Embedding the Erdős-Rényi Hypergraph into the Random Regular Hypergraph and Hamiltonicity

ANDRZEJ DUDEK^{1*¶} ALAN FRIEZE^{2†} ANDRZEJ RUCIŃSKI^{3‡¶} MATAS ŠILEIKIS^{4§¶}

¹Department of Mathematics, Western Michigan University, Kalamazoo, MI andrzej.dudek@wmich.edu

²Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA alan@random.math.cmu.edu

³Department of Discrete Mathematics, Adam Mickiewicz University, Poznań, Poland rucinski@amu.edu.pl

⁴Mathematical Institute, University of Oxford, United Kingdom matas.sileikis@gmail.com

August 25, 2015

Abstract

We establish an inclusion relation between two uniform models of random k-graphs (for constant $k \geq 2$) on n labeled vertices: $\mathbb{G}^{(k)}(n,m)$, the random k-graph with m edges, and $\mathbb{R}^{(k)}(n,d)$, the random d-regular k-graph. We show that if $n \log n \ll m \ll n^k$ we can choose $d = d(n) \sim km/n$ and couple $\mathbb{G}^{(k)}(n,m)$ and $\mathbb{R}^{(k)}(n,d)$ so that the latter contains the former with probability tending to one as $n \to \infty$. This extends some previous results of Kim and Vu about "sandwiching random graphs". In view of known threshold theorems on the existence of different types of Hamilton cycles in $\mathbb{G}^{(k)}(n,m)$, our result allows us to find conditions under which $\mathbb{R}^{(k)}(n,d)$ is Hamiltonian. In particular, for $k \geq 3$ we conclude that if $n^{k-2} \ll d \ll n^{k-1}$, then a.a.s. $\mathbb{R}^{(k)}(n,d)$ contains a tight Hamilton cycle.

^{*}Project sponsored by the National Security Agency under Grant Number H98230-15-1-0172. The United States Government is authorized to reproduce and distribute reprints notwithstanding any copyright notation hereon.

[†]Supported in part by NSF grant CCF 1013110.

[‡]Supported in part by the Polish NSC grant 2014/15/B/ST1/01688 and NSF grant DMS 1102086.

[§]Supported in part by the Knut and Alice Wallenberg Foundation.

[¶]Part of research performed during a visit to the Institut Mittag-Leffler (Djursholm, Sweden).

1 Introduction

1.1 Background

A k-uniform hypergraph (or k-graph for short) on a vertex set $V = [n] = \{1, ..., n\}$ is an ordered pair G = (V, E) where E is a family of k-element subsets of V. The degree of a vertex v in G is defined as

$$\deg_G(v) := |\{e \in E : v \in e\}|.$$

A k-graph is d-regular if the degree of every vertex is d. Let $\mathcal{R}^{(k)}(n,d)$ be the family of all d-regular k-graphs on V. Throughout, we tacitly assume that k divides nd. By $\mathbb{R}^{(k)}(n,d)$ we denote the d-regular random k-graph, which is chosen uniformly at random from $\mathcal{R}^{(k)}(n,d)$.

Let us recall two more standard models of random k-graphs on n vertices. For $p \in [0,1]$, the binomial random k-graph $\mathbb{G}^{(k)}(n,p)$ is obtained by including each of the $\binom{n}{k}$ possible edges with probability p, independently of others. Further, for an integer $m \in [0,\binom{n}{k}]$, the uniform random k-graph $\mathbb{G}^{(k)}(n,m)$ is chosen uniformly at random among all $\binom{n}{k}$ k-graphs on V with precisely m edges.

We study the behavior of these random k-graphs as $n \to \infty$. Parameters d, m, p are treated as functions of n and typically tend to infinity in case of d, m, or zero, in case of p. Given a sequence of events (\mathcal{A}_n) , we say that \mathcal{A}_n holds asymptotically almost surely (a.a.s.) if $\mathbb{P}(\mathcal{A}_n) \to 1$, as $n \to \infty$.

In 2004, Kim and Vu [11] proved that if $d = o(n^{1/3}/\log^2 n)$ then there exists a coupling (that is, a joint distribution) of the random graphs $\mathbb{G}^{(2)}(n,p)$ and $\mathbb{R}^{(2)}(n,d)$ with $p = \frac{d}{n} \left(1 - O\left((\log n/d)^{1/3}\right)\right)$ such that

$$\mathbb{G}^{(2)}(n,p) \subset \mathbb{R}^{(2)}(n,d) \quad \text{a.a.s.} \tag{1}$$

They pointed out several consequences of this result, emphasizing the ease with which one can carry over known properties of $\mathbb{G}^{(2)}(n,p)$ to the harder to study regular model $\mathbb{R}^{(2)}(n,d)$. Kim and Vu conjectured that such a coupling is possible for all $d \gg \log n$ (they also conjectured a reverse embedding which is not of our interest here). In [7] we considered a (slightly weaker) extension of Kim and Vu's result to k-graphs, $k \geq 3$, and proved that

$$\mathbb{G}^{(k)}(n,m) \subset \mathbb{R}^{(k)}(n,d) \quad \text{a.a.s.}$$
 (2)

whenever $C \log n \le d \ll n^{1/2}$ and $m \sim cnd$ for some absolute large constant C and a sufficiently small constant c = c(k) > 0. Although (2) is stated for the uniform k-graph $\mathbb{G}^{(k)}(n,m)$, it is easy to see that one can replace $\mathbb{G}^{(k)}(n,m)$ by $\mathbb{G}^{(k)}(n,p)$ with $p = m/\binom{n}{k}$ (see Section 5).

1.2 The Main Result

In this paper we extend (2) to larger degrees, assuming only $d \leq cn^{k-1}$ for some constant c = c(k). Moreover, our result implies that, provided $\log n \ll d \ll n^{k-1}$, we can take $m \sim nd/k$, that is, the embedded k-graph contains almost all edges of the regular k-graph rather than just a positive fraction, as in [7]. The new result is also valid for k = 2 (for the proof of this case alone, see also [10, Section 10.3]), and thus extends (1).

