Embedding the Erdős-Rényi Hypergraph into the Random Regular Hypergraph and Hamiltonicity

ANDRZEJ DUDEK ${ }^{1 * \boldsymbol{*}}$
ALAN FRIEZE ${ }^{2 \dagger} \quad$ ANDRZEJ RUCIŃSKI ${ }^{3 \pm \uparrow}$ MATAS ŠILEIKIS ${ }^{48}$
${ }^{1}$ Department of Mathematics, Western Michigan University, Kalamazoo, MI
andrzej.dudek@wmich.edu
${ }^{2}$ Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA
alan@random.math.cmu.edu
${ }^{3}$ Department of Discrete Mathematics, Adam Mickiewicz University, Poznań, Poland
rucinski@amu.edu.pl
${ }^{4}$ Mathematical Institute, University of Oxford, United Kingdom
matas.sileikis@gmail.com

August 25, 2015

Abstract

We establish an inclusion relation between two uniform models of random k-graphs (for constant $k \geq 2$) on n labeled vertices: $\mathbb{G}^{(k)}(n, m)$, the random k-graph with m edges, and $\mathbb{R}^{(k)}(n, d)$, the random d-regular k-graph. We show that if $n \log n \ll m \ll n^{k}$ we can choose $d=d(n) \sim k m / n$ and couple $\mathbb{G}^{(k)}(n, m)$ and $\mathbb{R}^{(k)}(n, d)$ so that the latter contains the former with probability tending to one as $n \rightarrow \infty$. This extends some previous results of Kim and Vu about "sandwiching random graphs". In view of known threshold theorems on the existence of different types of Hamilton cycles in $\mathbb{G}^{(k)}(n, m)$, our result allows us to find conditions under which $\mathbb{R}^{(k)}(n, d)$ is Hamiltonian. In particular, for $k \geq 3$ we conclude that if $n^{k-2} \ll d \ll n^{k-1}$, then a.a.s. $\mathbb{R}^{(k)}(n, d)$ contains a tight Hamilton cycle.

[^0]
1 Introduction

1.1 Background

A k-uniform hypergraph (or k-graph for short) on a vertex set $V=[n]=\{1, \ldots, n\}$ is an ordered pair $G=(V, E)$ where E is a family of k-element subsets of V. The degree of a vertex v in G is defined as

$$
\operatorname{deg}_{G}(v):=|\{e \in E: v \in e\}| .
$$

A k-graph is d-regular if the degree of every vertex is d. Let $\mathcal{R}^{(k)}(n, d)$ be the family of all d-regular k-graphs on V. Throughout, we tacitly assume that k divides $n d$. By $\mathbb{R}^{(k)}(n, d)$ we denote the d-regular random k-graph, which is chosen uniformly at random from $\mathcal{R}^{(k)}(n, d)$.

Let us recall two more standard models of random k-graphs on n vertices. For $p \in[0,1]$, the binomial random k-graph $\mathbb{G}^{(k)}(n, p)$ is obtained by including each of the $\binom{n}{k}$ possible edges with probability p, independently of others. Further, for an integer $m \in\left[0,\binom{n}{k}\right]$, the uniform random k-graph $\mathbb{G}^{(k)}(n, m)$ is chosen uniformly at random among all $\left(\begin{array}{c}n \\ k \\ m\end{array}\right) ~ k$-graphs on V with precisely m edges.

We study the behavior of these random k-graphs as $n \rightarrow \infty$. Parameters d, m, p are treated as functions of n and typically tend to infinity in case of d, m, or zero, in case of p. Given a sequence of events $\left(\mathcal{A}_{n}\right)$, we say that \mathcal{A}_{n} holds asymptotically almost surely (a.a.s.) if $\mathbb{P}\left(\mathcal{A}_{n}\right) \rightarrow 1$, as $n \rightarrow \infty$.

In 2004, Kim and Vu [11] proved that if $d=o\left(n^{1 / 3} / \log ^{2} n\right)$ then there exists a coupling (that is, a joint distribution) of the random graphs $\mathbb{G}^{(2)}(n, p)$ and $\mathbb{R}^{(2)}(n, d)$ with $p=\frac{d}{n}\left(1-O\left((\log n / d)^{1 / 3}\right)\right)$ such that

$$
\begin{equation*}
\mathbb{G}^{(2)}(n, p) \subset \mathbb{R}^{(2)}(n, d) \quad \text { a.a.s. } \tag{1}
\end{equation*}
$$

They pointed out several consequences of this result, emphasizing the ease with which one can carry over known properties of $\mathbb{G}^{(2)}(n, p)$ to the harder to study regular model $\mathbb{R}^{(2)}(n, d)$. Kim and Vu conjectured that such a coupling is possible for all $d \gg \log n$ (they also conjectured a reverse embedding which is not of our interest here). In [7] we considered a (slightly weaker) extension of Kim and Vu's result to k-graphs, $k \geq 3$, and proved that

$$
\begin{equation*}
\mathbb{G}^{(k)}(n, m) \subset \mathbb{R}^{(k)}(n, d) \quad \text { a.a.s. } \tag{2}
\end{equation*}
$$

whenever $C \log n \leq d \ll n^{1 / 2}$ and $m \sim c n d$ for some absolute large constant C and a sufficiently small constant $c=c(k)>0$. Although (2) is stated for the uniform k-graph $\mathbb{G}^{(k)}(n, m)$, it is easy to see that one can replace $\mathbb{G}^{(k)}(n, m)$ by $\mathbb{G}^{(k)}(n, p)$ with $p=m /\binom{n}{k}$ (see Section 5).

1.2 The Main Result

In this paper we extend (2) to larger degrees, assuming only $d \leq c n^{k-1}$ for some constant $c=c(k)$. Moreover, our result implies that, provided $\log n \ll d \ll n^{k-1}$, we can take $m \sim n d / k$, that is, the embedded k-graph contains almost all edges of the regular k-graph rather than just a positive fraction, as in [7]. The new result is also valid for $k=2$ (for the proof of this case alone, see also [10, Section 10.3]), and thus extends (1).

Theorem 1. For each $k \geq 2$ there is a positive constant C such that if for some real $\gamma=\gamma(n)$ and integer $d=d(n)$,

$$
\begin{equation*}
C\left(\left(d / n^{k-1}+(\log n) / d\right)^{1 / 3}+1 / n\right) \leq \gamma<1 \tag{3}
\end{equation*}
$$

and $m=(1-\gamma) n d / k$ is an integer, then there is a joint distribution of $\mathbb{G}^{(k)}(n, m)$ and $\mathbb{R}^{(k)}(n, d)$ with

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\mathbb{G}^{(k)}(n, m) \subset \mathbb{R}^{(k)}(n, d)\right)=1
$$

Remark. In the assumption (3) of Theorem 1 the term $1 / n$ can be omited when $k \leq 7$. Indeed, the inequality of arithmetic and geometric means implies that

$$
\left(d / n^{k-1}+(\log n) / d\right)^{1 / 3} \geq\left(2 / n^{(k-1) / 2}\right)^{1 / 3} \geq \sqrt[3]{2} / n
$$

For a given $k \geq 2$, a k-graph property is a family of k-graphs closed under isomorphisms. A k-graph property \mathcal{P} is called monotone increasing if it is preserved by adding edges (but not necessarily by adding vertices, as the example of, say, perfect matching shows).

Corollary 2. Let \mathcal{P} be a monotone increasing property of k-graphs and $\log n \ll d \ll$ n^{k-1}. If for some $m \leq(1-\gamma) n d / k$, where γ satisfies (3), $\mathbb{G}^{(k)}(n, m) \in \mathcal{P}$ a.a.s., then $\mathbb{R}^{(k)}(n, d) \in \mathcal{P}$ a.a.s.

1.3 Hamilton Cycles in Hypergraphs

To show a more specific application of Theorem 1 we consider Hamilton cycles in random regular hypergraphs.

For integers $1 \leq \ell<k$, define an ℓ-overlapping cycle (or ℓ-cycle, for short) as a k-graph in which, for some cyclic ordering of its vertices, every edge consists of k consecutive vertices, and every two consecutive edges (in the natural ordering of the edges induced by the ordering of the vertices) share exactly ℓ vertices. (For $\ell>k / 2$ it implies, of course, that some nonconsecutive edges intersect as well.) A 1-cycle is called loose and a $(k-1)$-cycle is called tight. A spanning ℓ-cycle in a k-graph H is called an ℓ-Hamilton cycle. Observe that a necessary condition for the existence of
an ℓ-Hamilton cycle is that n is divisible by $k-\ell$. We will assume this divisibility condition whenever relevant.

