A NOTE ON THE LOCALIZATION NUMBER OF RANDOM GRAPHS: DIAMETER TWO CASE

ANDRZEJ DUDEK, ALAN FRIEZE, AND WESLEY PEGDEN

Abstract

We study the localization game on dense random graphs. In this game, a cop x tries to locate a robber y by asking for the graph distance of y from every vertex in a sequence of sets $W_{1}, W_{2}, \ldots, W_{\ell}$. We prove high probability upper and lower bounds for the minimum size of each W_{i} that will guarantee that x will be able to locate y.

1. Introduction

In this paper we consider the following Localization Game related to the well studied Cops and Robbers game, see Bonato and Nowakowski [2] for a survey on this game. A robber is located at a vertex v of a graph G. In each round, a cop can ask for the graph distance between v and vertices $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$, where a new set of vertices W can be chosen at the start of each round. The cops win immediately if the W-signature of v, viz. the set of distances, $\operatorname{dist}\left(v, w_{i}\right), i=1,2, \ldots, k$ is sufficient to determine v. Otherwise, the robber will move to a neighbor of v and the cop will try again with a (possibly) different test set W. Given G, the localization number $\lambda(G)$ is the minimum k so that the cop can eventually locate the robber. This game was introduced by Bosek et al. [3], who studied the localization game on geometric and planar graphs, and also independently, by Haslegrave et al. [6]. For some other related results see [4, 8, (9).

2. Results

The localization number is closely related to the metric dimension $\beta(G)$. This is the smallest integer k such that the cop can always win the game in one round. Clearly, $\lambda(G) \leq \beta(G)$.
In this note we will study the localization number of the random graph $G_{n, p}$ with diameter two. Here and throughout the whole paper $\omega=\omega(n)=o(\log n)$ denotes a function tending arbitrarily slowly to infinity with n. We will also use the notation

$$
q=1-p \text { and } \rho=p^{2}+q^{2}
$$

The metric dimension of $G_{n, p}$ was studied by Bollobás et al. [1]. If we specialize their result to large p then it can be expressed as:

Theorem 2.1 ([1]). Suppose that

$$
\left(\frac{2 \log n+\omega}{n}\right)^{1 / 2} \leq p \leq n\left(1-\frac{3 \log \log n}{\log n}\right)
$$

[^0]Then,

$$
\begin{equation*}
\frac{\log n p}{\log 1 / \rho} \lesssim \beta\left(G_{n, p}\right) \lesssim \frac{2 \log n}{\log 1 / \rho} \text { a.a.s.. } \tag{1}
\end{equation*}
$$

(We write $A_{n} \lesssim B_{n}$ to mean that $A_{n} \leq(1+o(1)) B_{n}$ as n tends to infinity.) Note that the upper and lower bounds in (1) are asymptotically equal if $p \geq n^{-o(1)}$.
It is well-known (see, e.g., 5) that if $n p^{2} \geq 2 \log n+\omega$, then a.a.s. $\operatorname{diam}\left(G_{n, p}\right) \leq 2$. We will condition on the diameter satisfying this. Graphs with diameter 2 enable some simplifications. Indeed, if a vertex v has W-signature $\left\{d_{1}, \ldots, d_{k}\right\}$, where $W=\left\{w_{1}, \ldots, w_{k}\right\}$, where $d_{i}=\operatorname{dist}\left(v, w_{i}\right)$, then

$$
d_{i}= \begin{cases}1 & \text { iff }\left\{v, w_{i}\right\} \in E \\ 2 & \text { iff }\left\{v, w_{i}\right\} \notin E\end{cases}
$$

Consequently, the probability that two vertices u and v in $G_{n, p}$ have the same W-signature, $W=\left\{w_{1}, \ldots, w_{k}\right\}$, such that $u, v \notin W$ is equal to

$$
\prod_{i=1}^{k} \operatorname{Pr}\left(u, v \in N\left(w_{i}\right) \text { or } u, v \notin N\left(w_{i}\right)\right)=q^{k} .
$$

The upper bound on p in the below theorem is determined by a result of [1] about the metric dimension of $G_{n, p}$.