Theorem 1. For each $k \geq 2$ there is a positive constant C such that if for some real $\gamma = \gamma(n)$ and integer d = d(n),

$$C\left(\left(d/n^{k-1} + (\log n)/d\right)^{1/3} + 1/n\right) \le \gamma < 1,$$
 (3)

and $m = (1 - \gamma)nd/k$ is an integer, then there is a joint distribution of $\mathbb{G}^{(k)}(n,m)$ and $\mathbb{R}^{(k)}(n,d)$ with

$$\lim_{n \to \infty} \mathbb{P}\left(\mathbb{G}^{(k)}(n, m) \subset \mathbb{R}^{(k)}(n, d)\right) = 1.$$

Remark. In the assumption (3) of Theorem 1 the term 1/n can be omited when k < 7. Indeed, the inequality of arithmetic and geometric means implies that

$$(d/n^{k-1} + (\log n)/d)^{1/3} \ge (2/n^{(k-1)/2})^{1/3} \ge \sqrt[3]{2}/n.$$

For a given $k \geq 2$, a k-graph property is a family of k-graphs closed under isomorphisms. A k-graph property \mathcal{P} is called *monotone increasing* if it is preserved by adding edges (but not necessarily by adding vertices, as the example of, say, perfect matching shows).

Corollary 2. Let \mathcal{P} be a monotone increasing property of k-graphs and $\log n \ll d \ll n^{k-1}$. If for some $m \leq (1-\gamma)nd/k$, where γ satisfies (3), $\mathbb{G}^{(k)}(n,m) \in \mathcal{P}$ a.a.s., then $\mathbb{R}^{(k)}(n,d) \in \mathcal{P}$ a.a.s.

1.3 Hamilton Cycles in Hypergraphs

To show a more specific application of Theorem 1 we consider Hamilton cycles in random regular hypergraphs.

For integers $1 \leq \ell < k$, define an ℓ -overlapping cycle (or ℓ -cycle, for short) as a k-graph in which, for some cyclic ordering of its vertices, every edge consists of k consecutive vertices, and every two consecutive edges (in the natural ordering of the edges induced by the ordering of the vertices) share exactly ℓ vertices. (For $\ell > k/2$ it implies, of course, that some nonconsecutive edges intersect as well.) A 1-cycle is called loose and a (k-1)-cycle is called tight. A spanning ℓ -cycle in a k-graph H is called an ℓ -Hamilton cycle. Observe that a necessary condition for the existence of

an ℓ -Hamilton cycle is that n is divisible by $k-\ell$. We will assume this divisibility condition whenever relevant.

Let us recall the results on Hamiltonicity of random regular graphs, that is, the case k=2. Asymptotically almost sure Hamiltonicity of $\mathbb{R}^{(2)}(n,d)$ was proved by Robinson and Wormald [14] for fixed $d\geq 3$, by Krivelevich, Sudakov, Vu and Wormald [12] for $d\geq n^{1/2}\log n$, and by Cooper, Frieze and Reed [3] for $C\leq d\leq n/C$ and some large constant C.

Much less is known for random hypergraphs. Even for the standard models, the thresholds were found only recently. First, results on loose Hamiltonicity of $\mathbb{G}^{(k)}(n,p)$ were obtained by Frieze [8] (for k=3), Dudek and Frieze [4] (for $k\geq 4$ and 2(k-1)|n), and by Dudek, Frieze, Loh and Speiss [6] (for $k\geq 3$ and (k-1)|n). As usual, the asymptotic equivalence of the models $\mathbb{G}^{(k)}(n,p)$ and $\mathbb{G}^{(k)}(n,m)$ (see, e.g., Corollary 1.16 in [9]) allows us to reformulate the aforementioned results for the random k-graph $\mathbb{G}^{(k)}(n,m)$.

Theorem 3 ([8, 4, 6]). There is a constant C > 0 such that if $m \ge Cn \log n$, then a.a.s. $\mathbb{G}^{(3)}(n,m)$ contains a loose Hamilton cycle. Furthermore, for every $k \ge 4$ if $m \gg n \log n$, then a.a.s. $\mathbb{G}^{(k)}(n,m)$ contains a loose Hamilton cycle.

From Theorem 3 and the older embedding result (2), in [7] we concluded that there is a constant C > 0 such that if $C \log n \le d \ll n^{1/2}$, then a.a.s. $\mathbb{G}^{(3)}(n,d)$ contains a loose Hamilton cycle. Furthermore, for every $k \ge 4$ if $\log n \ll d \ll n^{1/2}$, then a.a.s. $\mathbb{R}^{(k)}(n,d)$ contains a loose Hamilton cycle.

Thresholds for ℓ -Hamiltonicity of $\mathbb{G}^{(k)}(n,m)$ in the remaining cases, that is, for $\ell \geq 2$, were recently determined by Dudek and Frieze [5] (see also Allen, Böttcher, Kohayakawa, and Person [1]).

Theorem 4 ([5]).

- (i) If $k > \ell = 2$ and $m \gg n^2$, then a.a.s. $\mathbb{G}^{(k)}(n,m)$ is 2-Hamiltonian.
- (ii) For all integers $k > \ell \geq 3$, there exists a constant C such that if $m \geq Cn^{\ell}$ then a.a.s. $\mathbb{G}^{(k)}(n,m)$ is ℓ -Hamiltonian.

In view of Corollary 2, Theorems 3 and 4 immediately imply the following result that was already anticipated by the authors in [7].

Theorem 5.

- (i) There is a constant C > 0 such that if $C \log n \le d \le n^{k-1}/C$, then a.a.s. $\mathbb{R}^{(3)}(n,d)$ contains a loose Hamilton cycle. Furthermore, for every $k \ge 4$ there is a constant C > 0 such that if $\log n \ll d \le n^{k-1}/C$, then a.a.s. $\mathbb{R}^{(k)}(n,d)$ contains a loose Hamilton cycle.
- (ii) For all integers $k > \ell = 2$ there is a constant C such that if $n \ll d \leq n^{k-1}/C$ then a.a.s. $\mathbb{R}^{(k)}(n,d)$ contains a 2-Hamilton cycle.