Let us recall the results on Hamiltonicity of random regular graphs, that is, the case $k=2$. Asymptotically almost sure Hamiltonicity of $\mathbb{R}^{(2)}(n, d)$ was proved by Robinson and Wormald [14] for fixed $d \geq 3$, by Krivelevich, Sudakov, Vu and Wormald [12] for $d \geq n^{1 / 2} \log n$, and by Cooper, Frieze and Reed [3] for $C \leq d \leq n / C$ and some large constant C.

Much less is known for random hypergraphs. Even for the standard models, the thresholds were found only recently. First, results on loose Hamiltonicity of $\mathbb{G}^{(k)}(n, p)$ were obtained by Frieze [8] (for $k=3$), Dudek and Frieze [4 (for $k \geq 4$ and $2(k-1) \mid n$), and by Dudek, Frieze, Loh and Speiss [6 (for $k \geq 3$ and $(k-1) \mid n)$. As usual, the asymptotic equivalence of the models $\mathbb{G}^{(k)}(n, p)$ and $\mathbb{G}^{(k)}(n, m)$ (see, e.g., Corollary 1.16 in [9]) allows us to reformulate the aforementioned results for the random k-graph $\mathbb{G}^{(k)}(n, m)$.

Theorem 3 ([8, 4, [6]). There is a constant $C>0$ such that if $m \geq C n \log n$, then a.a.s. $\mathbb{G}^{(3)}(n, m)$ contains a loose Hamilton cycle. Furthermore, for every $k \geq 4$ if $m \gg n \log n$, then a.a.s. $\mathbb{G}^{(k)}(n, m)$ contains a loose Hamilton cycle.

From Theorem 3 and the older embedding result (2), in [7] we concluded that there is a constant $C>0$ such that if $C \log n \leq d \ll n^{1 / 2}$, then a.a.s. $\mathbb{G}^{(3)}(n, d)$ contains a loose Hamilton cycle. Furthermore, for every $k \geq 4$ if $\log n \ll d \ll n^{1 / 2}$, then a.a.s. $\mathbb{R}^{(k)}(n, d)$ contains a loose Hamilton cycle.

Thresholds for ℓ-Hamiltonicity of $\mathbb{G}^{(k)}(n, m)$ in the remaining cases, that is, for $\ell \geq 2$, were recently determined by Dudek and Frieze [5] (see also Allen, Böttcher, Kohayakawa, and Person [1).

Theorem 4 (5).
(i) If $k>\ell=2$ and $m \gg n^{2}$, then a.a.s. $\mathbb{G}^{(k)}(n, m)$ is 2-Hamiltonian.
(ii) For all integers $k>\ell \geq 3$, there exists a constant C such that if $m \geq C n^{\ell}$ then a.a.s. $\mathbb{G}^{(k)}(n, m)$ is ℓ-Hamiltonian.

In view of Corollary 2, Theorems 3 and 4 immediately imply the following result that was already anticipated by the authors in [7].

Theorem 5.

(i) There is a constant $C>0$ such that if $C \log n \leq d \leq n^{k-1} / C$, then a.a.s. $\mathbb{R}^{(3)}(n, d)$ contains a loose Hamilton cycle. Furthermore, for every $k \geq 4$ there is a constant $C>0$ such that if $\log n \ll d \leq n^{k-1} / C$, then a.a.s. $\mathbb{R}^{(k)}(n, d)$ contains a loose Hamilton cycle.
(ii) For all integers $k>\ell=2$ there is a constant C such that if $n \ll d \leq n^{k-1} / C$ then a.a.s. $\mathbb{R}^{(k)}(n, d)$ contains a 2 -Hamilton cycle.
(iii) For all integers $k>\ell \geq 3$ there is a constant C such that if $C n^{\ell-1} \leq d \leq n^{k-1} / C$ then a.a.s. $\mathbb{R}^{(k)}(n, d)$ contains an ℓ-Hamilton cycle.

1.4 Structure of the Paper

In the following section we define a k-graph process $\left(\mathbb{R}^{(k)}(t)\right)_{t}$ which reveals edges of the random d-regular k-graph one at a time. Then we state a crucial Lemma 6, which says, loosely speaking, that unless we are very close to the end of the process, the conditional distribution of the $(t+1)$-th edge is approximately uniform over the complement of $\mathbb{R}(t)$. Based on Lemma 6, we show that a.a.s. $\mathbb{G}^{(k)}(n, m)$ can be embedded in $\mathbb{R}^{(k)}(n, d)$, by refining a coupling similar to the one the we used in [7].

In Section 3 we prove auxiliary results needed in the proof of Lemma 6. They mainly reflect the phenomenon that a typical trajectory of the d-regular process $(\mathbb{R}(t))_{t}$ has concentrated local parameters. In particular, concentration of vertex degrees is deduced from a Chernoff-type inequality (the only "external" result used in the paper), while (one-sided) concentration of common degrees of sets of vertices is obtained by an application of the switching technique (a similar application appeared in (12]).

In Section 4 we prove Lemma 6. First we rephrase it as an enumerative problem (counting the number of d-regular extensions of a given k-graph). We avoid usual difficulties of asymptotic enumeration by dealing with relative enumeration, that is, estimating the ratio of the numbers of extensions of two k-graphs which differ just in two edges. For this we define two random multi- k-graphs (via the configuration model) and couple them using yet another switching.

2 Proof of Theorem 1

We often drop the superscript in notations like $\mathbb{G}^{(k)}$ and $\mathbb{R}^{(k)}$ whenever k is clear from the context.

Let K_{n} denote the complete k-graph on vertex set $[n]$. Recall the standard k-graph process $\mathbb{G}(t), t=0, \ldots,\binom{n}{k}$ which starts with the empty k-graph $\mathbb{G}(0)=([n], \emptyset)$ and at each time step $t \geq 1$ adds an edge ε_{t} drawn from $K_{n} \backslash \mathbb{G}(t-1)$ uniformly at random. We treat $\mathbb{G}(t)$ as an ordered k-graph (that is, with an ordering of edges) and write

$$
\mathbb{G}(t)=\left(\varepsilon_{1}, \ldots, \varepsilon_{t}\right), \quad t=0, \ldots,\binom{n}{k} .
$$

Of course, the random uniform k-graph $\mathbb{G}(n, m)$ can be obtained from $\mathbb{G}(M)$ by ignoring the ordering of the edges.

Our approach is to represent $\mathbb{R}(n, d)$ as an outcome of another k-graph process which, to some extent, behaves similarly to $(\mathbb{G}(t))_{t}$. For this, generate a random
d-regular k-graph $\mathbb{R}(n, d)$ and choose an ordering $\left(\eta_{1}, \ldots, \eta_{M}\right)$ of its

$$
M:=\frac{n d}{k}
$$

edges uniformly at random. Revealing the edges of $\mathbb{R}(n, d)$ in that order one by one, we obtain a regular k-graph process

$$
\mathbb{R}(t)=\left(\eta_{1}, \ldots, \eta_{t}\right), \quad t=0, \ldots, M
$$

For every ordered k-graph G with t edges and every edge $e \in K_{n} \backslash G$ we clearly have

$$
\mathbb{P}\left(\varepsilon_{t+1}=e \mid \mathbb{G}(t)=G\right)=\frac{1}{\binom{n}{k}-t} .
$$

This is not true for $\mathbb{R}(t)$, except for the very first step $t=0$. However, it turns out that for the most of the time conditional distribution of the next edge in the process $\mathbb{R}(t)$ is approximately uniform, which is made precise by the lemma below. To formulate it we need some more definitions.

Given an ordered k-graph G, let $\mathcal{R}_{G}(n, d)$ be the family of extensions of G, that is, ordered d-regular k-graphs the first edges of which are equal to G. More precisely, setting $G=\left(e_{1}, \ldots, e_{t}\right)$,

$$
\mathcal{R}_{G}(n, d)=\left\{H=\left(f_{1}, \ldots, f_{M}\right): f_{i}=e_{i}, i=1, \ldots, t, \text { and } H \in \mathcal{R}^{(k)}(n, d)\right\}
$$

We say that a k-graph G with $t \leq M$ edges is admissible, if $\mathcal{R}_{G}(n, d) \neq \emptyset$ or, equivalently, $\mathbb{P}(\mathbb{R}(t)=G)>0$. We define

$$
\begin{equation*}
p_{t+1}(e \mid G):=\mathbb{P}\left(\eta_{t+1}=e \mid \mathbb{R}(t)=G\right), \quad t=0, \ldots, M-1 \tag{4}
\end{equation*}
$$

Given $\epsilon \in(0,1)$, we define events

$$
\begin{equation*}
\mathcal{A}_{t}=\left\{p_{t+1}(e \mid \mathbb{R}(t)) \geq \frac{1-\epsilon}{\binom{n}{k}-t} \quad \text { for every } \quad e \in K_{n} \backslash \mathbb{R}(t)\right\}, \quad t=0, \ldots, M-1 \tag{5}
\end{equation*}
$$

Now we are ready to state the main ingredient of the proof of Theorem 1.
Lemma 6. For every $k \geq 2$ there is a positive constant C^{\prime} such that if, for some real $\epsilon=\epsilon(n)$ and integer $d=d(n)$,

$$
\begin{equation*}
C^{\prime}\left(\left(d / n^{k-1}+(\log n) / d\right)^{1 / 3}+1 / n\right) \leq \epsilon<1 \tag{6}
\end{equation*}
$$

and $(1-\epsilon) M$ is an integer, then the event $\mathcal{A}:=\mathcal{A}_{0} \cap \cdots \cap \mathcal{A}_{(1-\epsilon) M-1}$ occurs a.a.s.
From Lemma 6, which is proved in Section 4, we deduce Theorem 1 using a coupling similar to the one which was used in [7].