Theorem 2.2. Let

$$
\left(\frac{2 \log n+\omega}{n}\right)^{1 / 2} \leq p \leq 1-\frac{3 \log \log n}{\log n} \quad \text { and } \quad \eta=\frac{\log (1 / p)}{\log n}
$$

and let c be a positive constant such that

$$
0<c<\min \left\{\frac{1}{2}\left(\frac{\log n-3 \log \log n}{\log 1 / p}-1\right), 1\right\} .
$$

Then, a.a.s.

$$
\left(1-2 \eta-\frac{4 \log \log n}{\log n}\right) \frac{2 \log n}{\log 1 / \rho} \leq \lambda\left(G_{n, p}\right) \leq(1-c \eta) \frac{2 \log n}{\log 1 / \rho}
$$

2.1. Observations about Theorem 2.2.

First observe that if $p \geq \frac{\log n}{n^{1 / 3}}$, then

$$
\frac{1}{2}\left(\frac{\log n-3 \log \log n}{\log 1 / p}-1\right) \geq 1
$$

and so c can be any positive constant less than 1 . Furthermore, for any $p \geq\left(\frac{2 \log n+\omega}{n}\right)^{1 / 2}$ we have

$$
\frac{1}{2}\left(\frac{\log n-3 \log \log n}{\log 1 / p}-1\right) \geq \frac{1}{2}\left(\frac{\log n-3 \log \log n}{\frac{1}{2}(\log n-\log (2 \log n+\omega))}-1\right)=\frac{1}{2}-o(1)
$$

Hence, we can always take $c \geq \frac{1}{2}-o(1)$.

If $p=1 / n^{\alpha}$ for some constant $0<\alpha<1 / 2$, then,

$$
\eta=\alpha \quad \text { and } \quad c \leq \begin{cases}1-o(1) & \text { if } 0<\alpha<\frac{1}{3} \\ \frac{1}{2 \alpha}-\frac{1}{2}-o(1) & \text { otherwise }\end{cases}
$$

Moreover,

$$
\rho=1-2 p+2 p^{2} \text { and so } \log 1 / \rho=2 p+O\left(p^{2}\right) \approx \frac{2}{n^{\alpha}}
$$

Hence, Theorem 2.2 implies the following corollary.
Corollary 2.3. Let $p=1 / n^{\alpha}$, where $0<\alpha<1 / 2$ is constant. Then, a.a.s.

$$
(1-2 \alpha) n^{\alpha} \log n \lesssim \lambda\left(G_{n, p}\right) \lesssim \begin{cases}(1-\alpha) n^{\alpha} \log n & \text { if } 0<\alpha<\frac{1}{3} \\ \left(\frac{1+\alpha}{2}\right) n^{\alpha} \log n & \text { otherwise } .\end{cases}
$$

Also notice that the localization number here is always significantly smaller than the corresponding metric dimension [1].
Now observe that if $p=n^{-1 / \omega}$, then

$$
2 \eta=\frac{2 \log (1 / p)}{\log n}=\frac{2}{\omega}=o(1)
$$

Thus, Theorem 2.2 implies:
Corollary 2.4. Let $p=n^{-1 / \omega}$. Then,

$$
\lambda\left(G_{n, p}\right) \approx \frac{2 \log n}{\log 1 / \rho} .
$$

Clearly, this also holds for any constant p. In particular, for $p=1 / 2$, we get:
Corollary 2.5. For almost all graphs G we have

$$
\lambda(G) \approx \frac{2 \log n}{\log 2}=2 \log _{2}(n)
$$

2.2. Proof of Theorem 2.2 - lower bound.

We will use the following form of Suen's inequality (see, e.g. [7]).
Suen's inequality. Let $\theta_{i}, i \in I$ be indicator random variables which take value 1 with probability p_{i}. Let L be a dependency graph. Let $X=\sum_{i \in I} \theta_{i}$, and $\mu=\mathbf{E}(X)=\sum_{i \in I} p_{i}$. Moreover, write $i \sim j$ if $i j \in E(L)$, and let $\Delta=\frac{1}{2} \sum \sum_{i \sim j} \mathbf{E}\left(\theta_{i} \theta_{j}\right)$ and $\delta=\max _{i} \sum_{j \sim i} p_{j}$. Then,

$$
\operatorname{Pr}(X=0) \leq \exp \left\{-\min \left\{\frac{\mu^{2}}{8 \Delta}, \frac{\mu}{2}, \frac{\mu}{6 \delta}\right\}\right\}
$$