(iii) For all integers $k > \ell \ge 3$ there is a constant C such that if $Cn^{\ell-1} \le d \le n^{k-1}/C$ then a.a.s. $\mathbb{R}^{(k)}(n,d)$ contains an ℓ -Hamilton cycle.

1.4 Structure of the Paper

In the following section we define a k-graph process $(\mathbb{R}^{(k)}(t))_t$ which reveals edges of the random d-regular k-graph one at a time. Then we state a crucial Lemma 6, which says, loosely speaking, that unless we are very close to the end of the process, the conditional distribution of the (t+1)-th edge is approximately uniform over the complement of $\mathbb{R}(t)$. Based on Lemma 6, we show that a.a.s. $\mathbb{G}^{(k)}(n,m)$ can be embedded in $\mathbb{R}^{(k)}(n,d)$, by refining a coupling similar to the one the we used in [7].

In Section 3 we prove auxiliary results needed in the proof of Lemma 6. They mainly reflect the phenomenon that a typical trajectory of the d-regular process $(\mathbb{R}(t))_t$ has concentrated local parameters. In particular, concentration of vertex degrees is deduced from a Chernoff-type inequality (the only "external" result used in the paper), while (one-sided) concentration of common degrees of sets of vertices is obtained by an application of the switching technique (a similar application appeared in [12]).

In Section 4 we prove Lemma 6. First we rephrase it as an enumerative problem (counting the number of d-regular extensions of a given k-graph). We avoid usual difficulties of asymptotic enumeration by dealing with relative enumeration, that is, estimating the ratio of the numbers of extensions of two k-graphs which differ just in two edges. For this we define two random multi-k-graphs (via the configuration model) and couple them using yet another switching.

2 Proof of Theorem 1

We often drop the superscript in notations like $\mathbb{G}^{(k)}$ and $\mathbb{R}^{(k)}$ whenever k is clear from the context.

Let K_n denote the complete k-graph on vertex set [n]. Recall the standard k-graph process $\mathbb{G}(t), t = 0, \ldots, \binom{n}{k}$ which starts with the empty k-graph $\mathbb{G}(0) = ([n], \emptyset)$ and at each time step $t \geq 1$ adds an edge ε_t drawn from $K_n \setminus \mathbb{G}(t-1)$ uniformly at random. We treat $\mathbb{G}(t)$ as an ordered k-graph (that is, with an ordering of edges) and write

$$\mathbb{G}(t) = (\varepsilon_1, \dots, \varepsilon_t), \qquad t = 0, \dots, \binom{n}{k}.$$

Of course, the random uniform k-graph $\mathbb{G}(n,m)$ can be obtained from $\mathbb{G}(M)$ by ignoring the ordering of the edges.

Our approach is to represent $\mathbb{R}(n,d)$ as an outcome of another k-graph process which, to some extent, behaves similarly to $(\mathbb{G}(t))_t$. For this, generate a random

d-regular k-graph $\mathbb{R}(n,d)$ and choose an ordering (η_1,\ldots,η_M) of its

$$M := \frac{nd}{k}$$

edges uniformly at random. Revealing the edges of $\mathbb{R}(n,d)$ in that order one by one, we obtain a regular k-graph process

$$\mathbb{R}(t) = (\eta_1, \dots, \eta_t), \qquad t = 0, \dots, M.$$

For every ordered k-graph G with t edges and every edge $e \in K_n \setminus G$ we clearly have

$$\mathbb{P}\left(\varepsilon_{t+1} = e \mid \mathbb{G}(t) = G\right) = \frac{1}{\binom{n}{k} - t}.$$

This is not true for $\mathbb{R}(t)$, except for the very first step t=0. However, it turns out that for the most of the time conditional distribution of the next edge in the process $\mathbb{R}(t)$ is approximately uniform, which is made precise by the lemma below. To formulate it we need some more definitions.

Given an ordered k-graph G, let $\mathcal{R}_G(n,d)$ be the family of extensions of G, that is, ordered d-regular k-graphs the first edges of which are equal to G. More precisely, setting $G = (e_1, \ldots, e_t)$,

$$\mathcal{R}_G(n,d) = \{ H = (f_1, \dots, f_M) : f_i = e_i, i = 1, \dots, t, \text{ and } H \in \mathcal{R}^{(k)}(n,d) \}.$$

We say that a k-graph G with $t \leq M$ edges is admissible, if $\mathcal{R}_G(n,d) \neq \emptyset$ or, equivalently, $\mathbb{P}(\mathbb{R}(t) = G) > 0$. We define

$$p_{t+1}(e|G) := \mathbb{P}(\eta_{t+1} = e \mid \mathbb{R}(t) = G), \quad t = 0, \dots, M-1.$$
 (4)

Given $\epsilon \in (0,1)$, we define events

$$\mathcal{A}_t = \left\{ p_{t+1}(e|\mathbb{R}(t)) \ge \frac{1-\epsilon}{\binom{n}{k}-t} \quad \text{for every} \quad e \in K_n \setminus \mathbb{R}(t) \right\}, \quad t = 0, \dots, M-1. \tag{5}$$

Now we are ready to state the main ingredient of the proof of Theorem 1.

Lemma 6. For every $k \geq 2$ there is a positive constant C' such that if, for some real $\epsilon = \epsilon(n)$ and integer d = d(n),

$$C'\left((d/n^{k-1} + (\log n)/d)^{1/3} + 1/n\right) \le \epsilon < 1 \tag{6}$$

and $(1-\epsilon)M$ is an integer, then the event $\mathcal{A} := \mathcal{A}_0 \cap \cdots \cap \mathcal{A}_{(1-\epsilon)M-1}$ occurs a.a.s.

From Lemma 6, which is proved in Section 4, we deduce Theorem 1 using a coupling similar to the one which was used in [7].

Proof of Theorem 1. Clearly, we can pick $\epsilon \leq \gamma/3$ such that $(1 - \epsilon)M$ is integer and (1) implies (6) with C' being some constant multiple of C.

