and Tompa [CRT] for finding the lexicographically first maximal independent set of a graph. We prove an $\Omega(\log n)$ bound on the expected number of iterations for most edge densities. This complements the $O(\log n)$ bound proved in Calkin and Frieze [CF].

[^0]
1 Introduction

In this note we consider the problem of finding the lexicographically first maximal independent set (LFMIS) in a random graph. Coppersmith, Raghavan and Tompa [CRT] describe a parallel version of the standard greedy algorithm for this problem:
Suppose we are given a graph $G=(V, E), V=[n]=\{1,2, \ldots, n\}$. For $Z \subseteq V$ we let

$$
\Gamma^{+}(Z)=\{x \notin Z: x z \in E \text { for some } z<x, z \in Z\}
$$

and

$$
\Gamma^{-}(Z)=\{x \notin Z: x z \in E \text { for some } z>x, z \in Z\}
$$

Note that we have implicitly oriented the edges from low to high.

```
algorithm PARALLEL GREEDY (G);
    begin
        GIS }\leftarrow\emptyset
        until G has no vertices do
            begin
                let S={a: }\mp@subsup{\Gamma}{}{-}(a)=\emptyset}
                GIS }\leftarrow\mathrm{ GISUS;
                remove}S\cup\Gamma(S)\mathrm{ from }
            end
        output GIS
end
```

It is easy to see ([CRT], Lemma 2.1) that GIS is the LFMIS. Cook [C] showed that the problem of computing the LFMIS of a graph is complete for P and so is not in NC unless $\mathrm{NC}=\mathrm{P}$. PARALLEL-GREEDY can be implemented on a CRCW PRAM in $O(1)$ time per iteration if one processor is allocated to each edge of G.

Coppersmith, Raghavan and Tompa showed that if $T(n, p)$ denotes the expected number of iterations $\tau=\tau(G)$ when $G=G_{n, p}$ then $T(n, p)=$ $O\left(\frac{(\log n)^{2}}{\log \log n}\right) .\left(G_{n, p}\right.$ is the random graph with vertex set $[n]$ where each edge occurs independently with probability $p=p(n)$.).

They conjectured that $T(n, p)=O(\log n)$ and subsequently Calkin and Frieze [CF] proved

Theorem 1

(a) $\frac{\alpha \log n}{4 \log \log n} \leq T(n, p)$ for $\frac{1}{n} \leq p \leq \frac{1}{n^{\alpha}}$ where $0<\alpha \leq 1$ is constant
(b) $T(n, p)=O(\log n)$.

The hidden constant in (b) is independent of p.
Note that our inequalities are only claimed for n large.
The upper bounds and lower bounds in Theorem 1 are slightly different. It leaves open the possibility that $T(n, p)=O\left(\frac{\log n}{\log \log n}\right)$ throughout. The aim of this paper is to shed more light on this problem, and to prove

Theorem 2 Assume $0 \leq \alpha<1$, α constant.
(a) $T(n, p) \leq \frac{3 \log n}{(1-\alpha) \log \log n}$ for $p \leq \frac{(\log n)^{\alpha}}{n}$,
(b) $T(n, p)=\Omega(\log n)$ for $\alpha \geq p \geq \frac{1}{n^{\alpha}}$,
where the hidden constant in (b) depends on α.

Proof:

(a) Let $G=G_{1} \supseteq G_{2} \supseteq G_{3} \supseteq \ldots$ denote the sequence of graphs produced by each iteration of the algorithm.

For $v \in V\left(G_{t}\right)$ and $t \geq 1$ let $\alpha(t, v)=$ the length of the longest directed path in G_{t} which ends at v (a path $\left(v_{1}, v_{2}, \ldots v_{k}\right.$, is directed if $v_{1}<v_{2}<$ $\ldots v_{k}$.)

