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Abstract. We study the localization game on dense random graphs. In this game, a cop
x tries to locate a robber y by asking for the graph distance of y from every vertex in a
sequence of sets W1,W2, . . . ,W`. We prove high probability upper and lower bounds for
the minimum size of each Wi that will guarantee that x will be able to locate y.

1. Introduction

In this paper we consider the following Localization Game related to the well studied Cops
and Robbers game, see Bonato and Nowakowski [2] for a survey on this game. A robber is
located at a vertex v of a graph G. In each round, a cop can ask for the graph distance
between v and vertices W = {w1, w2, . . . , wk}, where a new set of vertices W can be chosen
at the start of each round. The cops win immediately if the W -signature of v, viz. the
set of distances, dist(v, wi), i = 1, 2, . . . , k is sufficient to determine v. Otherwise, the
robber will move to a neighbor of v and the cop will try again with a (possibly) different
test set W . Given G, the localization number λ(G) is the minimum k so that the cop
can eventually locate the robber. This game was introduced by Bosek et al. [3], who
studied the localization game on geometric and planar graphs, and also independently, by
Haslegrave et al. [6]. For some other related results see [4, 8, 9].

2. Results

The localization number is closely related to the metric dimension β(G). This is the
smallest integer k such that the cop can always win the game in one round. Clearly,
λ(G) ≤ β(G).
In this note we will study the localization number of the random graph Gn,p with diameter
two. Here and throughout the whole paper ω = ω(n) = o(log n) denotes a function tending
arbitrarily slowly to infinity with n. We will also use the notation

q = 1− p and ρ = p2 + q2.

The metric dimension of Gn,p was studied by Bollobás et al. [1]. If we specialize their result
to large p then it can be expressed as:

Theorem 2.1 ([1]). Suppose that(
2 log n+ ω

n

)1/2

≤ p ≤ n

(
1− 3 log log n

log n

)
.
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Then,
log np

log 1/ρ
. β(Gn,p) .

2 log n

log 1/ρ
a.a.s.. (1)

(We write An . Bn to mean that An ≤ (1 + o(1))Bn as n tends to infinity.) Note that the
upper and lower bounds in (1) are asymptotically equal if p ≥ n−o(1).
It is well-known (see, e.g., [5]) that if np2 ≥ 2 log n + ω, then a.a.s. diam(Gn,p) ≤ 2. We
will condition on the diameter satisfying this. Graphs with diameter 2 enable some sim-
plifications. Indeed, if a vertex v has W -signature {d1, . . . , dk}, where W = {w1, . . . , wk},
where di = dist(v, wi), then

di =

{
1 iff {v, wi} ∈ E
2 iff {v, wi} /∈ E.

Consequently, the probability that two vertices u and v in Gn,p have the same W -signature,
W = {w1, . . . , wk}, such that u, v /∈ W is equal to

k∏
i=1

Pr(u, v ∈ N(wi) or u, v /∈ N(wi)) = qk.

The upper bound on p in the below theorem is determined by a result of [1] about the
metric dimension of Gn,p.

Theorem 2.2. Let(
2 log n+ ω

n

)1/2

≤ p ≤ 1− 3 log log n

log n
and η =

log(1/p)

log n

and let c be a positive constant such that

0 < c < min

{
1

2

(
log n− 3 log log n

log 1/p
− 1

)
, 1

}
.

Then, a.a.s. (
1− 2η − 4 log log n

log n

)
2 log n

log 1/ρ
≤ λ(Gn,p) ≤ (1− cη)

2 log n

log 1/ρ
.

2.1. Observations about Theorem 2.2.
First observe that if p ≥ logn

n1/3 , then

1

2

(
log n− 3 log log n

log 1/p
− 1

)
≥ 1

and so c can be any positive constant less than 1. Furthermore, for any p ≥
(

2 logn+ω
n

)1/2

we have

1

2

(
log n− 3 log log n

log 1/p
− 1

)
≥ 1

2

(
log n− 3 log log n

1
2
(log n− log(2 log n+ ω))

− 1

)
=

1

2
− o(1).

Hence, we can always take c ≥ 1
2
− o(1).
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If p = 1/nα for some constant 0 < α < 1/2, then,

η = α and c ≤

{
1− o(1) if 0 < α < 1

3
1

2α
− 1

2
− o(1) otherwise.

Moreover,

ρ = 1− 2p+ 2p2 and so log 1/ρ = 2p+O(p2) ≈ 2

nα
.

Hence, Theorem 2.2 implies the following corollary.

Corollary 2.3. Let p = 1/nα, where 0 < α < 1/2 is constant. Then, a.a.s.

(1− 2α)nα log n . λ(Gn,p) .

{
(1− α)nα log n if 0 < α < 1

3(
1+α

2

)
nα log n otherwise.

Also notice that the localization number here is always significantly smaller than the cor-
responding metric dimension [1].
Now observe that if p = n−1/ω, then

2η =
2 log(1/p)

log n
=

2

ω
= o(1).