The lower bound in Theorem 2.2 will follow from the following result.
Lemma 2.6. Let
$\left(\frac{2 \log n+\omega}{n}\right)^{1 / 2} \leq p \leq 1-\frac{1}{\log n} \quad$ and $\quad \varepsilon=\frac{2 \log \left(\frac{\log ^{2} n}{p}\right)}{\log n} \quad$ and $\quad k=\frac{2(1-\varepsilon) \log n}{\log 1 / \rho}$.
Then a.a.s.,

$$
\lambda\left(G_{n, p}\right) \geq k .
$$

First observe that $\varepsilon=2 \eta+\frac{4 \log \log n}{\log n}$ and so the lower bound in Theorem 2.2 holds.
Proof. For a fixed vertex u and k-set S let $X_{u, S}$ count the number of unordered pairs $w, v \in N(u)$ with the same signature induced by S. We prove that the probability that there is a vertex u and a k-set S such that $X_{u, S}=0$ is $o(1)$. Consequently, this will imply that a.a.s. for every vertex u and k-set S there are at least two neighbors of u with the same signature in S. Hence, a.a.s. the localization number is at least k.
Clearly,

$$
\begin{aligned}
\mu=\mathbf{E}\left(X_{u, S}\right)=\binom{n-k-1}{2} \rho^{k} p^{2} & \geq \frac{p^{2}}{4} \exp \{k \log \rho+2 \log n\} \\
& =\frac{p^{2}}{4} \exp \{-2(1-\varepsilon) \log n+2 \log n\}=\frac{p^{2}}{4} n^{2 \varepsilon}
\end{aligned}
$$

and

$$
\begin{aligned}
\Delta & \leq\binom{ n}{3}\left(p^{3}+q^{3}\right)^{k} p^{3} \\
& \leq \frac{p^{3}}{6} \exp \left\{k \log \left(p^{3}+q^{3}\right)+3 \log n\right\} \\
& =\frac{p^{3}}{6} \exp \left\{-2(1-\varepsilon)(\log n) \frac{\log \left(p^{3}+q^{3}\right)}{\log \rho}+3 \log n\right\} .
\end{aligned}
$$

Now, by Claim 2.7 below,

$$
\Delta \leq \frac{p^{3}}{6} \exp \left\{-2(1-\varepsilon)(\log n) \cdot \frac{3}{2}+3 \log n\right\}=\frac{p^{3}}{6} n^{3 \varepsilon}
$$

and similarly

$$
\delta \leq 2 n\left(p^{3}+q^{3}\right)^{k} p^{2}=2 p^{2} \exp (-3(1-\varepsilon)(\log n)+\log n)=2 p^{2} n^{-2+3 \varepsilon} .
$$

Thus,

$$
\frac{\mu^{2}}{8 \Delta} \geq \frac{3}{64} p n^{\varepsilon}, \quad \frac{\mu}{2} \geq \frac{1}{8}\left(p n^{\varepsilon}\right)^{2} \quad \text { and } \quad \frac{\mu}{6 \delta} \geq \frac{1}{48} n^{2-\varepsilon} .
$$

Since $0<\varepsilon<1$ and $p n^{\varepsilon} \rightarrow \infty$ (due to our choice of ε) the lower bound in the first inequality is the smallest. Hence,

$$
\operatorname{Pr}\left(X_{u, S}=0\right) \leq \exp \left\{-\frac{3}{64} p n^{\varepsilon}\right\}
$$