Proof of Theorem 1. Clearly, we can pick $\epsilon \leq \gamma / 3$ such that $(1-\epsilon) M$ is integer and (1) implies (6) with C^{\prime} being some constant multiple of C.

Let us first outline the proof. We will define a k-graph process $\mathbb{R}^{\prime}(t):=\left(\eta_{1}^{\prime}, \ldots, \eta_{t}^{\prime}\right), t=$ $0, \ldots, M$ such that for every admissible k-graph G with $t \leq M-1$ edges,

$$
\begin{equation*}
\mathbb{P}\left(\eta_{t+1}^{\prime}=e \mid \mathbb{R}^{\prime}(t)=G\right)=p_{t+1}(e \mid G) \tag{7}
\end{equation*}
$$

In view of (7), the distribution of $\mathbb{R}^{\prime}(M)$ is the same as the one of $\mathbb{R}(M)$ and thus we can define $\mathbb{R}(n, d)$ as the k-graph $\mathbb{R}^{\prime}(M)$ with order of edges ignored. Then we will show that a.a.s. $\mathbb{G}(n, m)$ can be sampled from the subhypergraph $\mathbb{R}^{\prime}((1-\epsilon) M)$ of $\mathbb{R}^{\prime}(M)$.

Now come the details. Set $\mathbb{R}^{\prime}(0)$ to be an empty vector and define $\mathbb{R}^{\prime}(t)$ inductively (for $t=1,2, \ldots$) as follows. Suppose that k-graphs $R_{t}=\mathbb{R}^{\prime}(t)$ and $G_{t}=\mathbb{G}(t)$ have been exposed. Draw ε_{t+1} uniformly at random from $K_{n} \backslash G_{t}$ and, independently, generate a Bernoulli random variable ξ_{t+1} with the probability of success $1-\epsilon$. If event \mathcal{A}_{t} has occured, that is,

$$
\begin{equation*}
p_{t+1}\left(e \mid R_{t}\right) \geq \frac{1-\epsilon}{\binom{n}{k}-t} \quad \text { for every } \quad e \in K_{n} \backslash R_{t} \tag{8}
\end{equation*}
$$

then draw a random edge $\zeta_{t+1} \in K_{n} \backslash R_{t}$ according to the distribution

$$
\mathbb{P}\left(\zeta_{t+1}=e \mid \mathbb{R}^{\prime}(t)=R_{t}\right):=\frac{p_{t+1}\left(e \mid R_{t}\right)-(1-\epsilon) /\left(\binom{n}{k}-t\right)}{\epsilon} \geq 0
$$

where the inequality holds by (8). Observe also that

$$
\sum_{e \in K_{n} \backslash R_{t}} \mathbb{P}\left(\zeta_{t+1}=e \mid \mathbb{R}^{\prime}(t)=R_{t}\right)=1
$$

so ζ_{t+1} has a well-defined distribution. Finally, fix an arbitrary bijection $f_{R_{t}, G_{t}}$: $R_{t} \backslash G_{t} \rightarrow G_{t} \backslash R_{t}$ between the sets of edges and define

$$
\eta_{t+1}^{\prime}= \begin{cases}\varepsilon_{t+1}, & \text { if } \xi_{t+1}=1, \varepsilon_{t+1} \in K_{n} \backslash R_{t} \tag{9}\\ f_{R_{t}, G_{t}}\left(\varepsilon_{t+1}\right), & \text { if } \xi_{t+1}=1, \varepsilon_{t+1} \in R_{t} \\ \zeta_{t+1}, & \text { if } \xi_{t+1}=0\end{cases}
$$

If the event \mathcal{A}_{t} fails, we nevertheless generate ξ_{t+1}, whereas η_{t+1}^{\prime} is then sampled directly (without defining ζ_{t+1}) according to probabilities (4). Such a definition of η_{t+1}^{\prime} ensures that

$$
\begin{equation*}
\mathcal{A}_{t} \cap\left\{\xi_{t+1}=1\right\} \quad \Longrightarrow \quad \varepsilon_{t+1} \in \mathbb{R}^{\prime}(t+1) \tag{10}
\end{equation*}
$$

Further, define a random subsequence of edges of $\mathbb{G}((1-\epsilon) M)$,

$$
S:=\left\{\varepsilon_{i}: \xi_{i}=1, i \leq(1-\epsilon) M\right\} .
$$

Conditioning on the vector $\left(\xi_{i}\right)$ determines $|S|$. If $|S| \geq m$, we define $\mathbb{G}(n, m)$ as the first m edges of S (note that since the vectors $\left(\xi_{i}\right)$ and $\left(\varepsilon_{i}\right)$ are independent, these m edges are uniformly distributed), and if $|S|<m$, then we define $\mathbb{G}(n, m)$ as a graph with edges $\left\{\varepsilon_{1}, \ldots, \varepsilon_{m}\right\}$.

Let event \mathcal{A} be as in Lemma 6. The crucial thing is that by (10) we have

$$
\mathcal{A} \quad \Longrightarrow \quad S \subset \mathbb{R}^{\prime}(M)
$$

Therefore

$$
\mathbb{P}(\mathbb{G}(n, m) \subset \mathbb{R}(n, d)) \geq \mathbb{P}(\{|S| \geq m\} \cap \mathcal{A})
$$

Since by Lemma 6 event \mathcal{A} holds a.a.s., to complete the proof it suffices to show that $\mathbb{P}(|S|<m) \rightarrow 0$.

To this end, note that $|S|$ is a binomial random variable, namely,

$$
|S|=\sum_{i=1}^{(1-\epsilon) M} \xi_{i} \sim \operatorname{Bin}((1-\epsilon) M, 1-\epsilon)
$$

with

$$
\begin{equation*}
\mathbb{E}|S| \geq(1-2 \epsilon) M \quad \text { and } \quad \operatorname{Var}|S|=(1-\epsilon)^{2} \epsilon M \leq \epsilon M \tag{11}
\end{equation*}
$$

Recall that $\epsilon \leq \gamma / 3$ and thus $m=(1-\gamma) M \leq(1-3 \epsilon) M$. By 11), Chebyshev's inequality, and the inequality $\epsilon \geq C^{\prime} \log n / d$, which follows from (6), we get

$$
\begin{equation*}
\mathbb{P}(|S|<m) \leq \mathbb{P}(|S|-\mathbb{E}|S|<-\epsilon M) \leq \frac{\epsilon M}{(\epsilon M)^{2}}=\frac{k}{\epsilon n d} \leq \frac{k}{C^{\prime} n \log n} \rightarrow 0 \tag{12}
\end{equation*}
$$

3 Preparations for the Proof of Lemma 6

Throughout this section we adopt the assumptions of Lemma 6, that is, $(1-\epsilon) M$ is an integer and (6) holds with a sufficiently large $C^{\prime}=C^{\prime}(k) \geq 1$. In particular,

$$
\begin{align*}
& \epsilon \geq C^{\prime}(\log n / d)^{\alpha} \tag{13}\\
& \epsilon \geq C^{\prime}\left(d / n^{k-1}\right)^{\alpha} \tag{14}
\end{align*}
$$

for every $\alpha \geq 1 / 3$, and

$$
\begin{equation*}
\epsilon \geq C^{\prime} / n \tag{15}
\end{equation*}
$$

Also, let

$$
\tau=1-\frac{t}{M}
$$

Given a k-graph G with maximum degree at most d, let us define the residual degree of a vertex $v \in V(G)$ as

$$
r_{G}(v)=d-\operatorname{deg}_{G}(v) .
$$

We begin our preparations toward the proof of Lemma 6 with a fact which allows one to control the residual degrees of the evolving k-graph $\mathbb{R}(t)=\left(\eta_{1}, \ldots, \eta_{t}\right)$. For a vertex $v \in[n]$ and $t=0, \ldots, M$, define random variables

$$
R_{t}(v)=r_{\mathbb{R}(t)}(v)=\left|\left\{i \in(t, M]: v \in \eta_{i}\right\}\right| .
$$

Claim 7. For every $k \geq 2$ there is a constant $a=a(k)>0$ such that a.a.s.