Thus, Theorem 2.2 implies:

Corollary 2.4. Let p = n−1/ω. Then,

λ(Gn,p) ≈
2 log n

log 1/ρ
.

Clearly, this also holds for any constant p. In particular, for p = 1/2, we get:

Corollary 2.5. For almost all graphs G we have

λ(G) ≈ 2 log n

log 2
= 2 log2(n).

2.2. Proof of Theorem 2.2 – lower bound.

We will use the following form of Suen’s inequality (see, e.g. [7]).

Suen’s inequality. Let θi, i ∈ I be indicator random variables which take value 1 with
probability pi. Let L be a dependency graph. Let X =

∑
i∈I θi, and µ = E(X) =

∑
i∈I pi.

Moreover, write i ∼ j if ij ∈ E(L), and let ∆ = 1
2

∑∑
i∼j E(θiθj) and δ = maxi

∑
j∼i pj.

Then,

Pr(X = 0) ≤ exp

{
−min

{
µ2

8∆
,
µ

2
,
µ

6δ

}}
.

The lower bound in Theorem 2.2 will follow from the following result.

Lemma 2.6. Let(
2 log n+ ω

n

)1/2

≤ p ≤ 1− 1

log n
and ε =

2 log
(

log2 n
p

)
log n

and k =
2(1− ε) log n

log 1/ρ
.

Then a.a.s.,
λ(Gn,p) ≥ k.
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First observe that ε = 2η + 4 log logn
logn

and so the lower bound in Theorem 2.2 holds.

Proof. For a fixed vertex u and k-set S let Xu,S count the number of unordered pairs
w, v ∈ N(u) with the same signature induced by S. We prove that the probability that
there is a vertex u and a k-set S such that Xu,S = 0 is o(1). Consequently, this will imply
that a.a.s. for every vertex u and k-set S there are at least two neighbors of u with the
same signature in S. Hence, a.a.s. the localization number is at least k.
Clearly,

µ = E(Xu,S) =

(
n− k − 1

2

)
ρkp2 ≥ p2

4
exp{k log ρ+ 2 log n}

=
p2

4
exp{−2(1− ε) log n+ 2 log n} =

p2

4
n2ε

and

∆ ≤
(
n

3

)
(p3 + q3)kp3

≤ p3

6
exp

{
k log(p3 + q3) + 3 log n

}
=
p3

6
exp

{
−2(1− ε)(log n)

log(p3 + q3)

log ρ
+ 3 log n

}
.

Now, by Claim 2.7 below,

∆ ≤ p3

6
exp

{
−2(1− ε)(log n) · 3

2
+ 3 log n

}
=
p3

6
n3ε

and similarly

δ ≤ 2n(p3 + q3)kp2 = 2p2 exp (−3(1− ε)(log n) + log n) = 2p2n−2+3ε.

Thus,

µ2

8∆
≥ 3

64
pnε,

µ

2
≥ 1

8
(pnε)2 and

µ

6δ
≥ 1

48
n2−ε.

Since 0 < ε < 1 and pnε → ∞ (due to our choice of ε) the lower bound in the first
inequality is the smallest. Hence,

Pr(Xu,S = 0) ≤ exp

{
− 3

64
pnε
}
.

Now we use the union bound to show that the probability that there is a vertex u and a
k-set S such that Xu,S = 0 is o(1). Indeed, this probability is at most

n

(
n

k

)
exp

{
− 3

64
pnε
}
≤ exp

{
(k + 1) log n− 3

64
pnε
}
. (2)

Now observe that ρ = (p+ q)2 − 2pq = 1− 2pq and so

k =
2(1− ε) log n

log 1/ρ
= −2(1− ε) log n

log(1− 2pq)
≤ − 2 log n

log(1− 2pq)
.
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Since 1− x ≥ e−2x for any 0 ≤ x ≤ 1/2 and 2pq ≤ 1/2 we get that

k log n ≤ (log n)2

2pq
.

Furthermore, since by assumption p ≤ 1− 1
logn

, we obtain q ≥ 1
logn

and so

k log n ≤ (log n)3

2p
.

Also

pnε = peε logn =
(log n)4

p
.

Thus, the exponent in (2) tends to −∞. This completes the proof of Lemma 2.6. �

Claim 2.7. Let 0 < p < 1 and p+ q = 1. Then,

log(p3 + q3)

log ρ
≥ 3

2
.

Proof. This inequality is equivalent to

log(p3 + q3)2 ≤ log(p2 + q2)3

and so to

(p3 + q3)2 ≤ (p2 + q2)3.

The latter is equivalent to

2p3q3 ≤ 3p4q2 + 3p2q4 = 3p2q2(p2 + q2) = 3p2q2(1− 2pq)

and consequently to

2pq ≤ 3(1− 2pq)

which is equivalent to

pq ≤ 3

8
.

But the this is always true since pq ≤ 1
4
. �

2.3. Proof of Theorem 2.2 – upper bound.

We will need the following auxiliary result:

Proposition 2.8. Let√
2 log n+ ω

n
≤ p ≤ 1− 1

log n
and ε =

log 1/p

log n
and k =

2(1− cε) log n

log 1/ρ
,

where

0 < c < min

{
1

2

(
log n− 3 log log n

log 1/p
− 1

)
, 1

}
.