Let us first outline the proof. We will define a k-graph process $\mathbb{R}'(t) := (\eta'_1, \dots, \eta'_t), t = 0, \dots, M$ such that for every admissible k-graph G with $t \leq M - 1$ edges,

$$\mathbb{P}\left(\eta_{t+1}' = e \,|\, \mathbb{R}'(t) = G\right) = p_{t+1}(e|G). \tag{7}$$

In view of (7), the distribution of $\mathbb{R}'(M)$ is the same as the one of $\mathbb{R}(M)$ and thus we can define $\mathbb{R}(n,d)$ as the k-graph $\mathbb{R}'(M)$ with order of edges ignored. Then we will show that a.a.s. $\mathbb{G}(n,m)$ can be sampled from the subhypergraph $\mathbb{R}'((1-\epsilon)M)$ of $\mathbb{R}'(M)$.

Now come the details. Set $\mathbb{R}'(0)$ to be an empty vector and define $\mathbb{R}'(t)$ inductively (for t = 1, 2, ...) as follows. Suppose that k-graphs $R_t = \mathbb{R}'(t)$ and $G_t = \mathbb{G}(t)$ have been exposed. Draw ε_{t+1} uniformly at random from $K_n \setminus G_t$ and, independently, generate a Bernoulli random variable ξ_{t+1} with the probability of success $1 - \epsilon$. If event A_t has occurred, that is,

$$p_{t+1}(e|R_t) \ge \frac{1-\epsilon}{\binom{n}{k}-t}$$
 for every $e \in K_n \setminus R_t$, (8)

then draw a random edge $\zeta_{t+1} \in K_n \setminus R_t$ according to the distribution

$$\mathbb{P}(\zeta_{t+1} = e | \mathbb{R}'(t) = R_t) := \frac{p_{t+1}(e | R_t) - (1 - \epsilon) / (\binom{n}{k} - t)}{\epsilon} \ge 0,$$

where the inequality holds by (8). Observe also that

$$\sum_{e \in K_t \setminus R_t} \mathbb{P}\left(\zeta_{t+1} = e | \mathbb{R}'(t) = R_t\right) = 1,$$

so ζ_{t+1} has a well-defined distribution. Finally, fix an arbitrary bijection f_{R_t,G_t} : $R_t \setminus G_t \to G_t \setminus R_t$ between the sets of edges and define

$$\eta'_{t+1} = \begin{cases}
\varepsilon_{t+1}, & \text{if } \xi_{t+1} = 1, \varepsilon_{t+1} \in K_n \setminus R_t, \\
f_{R_t, G_t}(\varepsilon_{t+1}), & \text{if } \xi_{t+1} = 1, \varepsilon_{t+1} \in R_t, \\
\zeta_{t+1}, & \text{if } \xi_{t+1} = 0.
\end{cases}$$
(9)

If the event A_t fails, we nevertheless generate ξ_{t+1} , whereas η'_{t+1} is then sampled directly (without defining ζ_{t+1}) according to probabilities (4). Such a definition of η'_{t+1} ensures that

$$\mathcal{A}_t \cap \{\xi_{t+1} = 1\} \implies \varepsilon_{t+1} \in \mathbb{R}'(t+1).$$
 (10)

Further, define a random subsequence of edges of $\mathbb{G}((1-\epsilon)M)$,

$$S := \{ \varepsilon_i : \xi_i = 1, i \le (1 - \epsilon)M \}.$$

Conditioning on the vector (ξ_i) determines |S|. If $|S| \geq m$, we define $\mathbb{G}(n, m)$ as the first m edges of S (note that since the vectors (ξ_i) and (ε_i) are independent, these m edges are uniformly distributed), and if |S| < m, then we define $\mathbb{G}(n, m)$ as a graph with edges $\{\varepsilon_1, \ldots, \varepsilon_m\}$.

Let event A be as in Lemma 6. The crucial thing is that by (10) we have

$$\mathcal{A} \implies S \subset \mathbb{R}'(M).$$

Therefore

$$\mathbb{P}\left(\mathbb{G}(n,m)\subset\mathbb{R}(n,d)\right)\geq\mathbb{P}\left(\left\{ |S|\geq m\right\}\cap\mathcal{A}\right).$$

Since by Lemma 6 event \mathcal{A} holds a.a.s., to complete the proof it suffices to show that $\mathbb{P}(|S| < m) \to 0$.

To this end, note that |S| is a binomial random variable, namely,

$$|S| = \sum_{i=1}^{(1-\epsilon)M} \xi_i \sim \text{Bin}((1-\epsilon)M, 1-\epsilon),$$

with

$$\mathbb{E}|S| \ge (1 - 2\epsilon)M$$
 and $\operatorname{Var}|S| = (1 - \epsilon)^2 \epsilon M \le \epsilon M$. (11)

Recall that $\epsilon \leq \gamma/3$ and thus $m = (1 - \gamma)M \leq (1 - 3\epsilon)M$. By (11), Chebyshev's inequality, and the inequality $\epsilon \geq C' \log n/d$, which follows from (6), we get

$$\mathbb{P}(|S| < m) \le \mathbb{P}(|S| - \mathbb{E}|S| < -\epsilon M) \le \frac{\epsilon M}{(\epsilon M)^2} = \frac{k}{\epsilon nd} \le \frac{k}{C'n \log n} \to 0.$$
 (12)

3 Preparations for the Proof of Lemma 6

Throughout this section we adopt the assumptions of Lemma 6, that is, $(1 - \epsilon)M$ is an integer and (6) holds with a sufficiently large $C' = C'(k) \ge 1$. In particular,

$$\epsilon \ge C'(\log n/d)^{\alpha},\tag{13}$$

$$\epsilon \ge C' (d/n^{k-1})^{\alpha} \tag{14}$$

for every $\alpha \geq 1/3$, and

$$\epsilon \ge C'/n. \tag{15}$$

Also, let

$$\tau = 1 - \frac{t}{M}.$$

Given a k-graph G with maximum degree at most d, let us define the residual degree of a vertex $v \in V(G)$ as

$$r_G(v) = d - \deg_G(v).$$

We begin our preparations toward the proof of Lemma 6 with a fact which allows one to control the residual degrees of the evolving k-graph $\mathbb{R}(t) = (\eta_1, \dots, \eta_t)$. For a vertex $v \in [n]$ and $t = 0, \dots, M$, define random variables

$$R_t(v) = r_{\mathbb{R}(t)}(v) = |\{i \in (t, M] : v \in \eta_i\}|.$$

Claim 7. For every $k \geq 2$ there is a constant a = a(k) > 0 such that a.a.s.