$$
\begin{equation*}
\forall t \leq(1-\epsilon) M, \quad \forall v \in[n], \quad\left|R_{t}(v)-\tau d\right| \leq \sqrt{a \tau d \log n} \leq \tau d / 2-1 \tag{16}
\end{equation*}
$$

Proof. A crucial observation is that the concentration of the degrees depends solely on the random ordering of the edges and not on the structure of the k-graph $\mathbb{R}(M)$. If we fix a d-regular k-graph H and condition $\mathbb{R}(M)$ to be a random permutation of the edges of H, then $R_{t}(v)$ is a hypergeometric random variable with expectation

$$
\mathbb{E} R_{t}(v)=\frac{(M-t) d}{M}=\tau d
$$

and variance

$$
\operatorname{Var} R_{t}(v)=\frac{t d(M-t)(M-d)}{M^{2}(M-1)} \leq \frac{d(M-t)}{M}=\tau d
$$

Using Remark 2.11 in [9] together with inequalities (2.14) and (2.16) therein, we get

$$
\mathbb{P}\left(\left|R_{t}(v)-\tau d\right| \geq x\right) \leq 2 \exp \left\{-\frac{x^{2}}{2\left(\operatorname{Var} R_{t}(v)+x / 3\right)}\right\} \leq 2 \exp \left\{-\frac{x^{2}}{2 \tau d(1+x /(3 \tau d))}\right\}
$$

Let $a=3(k+2)$ and $x=\sqrt{a \tau d \log n}$. Condition (13) with $\alpha=1$ and $C^{\prime} \geq 9 a$ implies that

$$
\begin{equation*}
\tau d \geq \epsilon d \geq C^{\prime} \log n \tag{17}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
x /(\tau d)=\sqrt{a \log n /(\tau d)} \leq \sqrt{a \log n /(\epsilon d)} \leq \sqrt{a / C^{\prime}} \leq 1 / 3 . \tag{18}
\end{equation*}
$$

Hence,

$$
\mathbb{P}\left(\left|R_{t}(v)-\tau d\right| \geq \sqrt{a \tau d \log n}\right) \leq 2 \exp \left\{-\frac{a}{3} \log n\right\}=2 n^{-k-2}
$$

Since we have fewer than $n M \leq n^{k+1}$ choices of t and v, the first bound in (16) follows by taking the union bound.

The ultimate bound in (16) follows from (18), since

$$
\sqrt{a \tau d \log n}=x \leq \tau d / 3 \leq \tau d / 2-1,
$$

where the last inequality holds (for large enough n) by (17).

Recall that $\mathcal{R}_{G}(n, d)$ is the family of extensions of G to a d-regular ordered k-graph. For a k-graph $H \in \mathcal{R}_{G}(n, d)$ define the common degree (relative to subhypergraph $G \subseteq H$) of an ordered pair (u, v) of vertices as

$$
\operatorname{cod}_{H \mid G}(u, v)=\left|\left\{W \in\binom{[n]}{k-1}: W \cup u \in H, W \cup v \in H \backslash G\right\}\right|
$$

Note that $\operatorname{cod}_{H \mid G}(u, v)$ is not symmetric in u and v. Also, define the degree of a pair of vertices u, v as

$$
\operatorname{deg}_{H}(u v)=|\{e \in H:\{u, v\} \subset e\}|
$$

Claim 8. Let G be an admissible k-graph with $t+1 \leq(1-\epsilon) M$ edges such that

$$
\begin{equation*}
r_{G}(v) \leq 2 \tau d \quad \forall v \in[n] \tag{19}
\end{equation*}
$$

Suppose that \mathbb{R}_{G} is a k-graph chosen uniformly at random from $\mathcal{R}_{G}(n, d)$. There are constants C_{0}, C_{1}, and C_{2}, depending on k only such that the following holds.
For each $e \in K_{n} \backslash G$,

$$
\begin{equation*}
\mathbb{P}\left(e \in \mathbb{R}_{G}\right) \leq \frac{C_{0} \tau d}{n^{k-1}} \tag{20}
\end{equation*}
$$

Moreover, if $\ell \geq \ell_{1}:=C_{1} \tau d / n$, then for every $u, v \in[n], u \neq v$,

$$
\begin{equation*}
\mathbb{P}\left(\operatorname{deg}_{\mathbb{R}_{G} \backslash G}(u v)>s\right) \leq 2^{-\left(\ell-\ell_{1}\right)} \tag{21}
\end{equation*}
$$

Also, if $\ell \geq \ell_{2}:=C_{2} \tau d^{2} / n^{k-1}$, then for every $u, v \in[n], u \neq v$,

$$
\begin{equation*}
\mathbb{P}\left(\operatorname{cod}_{\mathbb{R}_{G} \mid G}(u, v)>\ell\right) \leq 2^{-\left(\ell-\ell_{2}\right)} \tag{22}
\end{equation*}
$$

Proof. To prove 20) define families of ordered k-graphs

$$
\mathcal{R}_{e \in}=\left\{H \in \mathcal{R}_{G}(n, d): e \in H\right\} \quad \text { and } \quad \mathcal{R}_{e \notin}=\left\{H \in \mathcal{R}_{G}(n, d): e \notin H\right\} .
$$

and observe that

$$
\mathbb{P}\left(e \in \mathbb{R}_{G}\right) \leq \frac{\left|\mathcal{R}_{e \in}\right|}{\left|\mathcal{R}_{e \notin}\right|}
$$

In order to estimate this ratio, define an auxiliary bipartite graph B between $\mathcal{R}_{e \in}$ and $\mathcal{R}_{e \notin}$ in which $H \in \mathcal{R}_{e \in}$ is connected to $H^{\prime} \in \mathcal{R}_{e \notin}$ whenever H^{\prime} can be obtained from H by the following operation (known as switching in the literature dating back to McKay [13]). Let $e=e_{1}=\left\{v_{1,1} \ldots v_{1, k}\right\}$ and pick $k-1$ more edges

$$
e_{i}=\left\{v_{i, 1} \ldots v_{i, k}\right\} \in H \backslash G, \quad i=2, \ldots, k
$$

(with vertices in the increasing order within each edge) so that all k edges are disjoint. Replace, for each $j=1, \ldots, k$, the edge e_{j} by

$$
f_{j}:=\left\{v_{1, j} \ldots v_{k, j}\right\}
$$

Figure 1: Switching (for $k=3$): before (a) and after (b).
to obtain H^{\prime} (see Figure 1).
Let $f(H)$ be the number of k-graphs $H^{\prime} \in \mathcal{R}_{e \notin}$ which can be obtained from H, and $b\left(H^{\prime}\right)$ be the number of k-graphs $H \in \mathcal{R}_{e \in}$ from which H^{\prime} can be obtained. Thus,

$$
\begin{equation*}
\left|\mathcal{R}_{e \in}\right| \cdot \min _{H \in \mathcal{R}_{e \in}} f(H) \leq|E(B)| \leq\left|\mathcal{R}_{e \notin}\right| \cdot \max _{H^{\prime}} b\left(H^{\prime}\right) . \tag{23}
\end{equation*}
$$

Note that $H \backslash G$ and $H^{\prime} \backslash G$ each have $\tau M-1$ edges and, by (19), maximum degrees at most $2 \tau d$. To estimate $f(H)$, note that because each edge intersects at most $k \cdot 2 \tau d$ other edges of $H \backslash G$, the number of ways to choose an unordered ($k-1$)-tuple $\left\{e_{2}, \ldots, e_{k}\right\}$ is at least

$$
\begin{equation*}
\frac{1}{(k-1)!} \prod_{i=1}^{k-1}(\tau M-1-i k \cdot 2 \tau d) \geq\left(\tau M-k^{2} \cdot 2 \tau d\right)^{k-1} /(k-1)! \tag{24}
\end{equation*}
$$

The number of such $(k-1)$-tuples that may lead to a double edge after the switching (by repeating some edge of H which intersects e_{1}), is at most $k d \cdot(2 \tau d)^{k-1}$. Thus,

$$
\begin{aligned}
f(H) & \geq \frac{\left(\tau M-2 k^{2} \tau d\right)^{k-1}}{(k-1)!}-k(2 \tau)^{k-1} d^{k} \\
& =\frac{(\tau M)^{k-1}}{(k-1)!}\left(\left(1-\frac{2 k^{2} d}{M}\right)^{k-1}-\frac{k!(2 \tau)^{k-1} d^{k}}{(\tau M)^{k-1}}\right) \\
& =\frac{(\tau M)^{k-1}}{(k-1)!}\left(\left(1-\frac{2 k^{3}}{n}\right)^{k-1}-\frac{k!(2 k)^{k-1} d}{n^{k-1}}\right) \\
& \geq \frac{(\tau M)^{k-1}}{(k-1)!}\left(1-\frac{2 k^{4}}{n}-\frac{(2 k)^{2 k} d}{n^{k-1}}\right) .
\end{aligned}
$$