Let G = Gn,p = (V,E) and let U ⊆ V and S ⊆ V be disjoint subsets such that |U | = O(k)
and |S| = k. Then, a.a.s. there is no pair u ∈ U and v ∈ V \S such that u and v have the
same signature induced by S.
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Proof. Assume that ` is a positive constant and |U | = `k. The probability that there is a
pair u ∈ U and v ∈ V \ S such that u and v have the same signature induced by S is at
most

|U | · |V | · ρk ≤ `k · exp {log n+ k log ρ} = `k · n2cε−1.

But

k ≤ 2 log n

log 1/ρ
= − 2 log n

log(1− 2pq)
≤ log n

2pq
,

since 1− x ≥ e−2x for any 0 ≤ x ≤ 1/2 and 2pq ≤ 1/2. Furthermore, since q ≥ 1
logn

we get

k ≤ (log n)2

2p
.

Similarly,

n2cε−1 =
exp{2cε log n}

n
=

1

p2cn
.

Thus,

`k · n2cε−1 ≤ `
(log n)2

2p
· 1

p2cn
=
`(log n)2

2p1+2cn
≤ `

2 log n
= o(1),

where the latter inequality follows from the choice of c. �

Lemma 2.9.

(i) Let

e−
logn
ω ≤ p ≤ 1− 3 log log n

log n
.

Then, a.a.s.

λ(Gn,p) .
2 log n

log 1/ρ
.

(ii) Let(
2 log n+ ω

n

)1/2

≤ p ≤ e−Ω(logn) and η =
log 1/p

log n
and k =

2(1− cη) log n

log 1/ρ
,

where

0 < c < min

{
1

2

(
log n− 3 log log n

log 1/p
− 1

)
, 1

}
.

Then, a.a.s.
λ(Gn,p) ≤ k.

Proof. Part (i) follows immediately from Theorem 2.1.

Here we prove (ii). Let S1, . . . , S` be pairwise disjoint subsets of V such that |Si| = k and
` = O(1) and let T1 = V . Now we reveal all edges between S1 and V \ S1. Let X1 be the
number of pairs with the same signature in S1. Then,

E(X1) ≤ n2ρk = exp{2 log n− k log ρ} = n2cη

and by the Markov inequality we have X1 ≤ ωn2cη a.a.s.. Thus, the set R of vertices with
exactly the same signature in S as the robber is a.a.s. of size at most ω1/2ncη. Also it
is well known (see e.g. [5]) that each vertex a.a.s. has . pn neighbors. Let T2 consist
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of R and the set of neighbors of R. The robber can move to somewhere in T2. Clearly,
|T2| ≤ 2ω1/2ncηpn a.a.s..
Now we start the second round by revealing the edges between S2 and V \(S1∪S2). Let X2

be the number of pairs with the same signature in S2. By Proposition 2.8 we can assume
that the only pairs with the same signature induced by S2 are in V \ (S1 ∪ S2). Thus,

E(X2) ≤ (2ω1/2ncηpn)2ρk = (2ω1/2p)2 exp((2 + 2cη)(log n)− k log ρ) = 4ωp2n4cη

and by the Markov inequality we get that a.a.s we have X2 ≤ ω2p2n4cη. Thus, the number
of vertices with exactly the same signature as the robber in S2 is at most ωpn2cη. Let T3

consist of these vertices together with their neighbors. Clearly, |T3| ≤ 2ωp2n2cη+1.
We proceed inductively. Assume that |Ti| ≤ 2(ω1/2p)i−1n(i−1)cη+1. Now

E(Xi+1) ≤ 2((ω1/2p)i−1n(i−1)cη+1)2ρk = 2(ω1/2p)2(i−1)n2icη

and so by the Markov inequality,

Xi+1 ≤ ω(ω1/2p)2(i−1)n2icη a.a.s.. (3)

Thus, the number of vertices with exactly the same signature in Si+1 is at most ω1/2(ω1/2p)i−1nicη.
Hence,

|Ti+1| ≤ 2ω1/2(ω1/2p)i−1nicηpn = 2(ω1/2p)inicη+1,

completing the induction.
After ` rounds we get that with probability at least 1− `ω−1 we have, using (3),

|X`| ≤ ω(ω1/2p)2(`−2)n2(`−1)cη = ω`−1 exp {2(`− 2) log p+ 2(`− 1)cη log n)}
= ω`−1 exp {−2(`− 2− c(`− 1)) log(1/p)} .

The latter is o(1) for sufficiently large constant `, since by assumption log(1/p) = Ω(log n).
�

3. Summary

We have separated the localization value λ(Gn,p) from the metric dimension β(Gn,p) in the
range where the diameter of Gn,p is two a.a.s.. The same ideas should be applicable when
p is smaller and it would be interesting to continue the analysis in this range. It would
also be of interest to examine this problem on random regular graphs.
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