$$\forall t \le (1 - \epsilon)M, \quad \forall v \in [n], \quad |R_t(v) - \tau d| \le \sqrt{a\tau d \log n} \le \tau d/2 - 1.$$
 (16)

Proof. A crucial observation is that the concentration of the degrees depends solely on the random ordering of the edges and not on the structure of the k-graph $\mathbb{R}(M)$. If we fix a d-regular k-graph H and condition $\mathbb{R}(M)$ to be a random permutation of the edges of H, then $R_t(v)$ is a hypergeometric random variable with expectation

$$\mathbb{E}R_t(v) = \frac{(M-t)d}{M} = \tau d,$$

and variance

$$\operatorname{Var} R_t(v) = \frac{t d(M-t)(M-d)}{M^2(M-1)} \le \frac{d(M-t)}{M} = \tau d.$$

Using Remark 2.11 in [9] together with inequalities (2.14) and (2.16) therein, we get

$$\mathbb{P}(|R_t(v) - \tau d| \ge x) \le 2 \exp\left\{-\frac{x^2}{2(\text{Var}R_t(v) + x/3)}\right\} \le 2 \exp\left\{-\frac{x^2}{2\tau d(1 + x/(3\tau d))}\right\}.$$

Let a = 3(k+2) and $x = \sqrt{a\tau d \log n}$. Condition (13) with $\alpha = 1$ and $C' \ge 9a$ implies that

$$\tau d \ge \epsilon d \ge C' \log n. \tag{17}$$

Therefore

$$x/(\tau d) = \sqrt{a \log n/(\tau d)} \le \sqrt{a \log n/(\epsilon d)} \le \sqrt{a/C'} \le 1/3.$$
 (18)

Hence,

$$\mathbb{P}\left(|R_t(v) - \tau d| \ge \sqrt{a\tau d \log n}\right) \le 2 \exp\left\{-\frac{a}{3} \log n\right\} = 2n^{-k-2}.$$

Since we have fewer than $nM \leq n^{k+1}$ choices of t and v, the first bound in (16) follows by taking the union bound.

The ultimate bound in (16) follows from (18), since

$$\sqrt{a\tau d\log n} = x \le \tau d/3 \le \tau d/2 - 1,$$

where the last inequality holds (for large enough n) by (17).

Recall that $\mathcal{R}_G(n,d)$ is the family of extensions of G to a d-regular ordered k-graph. For a k-graph $H \in \mathcal{R}_G(n,d)$ define the *common degree* (relative to subhypergraph $G \subseteq H$) of an ordered pair (u,v) of vertices as

$$\operatorname{cod}_{H|G}(u,v) = \left| \left\{ W \in \binom{[n]}{k-1} : W \cup u \in H, W \cup v \in H \setminus G \right\} \right|.$$

Note that $cod_{H|G}(u, v)$ is not symmetric in u and v. Also, define the degree of a pair of vertices u, v as

$$\deg_H(uv) = |\{e \in H : \{u, v\} \subset e\}|.$$

Claim 8. Let G be an admissible k-graph with $t+1 \leq (1-\epsilon)M$ edges such that

$$r_G(v) \le 2\tau d \qquad \forall v \in [n].$$
 (19)

Suppose that \mathbb{R}_G is a k-graph chosen uniformly at random from $\mathcal{R}_G(n,d)$. There are constants C_0, C_1 , and C_2 , depending on k only such that the following holds. For each $e \in K_n \setminus G$,

$$\mathbb{P}\left(e \in \mathbb{R}_G\right) \le \frac{C_0 \tau d}{n^{k-1}}.\tag{20}$$

Moreover, if $\ell \geq \ell_1 := C_1 \tau d/n$, then for every $u, v \in [n], u \neq v$,

$$\mathbb{P}\left(\deg_{\mathbb{R}_G\backslash G}(uv) > s\right) \le 2^{-(\ell-\ell_1)}.\tag{21}$$

Also, if $\ell \geq \ell_2 := C_2 \tau d^2 / n^{k-1}$, then for every $u, v \in [n], u \neq v$,

$$\mathbb{P}\left(\operatorname{cod}_{\mathbb{R}_G|G}(u,v) > \ell\right) \le 2^{-(\ell-\ell_2)}.\tag{22}$$

Proof. To prove (20) define families of ordered k-graphs

$$\mathcal{R}_{e\in} = \{ H \in \mathcal{R}_G(n, d) : e \in H \} \quad \text{and} \quad \mathcal{R}_{e\notin} = \{ H \in \mathcal{R}_G(n, d) : e \notin H \}.$$

and observe that

$$\mathbb{P}\left(e \in \mathbb{R}_G\right) \le \frac{|\mathcal{R}_{e \in}|}{|\mathcal{R}_{e \notin}|}.$$

In order to estimate this ratio, define an auxiliary bipartite graph B between $\mathcal{R}_{e\in}$ and $\mathcal{R}_{e\notin}$ in which $H \in \mathcal{R}_{e\in}$ is connected to $H' \in \mathcal{R}_{e\notin}$ whenever H' can be obtained from H by the following operation (known as *switching* in the literature dating back to McKay [13]). Let $e = e_1 = \{v_{1,1} \dots v_{1,k}\}$ and pick k-1 more edges

$$e_i = \{v_{i,1} \dots v_{i,k}\} \in H \setminus G, \qquad i = 2, \dots, k$$

(with vertices in the increasing order within each edge) so that all k edges are disjoint. Replace, for each j = 1, ..., k, the edge e_j by

$$f_i := \{v_{1,i} \dots v_{k,i}\}$$

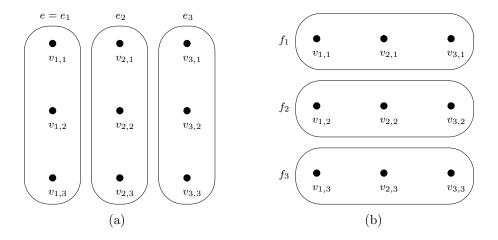


Figure 1: Switching (for k = 3): before (a) and after (b).

to obtain H' (see Figure 1).