By (14) with $\alpha=1$, (15), and sufficiently large C^{\prime}, we have

$$
\frac{2 k^{4}}{n}+\frac{(2 k)^{2 k} d}{n^{k-1}} \leq \frac{\epsilon\left(2 k^{4}+(2 k)^{2 k}\right)}{C^{\prime}} \leq 1 / 2 .
$$

Hence,

$$
\begin{equation*}
f(H) \geq \frac{(\tau M)^{k-1}}{2(k-1)!} \tag{25}
\end{equation*}
$$

In order to bound $b\left(H^{\prime}\right)$ from above note that there are at most $(2 \tau d)^{k}$ ways to choose a sequence $f_{1}, \ldots, f_{k} \in H^{\prime} \backslash G$ such that $v_{1, i} \in f_{i}$ and we can reconstruct the $k-1$ tuple e_{2}, \ldots, e_{k} in at most $((k-1)!)^{k-1}$ ways (by fixing an ordering of vertices of f_{1} and permuting vertices in other f_{i} 's). Therefore $b\left(H^{\prime}\right) \leq((k-1)!)^{k-1} \cdot(2 \tau d)^{k}$. This, with (23) and 25 implies that

$$
\mathbb{P}\left(e \in \mathbb{R}_{G}\right) \leq \frac{\left|\mathcal{R}_{e \in}\right|}{\left|\mathcal{R}_{e \notin}\right|} \leq \frac{\max _{H^{\prime} \in \mathcal{R}_{e \notin}} b\left(H^{\prime}\right)}{\min _{H \in \mathcal{R}_{e \in}} f(H)} \leq \frac{2((k-1)!)^{k}(2 \tau d)^{k}}{(\tau M)^{k-1}}=\frac{C_{0} \tau d}{n^{k-1}}
$$

for some constant $C_{0}=C_{0}(k)$. This concludes the proof of 20).
To prove (21), fix $u, v \in[n]$ and define the families

$$
\mathcal{R}_{1}(\ell)=\left\{H \in \mathcal{R}_{G}(n, d): \operatorname{deg}_{H \backslash G}(u v)=\ell\right\}, \quad \ell=0,1, \ldots .
$$

In order to compare sizes of $\mathcal{R}_{1}(\ell)$ and $\mathcal{R}_{1}(\ell-1)$ we define the following switching which maps a k-graph $H \in \mathcal{R}_{1}(\ell)$ to a k-graph $H^{\prime} \in \mathcal{R}_{1}(\ell-1)$. Select $e_{1} \in H \backslash G$ contributing to $\operatorname{deg}_{H \backslash G}(u v)$ and pick $k-1$ edges $e_{2}, \ldots, e_{k} \in H \backslash G$ so that e_{1}, \ldots, e_{k} are disjoint. Writing $e_{i}=v_{i, 1} \ldots v_{i, k}, i=1, \ldots, k$ with $u=v_{1,1}$ and $v=v_{1,2}$, replace e_{1}, \ldots, e_{k} by $f_{j}=v_{1, j} \ldots v_{k, j}, j=1, \ldots, k$ (as in Figure 11).

Noting that this time e_{1} can be chosen in ℓ ways, we get a lower bound on $f(H)$ very similar to that in (25):

$$
f(H) \geq \ell\left(\left(\tau M-2 k^{2} \tau d\right)^{k-1} /(k-1)!-k(2 \tau)^{k-1} d^{k}\right) \geq \frac{\ell(\tau M)^{k-1}}{2(k-1)!}
$$

For the upper bound for $b\left(H^{\prime}\right)$ we choose two disjoint edges in $H^{\prime} \backslash G$ containing u and v, respectively, and then $k-2$ more edges in $H^{\prime} \backslash G$ not containing u and v so that all edges are disjoint. Crudely bounding number of permutations of vertices inside each of f_{1}, \ldots, f_{k} by $(k!)^{k}$, we get $b\left(H^{\prime}\right) \leq(k!)^{k}(2 \tau d)^{2}(\tau M)^{k-2}$. We obtain

$$
\frac{\left|\mathcal{R}_{1}(\ell)\right|}{\left|\mathcal{R}_{1}(\ell-1)\right|} \leq \frac{\max _{H^{\prime} \in \mathcal{R}_{1}(\ell-1)} b\left(H^{\prime}\right)}{\min _{H \in \mathcal{R}_{1}(\ell)} f(H)} \leq \frac{2(k!)^{k+1}(2 \tau d)^{2}(\tau M)^{k-2}}{\ell(\tau M)^{k-1}} \leq \frac{8(k!)^{k+1} \tau d}{\ell n} \leq \frac{1}{2},
$$

by assumption $\ell \geq \ell_{1}=C_{1} \tau d / n$ and appropriate choice of constant C_{1}. Further,

$$
\begin{align*}
\mathbb{P}\left(\operatorname{deg}_{\mathbb{R}_{G} \backslash G}(u, v)>\ell\right) \leq \sum_{i>\ell} & \frac{\left|\mathcal{R}_{1}(i)\right|}{\left|\mathcal{R}_{G}(n, d)\right|} \leq \sum_{i>\ell} \frac{\left|\mathcal{R}_{1}(i)\right|}{\left|\mathcal{R}_{1}\left(\ell_{1}\right)\right|} \\
& =\sum_{i>\ell} \prod_{j=\ell_{1}+1}^{i} \frac{\left|\mathcal{R}_{1}(j)\right|}{\left|\mathcal{R}_{1}(j-1)\right|} \leq \sum_{i>\ell} 2^{-\left(i-\ell_{1}\right)}=2^{-\left(\ell-\ell_{1}\right)} \tag{26}
\end{align*}
$$

which completes the proof of (21).
It remains to show (22). Fix $u, v \in[n]$ and define the families

$$
\mathcal{R}_{2}(\ell)=\left\{H \in \mathcal{R}_{G}(n, d): \operatorname{cod}_{H \mid G}(u, v)=\ell\right\}, \quad \ell=0,1, \ldots
$$

We compare sizes of $\mathcal{R}_{2}(\ell)$ and $\mathcal{R}_{2}(\ell-1)$ using the following switching. Select two edges $e_{0} \in H$ and $e_{1} \in H \backslash G$ contributing to $\operatorname{cod}_{H \mid G}(u, v)$, that is, such that $e_{0} \backslash u=$ $e_{1} \backslash v$; pick $k-1$ other edges $e_{2}, \ldots, e_{k} \in H \backslash G$ so that e_{1}, \ldots, e_{k} are disjoint. Writing $e_{i}=v_{i, 1} \ldots v_{i, k}, i=1, \ldots, k$ with $v=v_{1,1}$, replace e_{1}, \ldots, e_{k} by $f_{j}=v_{1, j} \ldots v_{k, j}$, $j=1, \ldots, k$ (see Figure 2).

We estimate $f(H)$ by first fixing a pair e_{0}, e_{1} in one of ℓ ways. The number of choices of e_{2}, \ldots, e_{k} is bounded as in (24). However, we subtract not just at most $k d \cdot(2 \tau d)^{k-1}(k-1)$-tuples which may create double edges, but also $(k-1)$-tuples for which $f_{1} \backslash\{v\} \cup\{u\} \in H$ which prevents $\operatorname{cod}(u, v)$ from being decreased. There are at most $d \cdot(2 \tau d)^{k-1}$ of such $(k-1)$-tuples, hence

$$
\begin{aligned}
f(H) & \geq \ell\left(\frac{\left(\tau M-k^{2} \cdot 2 \tau d\right)^{k-1}}{(k-1)!}-(k+1) d \cdot(2 \tau d)^{k-1}\right) \\
& =\frac{\ell(\tau M)^{k-1}}{(k-1)!}\left(\left(1-\frac{2 k^{2} d}{M}\right)^{k-1}-(k+1)(k-1)!d\left(\frac{2 d}{M}\right)^{k-1}\right) \\
& =\frac{\ell(\tau M)^{k-1}}{(k-1)!}\left(\left(1-\frac{2 k^{3}}{n}\right)^{k-1}-(k+1)(k-1)!d\left(\frac{2 k}{n}\right)^{k-1}\right) \\
& \geq \frac{\ell(\tau M)^{k-1}}{(k-1)!}\left(1-\frac{2 k^{4}}{n}-(k+1)!(2 k)^{k} \frac{d}{n^{k-1}}\right) \\
& \geq \frac{\ell(\tau M)^{k-1}}{2(k-1)!}
\end{aligned}
$$

where the last inequality follows from (14) with $\alpha=1$ and (15) with sufficiently large C^{\prime}.