Clearly, if $v \in V\left(G_{t+1}\right)$ then $\alpha(t+1, v) \leq \alpha(t, v)-2$.
Hence

$$
\tau(G) \leq \frac{1}{2} \max \{v \in V(G): \alpha(1, v)\}
$$

Thus

$$
\begin{aligned}
\operatorname{Pr}\left(\tau\left(G_{n, p}\right) \geq k\right) & \leq \mathrm{E}(\# \text { of directed paths of length } 2 k) \\
& =\binom{n}{2 k} p^{2 k-1} \\
& \leq n\left(\frac{n e p}{2 k}\right)^{2 k-1} \\
& \leq n\left(\frac{e(\log n)^{\alpha}}{2 k}\right)^{2 k-1}
\end{aligned}
$$

Hence, with $k_{0}=\left\lceil\frac{2 \log n}{(1-\alpha) \log \log n}\right\rceil$,

$$
\begin{aligned}
T(n, p) & =\sum_{k=1}^{n} \operatorname{Pr}\left(\tau\left(G_{n, p}\right) \geq k\right) \\
& \leq k_{0}+n \sum_{k=k_{0}+1}^{n}\left(\frac{e(\log n)^{\alpha}}{2 k}\right)^{2 k_{0}-1} \\
& \leq k_{0}+2 n\left(\frac{e(\log n)^{\alpha}}{2 k_{0}}\right)^{2 k_{0}-1} \\
& \leq k_{0}+2 n\left(\frac{A \log \log n}{(\log n)^{1-\alpha}}\right)^{2 k_{0}-1}
\end{aligned}
$$

where $A=e(1-\alpha) / 4$,

$$
=k_{0}+o(1)
$$

This completes the proof of (a).
(b) This is somewhatless trivial.

Let

$$
\begin{aligned}
V_{t} & =V\left(G_{t}\right) \\
& =\{\text { vertices remaining at the start of round } t\} \\
S_{t} & =\text { Set } S \text { found in round } t \\
& =\{\text { sources found in round } t\} \\
N_{t} & =\Gamma\left(S_{t}\right) \cap V_{t} \\
& =\left\{\text { neighbours of } S_{t} \text { deleted in round } t\right\} .
\end{aligned}
$$

Suppose $i \geq 2$ and $A_{t}, B_{t}, 1 \leq t \leq i-1$ is some disjoint collection of subsets of V. Then we have $S_{t}=A_{t}, N_{t}=B_{t}$ for $1 \leq t \leq i-1$ if and only if (2a) $v \in A_{t}$ implies $\Gamma^{-}(v) \subseteq \bigcup_{s=1}^{t-1} B_{s}$ and $\Gamma^{-}(v) \cap B_{t-1} \neq \emptyset, 1 \leq t \leq i-1$ (when $t=1$, drop the second condition)
(2b) $v \in B_{t}$ implies $\Gamma^{-}(v) \cap \bigcup_{s=1}^{t-1} A_{s}=\emptyset$ and $\Gamma^{-}(v) \cap A_{t} \neq \emptyset, 1 \leq t \leq i-1$ and

$$
v \in C=V-\bigcup_{t=1}^{i-1}\left(A_{t} \cup B_{t}\right) \text { implies }
$$

(3a) $\Gamma^{-}(v) \cap \bigcup_{t=1}^{i-1} A_{t}=\emptyset$,
(3b) $\Gamma^{-}(v) \cap\left(B_{i-1} \cup C\right) \neq \emptyset$.

Suppose now that we choose sets $A_{t}, B_{t}, 1 \leq t \leq i-1$ satisfying (2) and condition on the event

$$
\mathcal{E}=\left\{S_{t}=A_{t}, N_{t}=B_{t}, V_{i}=C: 1 \leq t \leq i-1\right\} .
$$

It is important to establish the conditional distribution of the sets $\Gamma_{i}^{-}(v)=$ $\Gamma^{-}(v) \cap V_{i}, v \in V_{i}, i \geq 2$. For $v \in V_{i}$ let $R_{v}^{i}=[v-1] \cap\left(V_{i} \cup B_{i-1}\right)$ and $r_{v}=\left|R_{v}^{i}\right|$.