Let f(H) be the number of k-graphs $H' \in \mathcal{R}_{e\notin}$ which can be obtained from H, and b(H') be the number of k-graphs $H \in \mathcal{R}_{e\in}$ from which H' can be obtained. Thus,

$$|\mathcal{R}_{e\in}| \cdot \min_{H\in\mathcal{R}_{e\in}} f(H) \le |E(B)| \le |\mathcal{R}_{e\notin}| \cdot \max_{H'} b(H'). \tag{23}$$

Note that $H \setminus G$ and $H' \setminus G$ each have $\tau M - 1$ edges and, by (19), maximum degrees at most $2\tau d$. To estimate f(H), note that because each edge intersects at most $k \cdot 2\tau d$ other edges of $H \setminus G$, the number of ways to choose an unordered (k-1)-tuple $\{e_2, \ldots, e_k\}$ is at least

$$\frac{1}{(k-1)!} \prod_{i=1}^{k-1} (\tau M - 1 - ik \cdot 2\tau d) \ge (\tau M - k^2 \cdot 2\tau d)^{k-1} / (k-1)!. \tag{24}$$

The number of such (k-1)-tuples that may lead to a double edge after the switching (by repeating some edge of H which intersects e_1), is at most $kd \cdot (2\tau d)^{k-1}$. Thus,

$$f(H) \ge \frac{(\tau M - 2k^2 \tau d)^{k-1}}{(k-1)!} - k(2\tau)^{k-1} d^k$$

$$= \frac{(\tau M)^{k-1}}{(k-1)!} \left(\left(1 - \frac{2k^2 d}{M} \right)^{k-1} - \frac{k!(2\tau)^{k-1} d^k}{(\tau M)^{k-1}} \right)$$

$$= \frac{(\tau M)^{k-1}}{(k-1)!} \left(\left(1 - \frac{2k^3}{n} \right)^{k-1} - \frac{k!(2k)^{k-1} d}{n^{k-1}} \right)$$

$$\ge \frac{(\tau M)^{k-1}}{(k-1)!} \left(1 - \frac{2k^4}{n} - \frac{(2k)^{2k} d}{n^{k-1}} \right).$$

By (14) with $\alpha = 1$, (15), and sufficiently large C', we have

$$\frac{2k^4}{n} + \frac{(2k)^{2k}d}{n^{k-1}} \le \frac{\epsilon(2k^4 + (2k)^{2k})}{C'} \le 1/2.$$

Hence,

$$f(H) \ge \frac{(\tau M)^{k-1}}{2(k-1)!}. (25)$$

In order to bound b(H') from above note that there are at most $(2\tau d)^k$ ways to choose a sequence $f_1, \ldots, f_k \in H' \setminus G$ such that $v_{1,i} \in f_i$ and we can reconstruct the k-1-tuple e_2, \ldots, e_k in at most $((k-1)!)^{k-1}$ ways (by fixing an ordering of vertices of f_1 and permuting vertices in other f_i 's). Therefore $b(H') \leq ((k-1)!)^{k-1} \cdot (2\tau d)^k$. This, with (23) and (25) implies that

$$\mathbb{P}\left(e \in \mathbb{R}_G\right) \le \frac{|\mathcal{R}_{e \in I}|}{|\mathcal{R}_{e \notin I}|} \le \frac{\max_{H' \in \mathcal{R}_{e \notin I}} b(H')}{\min_{H \in \mathcal{R}_{e \in I}} f(H)} \le \frac{2((k-1)!)^k (2\tau d)^k}{(\tau M)^{k-1}} = \frac{C_0 \tau d}{n^{k-1}},$$

for some constant $C_0 = C_0(k)$. This concludes the proof of (20).

To prove (21), fix $u, v \in [n]$ and define the families

$$\mathcal{R}_1(\ell) = \left\{ H \in \mathcal{R}_G(n, d) : \deg_{H \setminus G}(uv) = \ell \right\}, \qquad \ell = 0, 1, \dots$$

In order to compare sizes of $\mathcal{R}_1(\ell)$ and $\mathcal{R}_1(\ell-1)$ we define the following switching which maps a k-graph $H \in \mathcal{R}_1(\ell)$ to a k-graph $H' \in \mathcal{R}_1(\ell-1)$. Select $e_1 \in H \setminus G$ contributing to $\deg_{H \setminus G}(uv)$ and pick k-1 edges $e_2, \ldots, e_k \in H \setminus G$ so that e_1, \ldots, e_k are disjoint. Writing $e_i = v_{i,1} \ldots v_{i,k}, i = 1, \ldots, k$ with $u = v_{1,1}$ and $v = v_{1,2}$, replace e_1, \ldots, e_k by $f_j = v_{1,j} \ldots v_{k,j}, j = 1, \ldots, k$ (as in Figure 1).