Now we use the union bound to show that the probability that there is a vertex u and a k-set S such that $X_{u, S}=0$ is $o(1)$. Indeed, this probability is at most

$$
\begin{equation*}
n\binom{n}{k} \exp \left\{-\frac{3}{64} p n^{\varepsilon}\right\} \leq \exp \left\{(k+1) \log n-\frac{3}{64} p n^{\varepsilon}\right\} . \tag{2}
\end{equation*}
$$

Now observe that $\rho=(p+q)^{2}-2 p q=1-2 p q$ and so

$$
k=\frac{2(1-\varepsilon) \log n}{\log 1 / \rho}=-\frac{2(1-\varepsilon) \log n}{\log (1-2 p q)} \leq-\frac{2 \log n}{\log (1-2 p q)}
$$

Since $1-x \geq e^{-2 x}$ for any $0 \leq x \leq 1 / 2$ and $2 p q \leq 1 / 2$ we get that

$$
k \log n \leq \frac{(\log n)^{2}}{2 p q}
$$

Furthermore, since by assumption $p \leq 1-\frac{1}{\log n}$, we obtain $q \geq \frac{1}{\log n}$ and so

$$
k \log n \leq \frac{(\log n)^{3}}{2 p}
$$

Also

$$
p n^{\varepsilon}=p e^{\varepsilon \log n}=\frac{(\log n)^{4}}{p}
$$

Thus, the exponent in (2) tends to $-\infty$. This completes the proof of Lemma 2.6.
Claim 2.7. Let $0<p<1$ and $p+q=1$. Then,

$$
\frac{\log \left(p^{3}+q^{3}\right)}{\log \rho} \geq \frac{3}{2}
$$

Proof. This inequality is equivalent to

$$
\log \left(p^{3}+q^{3}\right)^{2} \leq \log \left(p^{2}+q^{2}\right)^{3}
$$

and so to

$$
\left(p^{3}+q^{3}\right)^{2} \leq\left(p^{2}+q^{2}\right)^{3}
$$

The latter is equivalent to

$$
2 p^{3} q^{3} \leq 3 p^{4} q^{2}+3 p^{2} q^{4}=3 p^{2} q^{2}\left(p^{2}+q^{2}\right)=3 p^{2} q^{2}(1-2 p q)
$$

and consequently to

$$
2 p q \leq 3(1-2 p q)
$$

which is equivalent to

$$
p q \leq \frac{3}{8}
$$

But the this is always true since $p q \leq \frac{1}{4}$.

2.3. Proof of Theorem $\mathbf{2 . 2}$ - upper bound.

We will need the following auxiliary result:
Proposition 2.8. Let

$$
\sqrt{\frac{2 \log n+\omega}{n}} \leq p \leq 1-\frac{1}{\log n} \quad \text { and } \quad \varepsilon=\frac{\log 1 / p}{\log n} \quad \text { and } \quad k=\frac{2(1-c \varepsilon) \log n}{\log 1 / \rho}
$$

where

$$
0<c<\min \left\{\frac{1}{2}\left(\frac{\log n-3 \log \log n}{\log 1 / p}-1\right), 1\right\}
$$

Let $G=G_{n, p}=(V, E)$ and let $U \subseteq V$ and $S \subseteq V$ be disjoint subsets such that $|U|=O(k)$ and $|S|=k$. Then, a.a.s. there is no pair $u \in U$ and $v \in V \backslash S$ such that u and v have the same signature induced by S.

Proof. Assume that ℓ is a positive constant and $|U|=\ell k$. The probability that there is a pair $u \in U$ and $v \in V \backslash S$ such that u and v have the same signature induced by S is at most

$$
|U| \cdot|V| \cdot \rho^{k} \leq \ell k \cdot \exp \{\log n+k \log \rho\}=\ell k \cdot n^{2 c \varepsilon-1} .
$$