Claim 1

(i) The sets $\Gamma_{i}^{-}(v), v \in V_{i}$ are stochastically independent,
(ii) $\Gamma_{i}^{-}(v)$ is a random subset of R_{v}^{i} chosen through r_{v} Bernoulli trials conditioned on the occurence of at least one success, i. e.
(4) $\operatorname{Pr}\left(\left|\Gamma_{i}^{-}(v)\right|=k\right)=\binom{r_{v}}{k} p^{k}(1-p)^{r_{v}-k} /\left(1-(1-p)^{r_{v}}\right), 1 \leq k \leq r_{v}$ and each k-subset is equally likely.
Proof (of Claim) To prove (i) simply observe that condition (3) on $v \in C$ only involves edges directed into v, and that the conditions in (2) only involve edges directed into $V-C$.

Now consider (ii). $v \in V_{2}$ if and only if $\Gamma_{i}^{-}(v) \neq \emptyset$ and $\Gamma_{i}^{-}(v) \cap S_{1}=\emptyset$ and these conditions are equivalent to (ii). We can now proceed inductively. Fix $v \in V_{i}$. If $v \notin S_{i} \cup N_{i}$ then we learn (a) $\Gamma_{i}^{-}(v) \cap V_{i} \neq \emptyset$, then (ii) $\Gamma_{i}^{-}(v) \cap S_{i}=\emptyset$ and so finally that

$$
\Gamma_{i}^{-}(v) \cap\left(V_{i}-S_{i}\right)=\Gamma_{i}^{-}(v) \cap R_{v}^{i+1} \neq \emptyset .
$$

Thus (4) continues to hold.
End of proof (of claim). We now continue with the proof of our Theorem. Choose $\beta, \alpha<\beta<1$. Now choose $i \leq \tau=\left\lceil\frac{(1-\alpha) \log n}{10}\right\rceil$ and assume that $V_{i}=\left\{x_{1}<x_{2}<\ldots<x_{s}\right\}$. Partition V_{i} into X_{1}, X_{2}, Y where $X_{1}=$ $\left\{x_{1}, x_{2}, \ldots x_{a}\right\}, a=\lceil\log n / p\rceil, X_{2}=\left\{x_{a+1}, x_{a+2}, \ldots x_{b}\right\}, b=\left\lceil(\log n)^{2} / p\right\rceil$, and Y is the rest of V_{i}. We will show that a good proportion of Y is likely to remain in V_{i+1}, when V_{i} is large enough so that the above partition is actually possible.

Observe first that the proof of Claim 1 implies that if $r=\left|B_{i-1} \cap\left[x_{j}-1\right]\right|$ then
(5) $\operatorname{Pr}\left(x=x_{j} \in S_{i}\right)=\left(1-(1-p)^{r}\right)(1-p)^{j-1} /\left(1-(1-p)^{r_{x}}\right)$

$$
\leq(1-p)^{j-1}
$$

(At least one success is required in the r trials corresponding to $B_{i-1} \cap\left[x_{j}-1\right]$ and no further successes.)
So if $\mathcal{A}_{i}=\left\{S_{i} \cap\left(X_{2} \cup Y\right)=\emptyset\right\}$ then
(6) $\operatorname{Pr}\left(\overline{\mathcal{A}}_{i}\right) \leq \sum_{j>a}(1-p)^{j-1}=\frac{(1-p)^{a}}{p} \leq \frac{1}{n p}$.

Let

$$
\mathcal{B}_{i}=\left\{\Gamma^{-}(y) \cap X_{2} \neq \emptyset, \forall y \in Y\right\}
$$

It follows from Claim 1(ii) that if $y \in Y$ then

$$
\begin{aligned}
\operatorname{Pr}\left(\Gamma^{-}(y) \cap X_{2}=\emptyset\right) & \leq(1-p)^{b-a} \\
& \leq n^{-(1-o(1)) \log n}
\end{aligned}
$$

and so
(7) $\operatorname{Pr}\left(\overline{\mathcal{B}}_{i}\right) \leq n^{-(1-o(1)) \log n}$.