Conversely, H can be reconstructed from H^{\prime} by choosing an edge $e_{0} \in H^{\prime}$ containing u but not containing v and then k disjoint edges $f_{j} \in H^{\prime} \backslash G$, each containing

Figure 2: Switching (for $k=3$): before (a) and after (b).
exactly one vertex from $\left(e_{0} \backslash u\right) \cup v$ and permuting the vertices inside $f_{2} \backslash v_{1,2}, \ldots, f_{k} \backslash v_{1, k}$ in at most $((k-1)!)^{k-1}$ ways. Therefore $b\left(H^{\prime}\right) \leq((k-1)!)^{k-1} d(2 \tau d)^{k}$. Clearly,
$\frac{\left|\mathcal{R}_{2}(\ell)\right|}{\left|\mathcal{R}_{2}(\ell-1)\right|} \leq \frac{\max _{H^{\prime} \in \mathcal{R}_{2}(\ell-1)} b\left(H^{\prime}\right)}{\min _{H \in \mathcal{R}_{2}(\ell)} f(H)} \leq \frac{d(2 \tau d)^{k} \cdot 2((k-1)!)^{k}}{\ell(\tau M)^{k-1}} \leq \frac{2^{k+1}((k-1)!)^{k} k^{k-1} \tau d^{2}}{n^{k-1} \ell} \leq \frac{1}{2}$,
by the assumption $\ell \geq \ell_{2}=C_{2} \tau d^{2} / n^{k-1}$ and appropriate choice of constant C_{2}. Now (22) follows from similar computations to (21).

This finishes the proof of Claim 8 .

4 Proof of Lemma 6

In this section we prove the crucial Lemma 6. In view of Claim 7 it suffices to show that

$$
\begin{equation*}
\mathbb{P}\left(\eta_{t+1}=e \mid \mathbb{R}(t)=G\right) \geq \frac{1-\epsilon}{\binom{n}{k}-t}, \quad \forall e \in K_{n} \backslash G \tag{27}
\end{equation*}
$$

for every $t \leq(1-\epsilon) M-1$ and every admissible G such that

$$
\begin{equation*}
d(\tau-\delta) \leq r_{G}(v) \leq d(\tau+\delta), \quad v \in[n], \tag{28}
\end{equation*}
$$

where

$$
\tau=1-t / M \quad \text { and } \quad \delta=\sqrt{a \tau(\log n) / d}
$$

In some cases the following simpler bounds (implied by the second inequality in (16)) on $r_{G}(v)$ will suffice:

$$
\begin{equation*}
\tau d / 2+1 \leq r_{G}(v) \leq 2 \tau d, \quad v \in[n] \tag{29}
\end{equation*}
$$

Since the average of $\mathbb{P}\left(\eta_{t+1}=e \mid \mathbb{R}(t)=G\right)$ over $e \in K_{n} \backslash G$ is exactly $1 /\left(\binom{n}{k}-t\right)$, there is $f \in K_{n} \backslash G$ such that

$$
\begin{equation*}
\mathbb{P}\left(\eta_{t+1}=f \mid \mathbb{R}(t)=G\right) \geq \frac{1}{\binom{n}{k}-t} \tag{30}
\end{equation*}
$$

Fix any such f and let $e \in K_{n} \backslash G$ be arbitrary. Setting $\mathcal{R}_{f}:=\mathcal{R}_{G \cup f}(n, d)$ and $\mathcal{R}_{e}:=\mathcal{R}_{G \cup e}(n, d)$, we have

$$
\begin{equation*}
\frac{\mathbb{P}\left(\eta_{t+1}=e \mid \mathbb{R}(t)=G\right)}{\mathbb{P}\left(\eta_{t+1}=f \mid \mathbb{R}(t)=G\right)}=\frac{\left|\mathcal{R}_{G \cup e}(n, d)\right|}{\left|\mathcal{R}_{G \cup f}(n, d)\right|}=\frac{\left|\mathcal{R}_{e}\right|}{\left|\mathcal{R}_{f}\right|} \tag{31}
\end{equation*}
$$

To bound this ratio, we need to appeal to the configuration model for hypergraphs. Let $\mathbb{M}_{G}(n, d)$ be a random multi- k-graph extension of G to an ordered d-regular multi-k-graph. Namely, $\mathbb{M}_{G}(n, d)$ is a sequence of M edges (each of which is a k-element multiset of vertices), the first t of which comprise G, while the remaining ones are generated by taking a random uniform permutation Π of the multiset

$$
\{1, \ldots, 1, \ldots, n, \ldots, n\}
$$

with multiplicities $r_{G}(v), v \in[n]$, and splitting it into consecutive k-tuples.
The number of such permutations is

$$
N_{G}:=\frac{(k(M-t))!}{\prod_{v \in[n]} r_{G}(v)!}
$$

Since each simple extension of G is given by the same number $(k!)^{M-t}$ of permutations, $\mathbb{M}_{G}(n, d)$ is uniform over $\mathcal{R}_{G}(n, d)$. That is, $\mathbb{M}_{G}(n, d)$, conditioned on simplicity, has the same distribution as $\mathbb{R}_{G}(n, d)$.

Set

$$
\mathbb{M}_{e}=\mathbb{M}_{G \cup e}(n, d) \quad \text { and } \quad \mathbb{M}_{f}=\mathbb{M}_{G \cup f}(n, d),
$$

for convenience. Noting that $G \cup f$ has $t+1$ edges, we have

$$
\mathbb{P}\left(\mathbb{M}_{f} \in \mathcal{R}_{f}\right)=\frac{\left|\mathcal{R}_{f}\right|(k!)^{M-t-1}}{N_{G \cup f}}=\frac{\left|\mathcal{R}_{f}\right|(k!)^{M-t-1} \prod_{v \in[n]} r_{G \cup f}(v)!}{(k(M-t-1))!}
$$

and similarly for \mathbb{M}_{e} and \mathcal{R}_{e}. This yields, after a few cancelations, that

$$
\begin{equation*}
\frac{\left|\mathcal{R}_{e}\right|}{\left|\mathcal{R}_{f}\right|}=\frac{\prod_{v \in e \backslash f} r_{G}(v)}{\prod_{v \in f \backslash e} r_{G}(v)} \cdot \frac{\mathbb{P}\left(\mathbb{M}_{e} \in \mathcal{R}_{e}\right)}{\mathbb{P}\left(\mathbb{M}_{f} \in \mathcal{R}_{f}\right)} \tag{32}
\end{equation*}
$$

The ratio of the products in (32) is, by (28), at least

$$
\left(\frac{\tau-\delta}{\tau+\delta}\right)^{k} \geq\left(1-\frac{2 \delta}{\tau}\right)^{k} \geq 1-2 k \sqrt{\frac{a \log n}{\tau d}} \geq 1-2 k \sqrt{\frac{a \log n}{\epsilon d}} \geq 1-\epsilon / 2
$$

where the last inequality holds by (13) with $\alpha=1 / 3$ and $C^{\prime} \geq \sqrt[3]{16 a k^{2}}$. On the other hand, the ratio of probabilities in (32) will be shown in Claim 9 below to be at least $1-\epsilon / 2$. Consequently, the entire ratio in (32), and thus in (31), will be at least $1-\epsilon$, which, in view of (30), will imply (27) and yield the lemma.

Hence, to complete the proof of Lemma 6 it remains to show that the probabilities of simplicity $\mathbb{P}\left(\mathbb{M}_{e} \in \mathcal{R}_{e}\right)$ are asymptotically the same for all $e \in K_{n} \backslash G$. Recall that for every edge $e \in K_{n} \backslash G$ we write

$$
\begin{equation*}
\mathbb{M}_{e}=\mathbb{M}_{G \cup e}(n, d) \quad \text { and } \quad \mathcal{R}_{e}=\mathcal{R}_{G \cup e}(n, d) \tag{33}
\end{equation*}
$$

Claim 9. If G, e, and f are as above, then, for every $e \in K_{n} \backslash G$,

$$
\frac{\mathbb{P}\left(\mathbb{M}_{e} \in \mathcal{R}_{e}\right)}{\mathbb{P}\left(\mathbb{M}_{f} \in \mathcal{R}_{f}\right)} \geq 1-\epsilon / 2
$$

Proof. We start by constructing a coupling of \mathbb{M}_{e} and \mathbb{M}_{f} in which they differ in at most $k+1$ edges (counting in the replacement of f by e at the $(t+1)$-th position).

Let $f=u_{1} \ldots u_{k}$ and $e=v_{1} \ldots v_{k}$. Further, let $r=k-|f \cap e|$ and suppose without loss of generality that $\left\{u_{1} \ldots u_{r}\right\} \cap\left\{v_{1} \ldots v_{r}\right\}=\emptyset$. Let Π_{f} be a random permutation underlying the multi- k-graph \mathbb{M}_{f}. Note that Π_{f} differs from any permutation Π_{e} underlying \mathbb{M}_{e} by having the multiplicities of v_{1}, \ldots, v_{r} greater by one, and the multiplicities of u_{1}, \ldots, u_{r} smaller by one than the corresponding multiplicities in Π_{e}.