But

$$
k \leq \frac{2 \log n}{\log 1 / \rho}=-\frac{2 \log n}{\log (1-2 p q)} \leq \frac{\log n}{2 p q}
$$

since $1-x \geq e^{-2 x}$ for any $0 \leq x \leq 1 / 2$ and $2 p q \leq 1 / 2$. Furthermore, since $q \geq \frac{1}{\log n}$ we get

$$
k \leq \frac{(\log n)^{2}}{2 p}
$$

Similarly,

$$
n^{2 c \varepsilon-1}=\frac{\exp \{2 c \varepsilon \log n\}}{n}=\frac{1}{p^{2 c} n} .
$$

Thus,

$$
\ell k \cdot n^{2 c \varepsilon-1} \leq \ell \frac{(\log n)^{2}}{2 p} \cdot \frac{1}{p^{2 c} n}=\frac{\ell(\log n)^{2}}{2 p^{1+2 c} n} \leq \frac{\ell}{2 \log n}=o(1)
$$

where the latter inequality follows from the choice of c.

Lemma 2.9.

(i) Let

$$
e^{-\frac{\log n}{\omega}} \leq p \leq 1-\frac{3 \log \log n}{\log n}
$$

Then, a.a.s.

$$
\lambda\left(G_{n, p}\right) \lesssim \frac{2 \log n}{\log 1 / \rho}
$$

(ii) Let

$$
\left(\frac{2 \log n+\omega}{n}\right)^{1 / 2} \leq p \leq e^{-\Omega(\log n)} \quad \text { and } \quad \eta=\frac{\log 1 / p}{\log n} \quad \text { and } \quad k=\frac{2(1-c \eta) \log n}{\log 1 / \rho}
$$

where

$$
0<c<\min \left\{\frac{1}{2}\left(\frac{\log n-3 \log \log n}{\log 1 / p}-1\right), 1\right\}
$$

Then, a.a.s.

$$
\lambda\left(G_{n, p}\right) \leq k
$$

Proof. Part (i) follows immediately from Theorem 2.1.
Here we prove (iii). Let S_{1}, \ldots, S_{ℓ} be pairwise disjoint subsets of V such that $\left|S_{i}\right|=k$ and $\ell=O(1)$ and let $T_{1}=V$. Now we reveal all edges between S_{1} and $V \backslash S_{1}$. Let X_{1} be the number of pairs with the same signature in S_{1}. Then,

$$
\mathbf{E}\left(X_{1}\right) \leq n^{2} \rho^{k}=\exp \{2 \log n-k \log \rho\}=n^{2 c \eta}
$$

and by the Markov inequality we have $X_{1} \leq \omega n^{2 c \eta}$ a.a.s.. Thus, the set R of vertices with exactly the same signature in S as the robber is a.a.s. of size at most $\omega^{1 / 2} n^{c \eta}$. Also it is well known (see e.g. [5]) that each vertex a.a.s. has $\lesssim p n$ neighbors. Let T_{2} consist
of R and the set of neighbors of R. The robber can move to somewhere in T_{2}. Clearly, $\left|T_{2}\right| \leq 2 \omega^{1 / 2} n^{c \eta} p n$ a.a.s..
Now we start the second round by revealing the edges between S_{2} and $V \backslash\left(S_{1} \cup S_{2}\right)$. Let X_{2} be the number of pairs with the same signature in S_{2}. By Proposition 2.8 we can assume that the only pairs with the same signature induced by S_{2} are in $V \backslash\left(S_{1} \cup S_{2}\right)$. Thus,

$$
\mathbf{E}\left(X_{2}\right) \leq\left(2 \omega^{1 / 2} n^{c \eta} p n\right)^{2} \rho^{k}=\left(2 \omega^{1 / 2} p\right)^{2} \exp ((2+2 c \eta)(\log n)-k \log \rho)=4 \omega p^{2} n^{4 c \eta}
$$

and by the Markov inequality we get that a.a.s we have $X_{2} \leq \omega^{2} p^{2} n^{4 c \eta}$. Thus, the number of vertices with exactly the same signature as the robber in S_{2} is at most $\omega p n^{2 c \eta}$. Let T_{3} consist of these vertices together with their neighbors. Clearly, $\left|T_{3}\right| \leq 2 \omega p^{2} n^{2 c \eta+1}$. We proceed inductively. Assume that $\left|T_{i}\right| \leq 2\left(\omega^{1 / 2} p\right)^{i-1} n^{(i-1) c \eta+1}$. Now