Noting that this time e_1 can be chosen in ℓ ways, we get a lower bound on f(H) very similar to that in (25):

$$f(H) \ge \ell \left((\tau M - 2k^2 \tau d)^{k-1} / (k-1)! - k(2\tau)^{k-1} d^k \right) \ge \frac{\ell(\tau M)^{k-1}}{2(k-1)!}.$$

For the upper bound for b(H') we choose two disjoint edges in $H' \setminus G$ containing u and v, respectively, and then k-2 more edges in $H' \setminus G$ not containing u and v so that all edges are disjoint. Crudely bounding number of permutations of vertices inside each of f_1, \ldots, f_k by $(k!)^k$, we get $b(H') \leq (k!)^k (2\tau d)^2 (\tau M)^{k-2}$. We obtain

$$\frac{|\mathcal{R}_1(\ell)|}{|\mathcal{R}_1(\ell-1)|} \leq \frac{\max_{H' \in \mathcal{R}_1(\ell-1)} b(H')}{\min_{H \in \mathcal{R}_1(\ell)} f(H)} \leq \frac{2(k!)^{k+1} (2\tau d)^2 (\tau M)^{k-2}}{\ell (\tau M)^{k-1}} \leq \frac{8(k!)^{k+1} \tau d}{\ell n} \leq \frac{1}{2},$$

by assumption $\ell \geq \ell_1 = C_1 \tau d/n$ and appropriate choice of constant C_1 . Further,

$$\mathbb{P}\left(\deg_{\mathbb{R}_{G}\backslash G}(u,v) > \ell\right) \leq \sum_{i>\ell} \frac{|\mathcal{R}_{1}(i)|}{|\mathcal{R}_{G}(n,d)|} \leq \sum_{i>\ell} \frac{|\mathcal{R}_{1}(i)|}{|\mathcal{R}_{1}(\ell_{1})|} \\
= \sum_{i>\ell} \prod_{j=\ell_{1}+1}^{i} \frac{|\mathcal{R}_{1}(j)|}{|\mathcal{R}_{1}(j-1)|} \leq \sum_{i>\ell} 2^{-(i-\ell_{1})} = 2^{-(\ell-\ell_{1})}, \quad (26)$$

which completes the proof of (21).

It remains to show (22). Fix $u, v \in [n]$ and define the families

$$\mathcal{R}_2(\ell) = \left\{ H \in \mathcal{R}_G(n, d) : \operatorname{cod}_{H|G}(u, v) = \ell \right\}, \qquad \ell = 0, 1, \dots$$

We compare sizes of $\mathcal{R}_2(\ell)$ and $\mathcal{R}_2(\ell-1)$ using the following switching. Select two edges $e_0 \in H$ and $e_1 \in H \setminus G$ contributing to $\operatorname{cod}_{H|G}(u,v)$, that is, such that $e_0 \setminus u = e_1 \setminus v$; pick k-1 other edges $e_2, \ldots, e_k \in H \setminus G$ so that e_1, \ldots, e_k are disjoint. Writing $e_i = v_{i,1} \ldots v_{i,k}, i = 1, \ldots, k$ with $v = v_{1,1}$, replace e_1, \ldots, e_k by $f_j = v_{1,j} \ldots v_{k,j}, j = 1, \ldots, k$ (see Figure 2).

We estimate f(H) by first fixing a pair e_0, e_1 in one of ℓ ways. The number of choices of e_2, \ldots, e_k is bounded as in (24). However, we subtract not just at most $kd \cdot (2\tau d)^{k-1}$ (k-1)-tuples which may create double edges, but also (k-1)-tuples for which $f_1 \setminus \{v\} \cup \{u\} \in H$ which prevents $\operatorname{cod}(u, v)$ from being decreased. There are at most $d \cdot (2\tau d)^{k-1}$ of such (k-1)-tuples, hence

$$f(H) \ge \ell \left(\frac{(\tau M - k^2 \cdot 2\tau d)^{k-1}}{(k-1)!} - (k+1)d \cdot (2\tau d)^{k-1} \right)$$

$$= \frac{\ell(\tau M)^{k-1}}{(k-1)!} \left(\left(1 - \frac{2k^2 d}{M} \right)^{k-1} - (k+1)(k-1)!d \left(\frac{2d}{M} \right)^{k-1} \right)$$

$$= \frac{\ell(\tau M)^{k-1}}{(k-1)!} \left(\left(1 - \frac{2k^3}{n} \right)^{k-1} - (k+1)(k-1)!d \left(\frac{2k}{n} \right)^{k-1} \right)$$

$$\ge \frac{\ell(\tau M)^{k-1}}{(k-1)!} \left(1 - \frac{2k^4}{n} - (k+1)!(2k)^k \frac{d}{n^{k-1}} \right)$$

$$\ge \frac{\ell(\tau M)^{k-1}}{2(k-1)!},$$

where the last inequality follows from (14) with $\alpha = 1$ and (15) with sufficiently large C'.

Conversely, H can be reconstructed from H' by choosing an edge $e_0 \in H'$ containing u but not containing v and then k disjoint edges $f_j \in H' \setminus G$, each containing

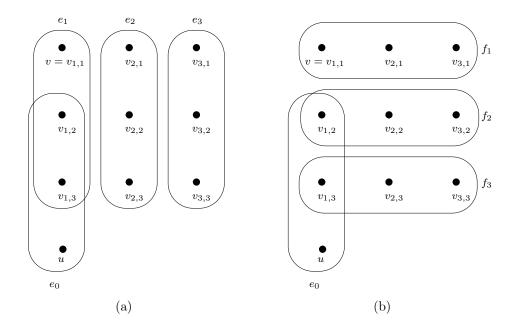


Figure 2: Switching (for k = 3): before (a) and after (b).

exactly one vertex from $(e_0 \setminus u) \cup v$ and permuting the vertices inside $f_2 \setminus v_{1,2}, \ldots, f_k \setminus v_{1,k}$ in at most $((k-1)!)^{k-1}$ ways. Therefore $b(H') \leq ((k-1)!)^{k-1} d(2\tau d)^k$. Clearly,

$$\frac{|\mathcal{R}_2(\ell)|}{|\mathcal{R}_2(\ell-1)|} \leq \frac{\max_{H' \in \mathcal{R}_2(\ell-1)} b(H')}{\min_{H \in \mathcal{R}_2(\ell)} f(H)} \leq \frac{d(2\tau d)^k \cdot 2((k-1)!)^k}{\ell(\tau M)^{k-1}} \leq \frac{2^{k+1}((k-1)!)^k k^{k-1} \tau d^2}{n^{k-1}\ell} \leq \frac{1}{2},$$

by the assumption $\ell \geq \ell_2 = C_2 \tau d^2/n^{k-1}$ and appropriate choice of constant C_2 . Now (22) follows from similar computations to (21).