Let Π^{*} be obtained from Π_{f} by replacing, for each $i=1, \ldots, r$, a copy of v_{i} selected uniformly at random by u_{i}. Define \mathbb{M}^{*} by chopping Π^{*} into consecutive k-tuples and appending them to $G \cup e$ (see Figure 3).

It is easy to see that Π^{*} is uniform over all permutations of the multiset

$$
\{1, \ldots, 1, \ldots, n, \ldots, n\}
$$

with multiplicities $r_{G \cup e}(v), v \in[n]$. This means that \mathbb{M}^{*} has the same distribution as \mathbb{M}_{e} and thus we will further identify \mathbb{M}^{*} and \mathbb{M}_{e}.

Observe that if we condition \mathbb{M}_{f} on being a simple k-graph H, then \mathbb{M}_{e} can be equivalently obtained by the following switching: (i) replace edge f by e; (ii) for each $i=1, \ldots, r$, choose, uniformly at random, an edge $e_{i} \in H \backslash(G \cup f)$ incident to v_{i} and replace it by $\left(e_{i} \backslash v_{i}\right) \cup u_{i}$ (see Figure 4). Of course, some of e_{i} 's may coincide. For example, if $e_{i_{1}}=\cdots=e_{i_{l}}$, then the effect of the switching is that $e_{i_{1}}$ is replaced by $\left(e_{i_{1}} \backslash\left\{v_{i_{1}}, \ldots, v_{i_{l}}\right\}\right) \cup\left\{u_{i_{1}}, \ldots, u_{i_{l}}\right\}$.

Figure 3: Obtaining \mathbb{M}_{e} from \mathbb{M}_{f} for $k=r=3$ by altering the underlying permutation.

Figure 4: Obtaining \mathbb{M}_{e} from \mathbb{M}_{f} for $k=r=2$: only relevant edges are displayed; the ones belonging to $\mathbb{M}_{f} \backslash(G \cup f)$ are shown as solid lines.

The crucial idea is that such a switching is unlikely to create loops or multiple edges. However, for certain H this might not true. For example, if $e \in H \backslash(G \cup f)$, then the random choice of e_{i} 's in step (ii) is unlikely to destroy e, but in step (i) edge f has been replaced by an additional copy of e, thus creating a double edge. Moreover, if almost every $(k-1)$-tuple of vertices extending v_{i} to an edge in $H \backslash(G \cup f)$ also extends u_{i} to an edge in H, then most likely the replacement of v_{i} by u_{i} will create a double edge too. To avoid such and other bad instances, we say that $H \in \mathcal{R}_{f}$ is nice if the following three properties hold

$$
\begin{gather*}
e \notin H \tag{34}\\
\max _{i=1, \ldots, r} \operatorname{deg}_{H \backslash(G \cup f)}\left(u_{i} v_{i}\right) \leq \ell_{1}+k \log _{2} n, \tag{35}\\
\max _{i=1, \ldots, r} \operatorname{cod}_{H \mid G \cup f}\left(u_{i}, v_{i}\right) \leq \ell_{2}+k \log _{2} n, \tag{36}
\end{gather*}
$$

where $\ell_{1}=C_{1} \tau d / n$ and $\ell_{2}=C_{2} \tau d^{2} / n^{k-1}$ are as in Claim8. Note that \mathbb{M}_{f}, conditioned on $\mathbb{M}_{f} \in \mathcal{R}_{f}$, is distributed uniformly over $\mathcal{R}_{G \cup f}(n, d)$. Since we chose f such that by (30) is satisfied, we have that k-graph $G \cup f$ is admissible. Therefore by Claim 8 we have

$$
\begin{align*}
\mathbb{P}\left(\mathbb{M}_{f} \text { is not nice } \mid \mathbb{M}_{f} \in \mathcal{R}_{f}\right) & \leq \frac{C_{0} \tau d}{n^{k-1}}+2 \cdot r 2^{-k \log _{2} n} \\
& \leq \frac{C_{0} d+2 k}{n^{k-1}} \leq \frac{\epsilon}{4} \tag{37}
\end{align*}
$$

where the last inequality follows by (14) with $\alpha=1$ and sufficiently large constant C^{\prime}. By standard probability, we have

$$
\begin{align*}
\frac{\mathbb{P}\left(\mathbb{M}_{e} \in \mathcal{R}_{e}\right)}{\mathbb{P}\left(\mathbb{M}_{f} \in \mathcal{R}_{f}\right)} & \geq \mathbb{P}\left(\mathbb{M}_{e} \in \mathcal{R}_{e} \mid \mathbb{M}_{f} \in \mathcal{R}_{f}\right) \\
& \geq \mathbb{P}\left(\mathbb{M}_{e} \in \mathcal{R}_{e} \mid \mathbb{M}_{f} \text { is nice }\right) \mathbb{P}\left(\mathbb{M}_{f} \text { is nice } \mid \mathbb{M}_{f} \in \mathcal{R}_{f}\right) \tag{38}
\end{align*}
$$

It suffices to show that

$$
\begin{equation*}
\mathbb{P}\left(\mathbb{M}_{e} \in \mathcal{R}_{e} \mid \mathbb{M}_{f} \text { is nice }\right) \geq 1-\epsilon / 4 \tag{39}
\end{equation*}
$$

since in view of (37) and (39), inequality (38) completes the proof of the claim.
Now we prove (39). Fix a nice k-graph $H \in \mathcal{R}_{f}$ and condition on the event $\mathbb{M}_{f}=H$. The event that \mathbb{M}_{e} is not simple is contained in the union of the following four events:

$$
\begin{aligned}
& \mathcal{E}_{1}=\left\{\text { two of the randomly chosen edges } e_{1}, \ldots, e_{r} \text { coincide }\right\}, \\
& \mathcal{E}_{2}=\left\{\left(e_{i} \backslash v_{i}\right) \cup u_{i} \text { is a loop for some } i=1, \ldots, r\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{E}_{3}=\left\{\left(e_{i} \backslash v_{i}\right) \cup u_{i} \in H \text { for some } i=1, \ldots, r\right\} \\
& \mathcal{E}_{4}=\left\{\left(e_{i} \backslash v_{i}\right) \cup u_{i}=\left(e_{j} \backslash v_{j}\right) \cup u_{j} \text { for some distinct } i \text { and } j\right\} .
\end{aligned}
$$

Event \mathcal{E}_{1} covers all cases when a double edge is created by replacing several vertices in the same edge. Creation of multiple edges in other ways is addressed by events \mathcal{E}_{3} and \mathcal{E}_{4}.

In what follows we will several times use the fact that

$$
\begin{equation*}
\operatorname{deg}_{H \backslash(G \cup f)}(v) \geq \tau d / 2 \geq \epsilon d / 2, \quad \forall v \in[n], \tag{40}
\end{equation*}
$$

which is immediate from (29) and $\tau \geq \epsilon$. To bound the probability of \mathcal{E}_{1}, observe that, given $1 \leq i<j \leq r$, the number of choices of a coinciding pair $e_{i}=e_{j}$ is $\operatorname{deg}_{H \backslash(G \cup f)}\left(v_{i} v_{j}\right) \leq \operatorname{deg}_{H \backslash(G \cup f)}\left(v_{i}\right)$ and the probability that both v_{i} and v_{j} actually select a fixed common edge is $\left(\operatorname{deg}_{H \backslash(G \cup f)}\left(v_{i}\right) \operatorname{deg}_{H \backslash(G \cup f)}\left(v_{j}\right)\right)^{-1}$. Therefore using (40) we obtain

$$
\begin{array}{r}
\mathbb{P}\left(\mathcal{E}_{1} \mid \mathbb{M}_{f}=H\right) \leq \sum_{1 \leq i<j \leq r} \frac{\operatorname{deg}_{H \backslash(G \cup f)}\left(v_{i} v_{j}\right)}{\operatorname{deg}_{H \backslash(G \cup f)}\left(v_{i}\right) \operatorname{deg}_{H \backslash(G \cup f)}\left(v_{j}\right)} \leq \sum_{1 \leq i<j \leq r} \frac{1}{\operatorname{deg}_{H \backslash(G \cup f)}\left(v_{j}\right)} \\
\leq \frac{2\binom{k}{2}}{\epsilon d} \leq \frac{\epsilon}{16}, \tag{41}
\end{array}
$$

where the last inequality follows from (13) with $\alpha=1 / 2$ and sufficiently large C^{\prime}.
To bound the probability of \mathcal{E}_{2}, note that a loop in \mathbb{M}_{e} can only be created when for some $i=1, \ldots, r$, the randomly chosen edge e_{i} contains both v_{i} and u_{i}. There are at most $\operatorname{deg}_{H \backslash(G \cup f)}\left(u_{i} v_{i}\right)$ such edges. Therefore, by (35) and 40) we get