$$
\mathbf{E}\left(X_{i+1}\right) \leq 2\left(\left(\omega^{1 / 2} p\right)^{i-1} n^{(i-1) c \eta+1}\right)^{2} \rho^{k}=2\left(\omega^{1 / 2} p\right)^{2(i-1)} n^{2 i c \eta}
$$

and so by the Markov inequality,

$$
\begin{equation*}
X_{i+1} \leq \omega\left(\omega^{1 / 2} p\right)^{2(i-1)} n^{2 i c \eta} \text { a.a.s.. } \tag{3}
\end{equation*}
$$

Thus, the number of vertices with exactly the same signature in S_{i+1} is at most $\omega^{1 / 2}\left(\omega^{1 / 2} p\right)^{i-1} n^{i c \eta}$. Hence,

$$
\left|T_{i+1}\right| \leq 2 \omega^{1 / 2}\left(\omega^{1 / 2} p\right)^{i-1} n^{i c \eta} p n=2\left(\omega^{1 / 2} p\right)^{i} n^{i c \eta+1}
$$

completing the induction.
After ℓ rounds we get that with probability at least $1-\ell \omega^{-1}$ we have, using (3),

$$
\begin{aligned}
\left|X_{\ell}\right| & \left.\leq \omega\left(\omega^{1 / 2} p\right)^{2(\ell-2)} n^{2(\ell-1) c \eta}=\omega^{\ell-1} \exp \{2(\ell-2) \log p+2(\ell-1) c \eta \log n)\right\} \\
& =\omega^{\ell-1} \exp \{-2(\ell-2-c(\ell-1)) \log (1 / p)\}
\end{aligned}
$$

The latter is $o(1)$ for sufficiently large constant ℓ, since by assumption $\log (1 / p)=\Omega(\log n)$.

3. Summary

We have separated the localization value $\lambda\left(G_{n, p}\right)$ from the metric dimension $\beta\left(G_{n, p}\right)$ in the range where the diameter of $G_{n, p}$ is two a.a.s.. The same ideas should be applicable when p is smaller and it would be interesting to continue the analysis in this range. It would also be of interest to examine this problem on random regular graphs.

References

[1] B. Bollobás, P. Prałat and D. Mitsche, Metric dimension for random graphs, The Electronic Journal of Combinatorics 20 (2013).
[2] A. Bonato and R. Nowakowski. The game of cops and robbers on graphs, American Mathematical Society, 2011.
[3] B. Bosek, P. Gordinowicz, J. Grytczuk, N. Nisse, J. Sokół and M. Śleszyńska-Nowak, Localization game on geometric and planar graphs, arXiv:1709.05904.
[4] J. Carraher, I. Choi, M. Delcourt, L. H. Erickson, and D. B. West, Locating a robber on a graph via distance queries, Theoretical Computer Science 463, pp. 54-61 (2012).
[5] A.M. Frieze and M. Karoński, Introduction to Random Graphs, Cambridge University Press, 2015.
[6] J. Haslegrave, R. Johnson and S. Koch, Locating a robber with multiple probes, arXiv:1703.06482.
[7] S. Janson, T. Łuczak and A. Ruciński, Random Graphs, Wiley, 2000.
[8] S. Seager, Locating a robber on a graph, Discrete Mathematics 312, pp. 3265-3269 (2012).
[9] S. Seager, Locating a backtracking robber on a tree, Theoretical Computer Science 539, pp. 28-37 (2014).

Department of Mathematics, Western Michigan University, Kalamazoo, MI
E-mail address: andrzej.dudek@wmich.edu
Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA
E-mail address: alan@random.math.cmu.edu
Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA
E-mail address: wes@math.cmu.edu

[^0]: The first author was supported in part by a grant from the Simons Foundation (522400, AD).
 The second author was supported in part by NSF grant DMS1661063.
 The third author was supported in part by NSF grant DMS136313.