Note that (6), (7) can be taken as true even if $Y=\emptyset$.
Let us now consider the size of S_{i}. Let $\delta_{j}=1$ if $x_{j} \in S_{i}$ and $\delta_{j}=$ 0 otherwise. It follows from Claim 1(i) that $\delta_{1}, \delta_{2}, \ldots, \delta_{s}$ are independent random variables. Also

$$
\begin{aligned}
E\left(\left|S_{i}\right|\right) & =\sum_{j=1}^{s} \operatorname{Pr}\left(\delta_{j}=1\right) \\
& \leq \sum_{j=1}^{s}(1-p)^{j-1} \\
& \leq \frac{1}{p}
\end{aligned}
$$

Note that we have $\operatorname{Pr}\left(\delta_{j}=1\right) \leq(1-p)^{j-1}$ regardless of the history of the algorithm to this point. It follows that $\left|S_{1}\right|+\left|S_{2}\right|+\ldots+\left|S_{i}\right|$ is dominated by the sum of independent random variables each of which is the sum of a large number of independent 0-1 random variables. It follows from Theorem 1 of Hoeffding $[\mathrm{H}]$ that if

$$
\mathcal{C}_{i}=\left\{\left|S_{1}\right|+\left|S_{2}\right|+\ldots+\left|S_{i}\right|<\frac{(1-\alpha) \log n}{2 p}\right\}
$$

then

$$
\operatorname{Pr}\left(\overline{\mathcal{C}}_{i}\right) \leq\left(\frac{2 e i}{(1-\alpha) \log n}\right)^{(1-\alpha) \log n / 2 p}
$$

(Hoeffding proves that if $Z_{1}, Z_{2}, \ldots, Z_{m}$ are independent random variables with $0 \leq Z_{j} \leq 1, j=1,2, \ldots, m$ and $E\left(Z_{1}+Z_{2}+\cdots+Z_{m}\right)=m \mu$ then

$$
\operatorname{Pr}\left(Z_{1}+Z_{2}+\cdots+Z_{m} \geq m(\mu+t)\right) \leq\left(\left(\frac{\mu}{\mu+t}\right)^{\mu+t}\left(\frac{1-\mu}{1-\mu-t}\right)^{1-\mu-t}\right)^{m}
$$

So if $t=(\theta-1) \mu$

$$
\operatorname{Pr}\left(Z_{1}+Z_{2}+\cdots+Z_{m} \geq \theta m \mu\right) \leq\left(\theta^{-\theta} e^{\theta-1}\right)^{m \mu}<\left(\frac{e}{\theta}\right)^{\theta m \mu}
$$

We use this inequality with $m \mu=\frac{i}{p}$ and $\theta m \mu=\frac{(1-\alpha) \log n)}{2 p}$.)
Note that $\mathcal{C}_{\tau} \subseteq \mathcal{C}_{\tau-1} \subseteq \cdots \subseteq \mathcal{C}_{1}$ and
(8) $\operatorname{Pr}\left(\overline{\mathcal{C}}_{\tau}\right) \leq n^{-(1-\alpha) \log (5 / e) / 2 \alpha}$.

Consider the size of $Y \cap V_{i+1}$. Using Claim 1(ii) we see that, given $\mathcal{A}_{i} \cap \mathcal{B}_{i}$, the edges joining X_{1} to Y are unconditioned. So, by another use of [H],
(9) $\operatorname{Pr}\left(\left|V_{i+1}\right| \leq\left(1-\frac{1}{(\log n)^{2}}\right)|Y|(1-p)^{\left|S_{i}\right|}\left|\mathcal{A}_{i} \cap \mathcal{B}_{i},\left|S_{i}\right|\right) \leq \exp \left\{-\frac{|Y|(1-p)\left|S_{i}\right|}{2(\log n)^{4}}\right\}\right.$ since if $y \in Y$ then $\operatorname{Pr}\left(y \in V_{i+1}\left|\mathcal{A}_{i} \cap \mathcal{B}_{i},\left|S_{i}\right|\right)=(1-p)^{\left|S_{i}\right|}\right.$.
Now let

$$
\mathcal{D}_{i}=\left\{\left|V_{i}\right|>\left(1-\frac{2}{(\log n)^{2}}\right)^{i-1} n(1-p)^{\left|S_{1}\right|+\left|S_{2}\right|+\ldots+\left|S_{i-1}\right|}\right\} .
$$