$$
\begin{align*}
& \mathbb{P}\left(\mathcal{E}_{2} \mid \mathbb{M}_{f}=H\right) \leq \sum_{i=1}^{r} \frac{\operatorname{deg}_{H \backslash(G \cup f)}\left(u_{i} v_{i}\right)}{\operatorname{deg}_{H \backslash(G \cup f)}\left(v_{i}\right)} \leq \frac{2 k\left(\ell_{1}+k \log _{2} n\right)}{\tau d} \\
& \leq \frac{2 k \ell_{1}}{\tau d}+\frac{2 k^{2} \log _{2} n}{\epsilon d}=\frac{2 k C_{1}}{n}+\frac{2 k^{2} \log _{2} n}{\epsilon d} \leq \frac{\epsilon}{16}, \tag{42}
\end{align*}
$$

where the last inequality is implied by (13) with $\alpha=1 / 2,(15)$ and sufficiently large C^{\prime}.
Similarly we bound the probability of \mathcal{E}_{3}, the event that for some i we will choose $e_{i} \in H \backslash(G \cup f)$ with $\left(e_{i} \backslash v_{i}\right) \cup u_{i} \in H$. There are $\operatorname{cod}_{H \mid G \cup f}\left(u_{i}, v_{i}\right)$ such edges. Thus, by (36) and (40) we obtain

$$
\begin{align*}
& \mathbb{P}\left(\mathcal{E}_{3} \mid \mathbb{M}_{f}=H\right) \leq \sum_{i=1}^{r} \frac{\operatorname{cod}_{H \mid G \cup f}\left(u_{i}, v_{i}\right)}{\operatorname{deg}_{H \backslash(G \cup f)}\left(v_{i}\right)} \leq \frac{2 k\left(\ell_{2}+k \log _{2} n\right)}{\tau d} \\
& \leq \frac{2 k \ell_{2}}{\tau d}+\frac{2 k^{2} \log _{2} n}{\tau d} \leq \frac{2 k C_{2} d}{n^{k-1}}+\frac{2 k \log _{2} n}{\epsilon d} \leq \frac{\epsilon}{16}, \tag{43}
\end{align*}
$$

where the last inequality follows from (13) with $\alpha=1 / 2$, (14) with $\alpha=1$ and sufficiently large C^{\prime}.

Finally, note that, given $1 \leq i<j \leq r$, if a pair $e_{i}, e_{j} \in H \backslash(G \cup f)$ satisfies the condition in \mathcal{E}_{4}, then the edge e_{j} is uniquely determined by e_{i}. Therefore the number of such pairs is at $\operatorname{most}^{\operatorname{deg}_{H \backslash(G \cup f)}}\left(v_{i}\right)$ and we get exactly the same bound as in (41):

$$
\begin{equation*}
\mathbb{P}\left(\mathcal{E}_{4} \mid \mathbb{M}_{f}=H\right) \leq \sum_{1 \leq i<j \leq r} \frac{1}{\operatorname{deg}_{H \backslash(G \cup f)}\left(v_{j}\right)} \leq \frac{\epsilon}{16} \tag{44}
\end{equation*}
$$

Combining (41)-(44) and averaging over nice H, we obtain (39), as required.

5 Concluding Remarks

Theorem 1 remains valid if we replace random hypergraph $\mathbb{G}^{(k)}(n, m)$ by $\mathbb{G}^{(k)}(n, p)$ with $p=(1-2 \gamma) d /\binom{n-1}{k-1}$, say. To see this one can modify the proof of Theorem 1 as follows. Let $B_{n} \sim \operatorname{Bin}\left(\binom{n}{k}, p\right)$ be a random variable independent of the process $(\mathbb{G}(t))_{t}$. If $B_{n} \leq m \leq|S|$, sample $\mathbb{G}^{(k)}(n, p)$ by taking the first B_{n} edges of S (which are uniformly distributed over all k-graphs with B_{n} edges). Otherwise sample $\mathbb{G}^{(k)}(n, p)$ among k-graphs with B_{n} edges independently. In view of the assumption (3), Chernoff's inequality (see [9, (2.5)]) and (12) imply

$$
\mathbb{P}\left(\mathbb{G}^{(k)}(n, p) \not \subset \mathbb{R}^{(k)}(n, d)\right) \leq \mathbb{P}\left(B_{n}>m\right)+\mathbb{P}(|S|<m) \rightarrow 0, \quad \text { as } \quad n \rightarrow \infty
$$

The lower bound on d in Theorem 1 is necessary because the second moment method applied to $\mathbb{G}^{(k)}(n, p)$ (cf. Theorem 3.1(ii) in [2]) and asymptotic equivalence of $\mathbb{G}^{(k)}(n, p)$ and $\mathbb{G}^{(k)}(n, m)$ yields that for $d=o(\log n)$ and $m \sim c M$ there is a sequence $\Delta=\Delta(n) \gg d$ such that the maximum degree $\mathbb{G}^{(k)}(n, m)$ is at least Δ a.a.s.

In view of the above, our approach cannot be extended to $d=O(\log n)$ in part (i) of Theorem 5. Nevertheless, we believe (as it was already stated in [7]) that for loose Hamilton cycles it suffices to assume that $d=\Omega(1)$.

Conjecture 1. For every $k \geq 3$ there is a constant d_{k} such that if $d \geq d_{k}$, then a.a.s. $\mathbb{R}^{(k)}(n, d)$ contains a loose Hamilton cycle.

We also believe that the lower bounds on d in parts (iii) and (iiii) of Theorem 5 are of optimal order.

Conjecture 2. For all integers $k>\ell \geq 2$ if $d \ll n^{\ell-1}$, then a.a.s. $\mathbb{R}^{(k)}(n, d)$ is not ℓ-Hamiltonian.

References

[1] P. Allen, J. Böttcher, Y. Kohayakawa, and Y. Person. Tight Hamilton cycles in random hypergraphs. Random Structures Algorithms, 46(3):446-465, 2015.
[2] B. Bollobás. Random graphs, volume 73 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 2001.
[3] C. Cooper, A. Frieze, and B. Reed. Random regular graphs of non-constant degree: connectivity and Hamiltonicity. Combin. Probab. Comput., 11(3):249261, 2002.
[4] A. Dudek and A. Frieze. Loose Hamilton cycles in random uniform hypergraphs. Electron. J. Combin., 18(1):Paper 48, pp. 14, 2011.
[5] A. Dudek and A. Frieze. Tight Hamilton cycles in random uniform hypergraphs. Random Structures Algorithms, 42(3):374-385, 2013.
[6] A. Dudek, A. Frieze, P.-S. Loh, and S. Speiss. Optimal divisibility conditions for loose Hamilton cycles in random hypergraphs. Electron. J. Combin., 19(4):Paper 44, pp. 17, 2012.
[7] A. Dudek, A. Frieze, A. Ruciński, and M. Šileikis. Loose Hamilton cycles in regular hypergraphs. Combin. Probab. Comput., 24(1):179-194, 2015.
[8] A. Frieze. Loose Hamilton cycles in random 3-uniform hypergraphs. Electron. J. Combin., 17(1):Note 28, pp. 4, 2010.
[9] S. Janson, T. Łuczak, and A. Rucinski. Random graphs. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience, New York, 2000.
[10] M. Karoński and A. Frieze. Introduction to Random Graphs. Cambridge University Press, 2015. http://www.math.cmu.edu/~af1p/Book.html.
[11] J. H. Kim and V. H. Vu. Sandwiching random graphs: universality between random graph models. Adv. Math., 188(2):444-469, 2004.
[12] M. Krivelevich, B. Sudakov, V. H. Vu, and N. C. Wormald. Random regular graphs of high degree. Random Structures Algorithms, 18(4):346-363, 2001.
[13] B. D. McKay. Asymptotics for symmetric 0-1 matrices with prescribed row sums. Ars Combin., 19(A):15-25, 1985.
[14] R. W. Robinson and N. C. Wormald. Almost all regular graphs are Hamiltonian. Random Structures Algorithms, 5(2):363-374, 1994.

[^0]: *Project sponsored by the National Security Agency under Grant Number H98230-15-1-0172. The United States Government is authorized to reproduce and distribute reprints notwithstanding any copyright notation hereon.
 ${ }^{\dagger}$ Supported in part by NSF grant CCF 1013110.
 \ddagger Supported in part by the Polish NSC grant 2014/15/B/ST1/01688 and NSF grant DMS 1102086.
 ${ }^{\S}$ Supported in part by the Knut and Alice Wallenberg Foundation.
 ${ }^{\text {a }}$ Part of research performed during a visit to the Institut Mittag-Leffler (Djursholm, Sweden).