Then we have
(10) $\operatorname{Pr}\left(\overline{\mathcal{D}}_{i+1}\right) \leq \operatorname{Pr}\left(\overline{\mathcal{A}}_{i} \cap \overline{\mathcal{B}}_{i} \cap \overline{\mathcal{C}}_{i} \cap \overline{\mathcal{D}}_{i}\right)+\operatorname{Pr}\left(\overline{\mathcal{D}}_{i+1} \mid \mathcal{A}_{i} \cap \mathcal{B}_{i} \cap \mathcal{C}_{i} \cap \mathcal{D}_{i}\right)$.

Now if $\mathcal{C}_{i} \cap \mathcal{D}_{i}$ occurs then

$$
\begin{aligned}
\left|V_{i}\right|(1-p)^{\left|S_{i}\right|} & \geq n\left(1-\frac{2}{(\log n)^{2}}\right)^{i-1}(1-p)^{\left|S_{1}\right|+\left|S_{2}\right|+\ldots+\left|S_{i}\right|} \\
& \geq n\left(1-\frac{2}{(\log n)^{2}}\right)^{i-1}(1-p)^{(1-\alpha) \log n / 2 p} \\
& =(1-o(1)) n^{1+\frac{1-\alpha}{2 p} \log (1-p)}
\end{aligned}
$$

and $|Y| \geq\left|V_{i}\right|-\frac{(\log n)^{2}}{p} \geq\left(1-\frac{1}{\log n)^{2}}\right)\left|V_{i}\right|$.
Now, since $\mathcal{C}_{i}, \mathcal{D}_{i}$ refer to the history of the algorithm prior to the construction of $Y \cap V_{i+1}$ we may again argue as in (9) that

$$
\operatorname{Pr}\left(\overline{\mathcal{D}}_{i+1} \mid \mathcal{A}_{i} \cap \mathcal{B}_{i} \cap \mathcal{C}_{i} \cap \mathcal{D}_{i}\right) \leq \exp \left\{-\frac{(1-o(1)) n^{1+\frac{1-\alpha}{2 p} \log (1-p)}}{2(\log n)^{4}}\right\}
$$

Thus, from (6), (7), (8), (10) and the above

$$
\operatorname{Pr}\left(\overline{\mathcal{D}}_{i+1}\right) \leq \operatorname{Pr}\left(\overline{\mathcal{D}}_{i}\right)+o\left((\log n)^{-1}\right)
$$

and so

$$
\begin{aligned}
\operatorname{Pr}\left(\overline{\mathcal{D}}_{i+1}\right) & \leq \operatorname{Pr}\left(\overline{\mathcal{D}}_{1}\right)+o(1) \\
& =o(1)
\end{aligned}
$$

since $\overline{\mathcal{D}_{1}}=\emptyset$.
Thus $\operatorname{Pr}\left(\overline{\mathcal{D}}_{\tau}\right)=o(1)$. Combining this with $\operatorname{Pr}\left(\mathcal{C}_{\tau}\right)=1-o(1)$ we see that

$$
\operatorname{Pr}\left(V_{\tau}=\emptyset\right)=o(1)
$$

and this proves part (b) of the Theorem.

References

[CF] N. Calkin and A. Frieze, 'Probabilistic Analysis Of A Parallel Algorithm For Finding Maximal Independent Sets', Random Structures and Algorithms 1 (1990) 39-50
[CO] S. A. Cook, 'A taxonomy of problems with fast algorithms', Information and Control 64(1985) 2-22.
[CRT] D. Coppersmith, P. Raghavan and M. Tompa, 'Parallel graph algorithms that are efficient on average', Information and Computation 81 (1989) 318-333.
[H] W. Hoeffding, 'Probability inequalities for sums of bounded random variables', J. Amer. Statist. Assoc. 58 (1963) 18-30

[^0]: *Research supported in part by NSF Grant CCR-8900112