4 Proof of Lemma 6

In this section we prove the crucial Lemma 6. In view of Claim 7 it suffices to show that

$$\mathbb{P}\left(\eta_{t+1} = e \mid \mathbb{R}(t) = G\right) \ge \frac{1 - \epsilon}{\binom{n}{k} - t}, \quad \forall e \in K_n \setminus G,$$
(27)

for every $t \leq (1 - \epsilon)M - 1$ and every admissible G such that

$$d(\tau - \delta) \le r_G(v) \le d(\tau + \delta), \qquad v \in [n], \tag{28}$$

where

$$\tau = 1 - t/M$$
 and $\delta = \sqrt{a\tau(\log n)/d}$.

In some cases the following simpler bounds (implied by the second inequality in (16)) on $r_G(v)$ will suffice:

$$\tau d/2 + 1 \le r_G(v) \le 2\tau d, \qquad v \in [n].$$
 (29)

Since the average of $\mathbb{P}(\eta_{t+1} = e \mid \mathbb{R}(t) = G)$ over $e \in K_n \setminus G$ is exactly $1/\binom{n}{k} - t$, there is $f \in K_n \setminus G$ such that

$$\mathbb{P}\left(\eta_{t+1} = f \mid \mathbb{R}(t) = G\right) \ge \frac{1}{\binom{n}{k} - t}.$$
(30)

Fix any such f and let $e \in K_n \setminus G$ be arbitrary. Setting $\mathcal{R}_f := \mathcal{R}_{G \cup f}(n, d)$ and $\mathcal{R}_e := \mathcal{R}_{G \cup e}(n, d)$, we have

$$\frac{\mathbb{P}\left(\eta_{t+1} = e \mid \mathbb{R}(t) = G\right)}{\mathbb{P}\left(\eta_{t+1} = f \mid \mathbb{R}(t) = G\right)} = \frac{|\mathcal{R}_{G \cup e}(n, d)|}{|\mathcal{R}_{G \cup f}(n, d)|} = \frac{|\mathcal{R}_e|}{|\mathcal{R}_f|}.$$
(31)

To bound this ratio, we need to appeal to the configuration model for hypergraphs. Let $\mathbb{M}_G(n,d)$ be a random multi-k-graph extension of G to an ordered d-regular multi-k-graph. Namely, $\mathbb{M}_G(n,d)$ is a sequence of M edges (each of which is a k-element multiset of vertices), the first t of which comprise G, while the remaining ones are generated by taking a random uniform permutation Π of the multiset

$$\{1,\ldots,1,\ldots,n,\ldots,n\}$$

with multiplicities $r_G(v)$, $v \in [n]$, and splitting it into consecutive k-tuples.

The number of such permutations is

$$N_G := \frac{(k(M-t))!}{\prod_{v \in [n]} r_G(v)!}.$$

Since each simple extension of G is given by the same number $(k!)^{M-t}$ of permutations, $\mathbb{M}_G(n,d)$ is uniform over $\mathcal{R}_G(n,d)$. That is, $\mathbb{M}_G(n,d)$, conditioned on simplicity, has the same distribution as $\mathbb{R}_G(n,d)$.

Set

$$\mathbb{M}_e = \mathbb{M}_{G \cup e}(n, d)$$
 and $\mathbb{M}_f = \mathbb{M}_{G \cup f}(n, d)$,

for convenience. Noting that $G \cup f$ has t+1 edges, we have

$$\mathbb{P}\left(\mathbb{M}_f \in \mathcal{R}_f\right) = \frac{|\mathcal{R}_f|(k!)^{M-t-1}}{N_{G \cup f}} = \frac{|\mathcal{R}_f|(k!)^{M-t-1} \prod_{v \in [n]} r_{G \cup f}(v)!}{(k(M-t-1))!},$$

and similarly for \mathbb{M}_e and \mathcal{R}_e . This yields, after a few cancelations, that

$$\frac{|\mathcal{R}_e|}{|\mathcal{R}_f|} = \frac{\prod_{v \in e \setminus f} r_G(v)}{\prod_{v \in f \setminus e} r_G(v)} \cdot \frac{\mathbb{P}\left(\mathbb{M}_e \in \mathcal{R}_e\right)}{\mathbb{P}\left(\mathbb{M}_f \in \mathcal{R}_f\right)}.$$
 (32)

The ratio of the products in (32) is, by (28), at least

$$\left(\frac{\tau - \delta}{\tau + \delta}\right)^k \ge \left(1 - \frac{2\delta}{\tau}\right)^k \ge 1 - 2k\sqrt{\frac{a\log n}{\tau d}} \ge 1 - 2k\sqrt{\frac{a\log n}{\epsilon d}} \ge 1 - \epsilon/2,$$

where the last inequality holds by (13) with $\alpha = 1/3$ and $C' \geq \sqrt[3]{16ak^2}$. On the other hand, the ratio of probabilities in (32) will be shown in Claim 9 below to be at least $1 - \epsilon/2$. Consequently, the entire ratio in (32), and thus in (31), will be at least $1 - \epsilon$, which, in view of (30), will imply (27) and yield the lemma.

Hence, to complete the proof of Lemma 6 it remains to show that the probabilities of simplicity $\mathbb{P}(\mathbb{M}_e \in \mathcal{R}_e)$ are asymptotically the same for all $e \in K_n \setminus G$. Recall that for every edge $e \in K_n \setminus G$ we write

$$\mathbb{M}_e = \mathbb{M}_{G \cup e}(n, d) \quad \text{and} \quad \mathcal{R}_e = \mathcal{R}_{G \cup e}(n, d).$$
 (33)

Claim 9. If G, e, and f are as above, then, for every $e \in K_n \setminus G$,

$$\frac{\mathbb{P}\left(\mathbb{M}_e \in \mathcal{R}_e\right)}{\mathbb{P}\left(\mathbb{M}_f \in \mathcal{R}_f\right)} \ge 1 - \epsilon/2.$$

Proof. We start by constructing a coupling of \mathbb{M}_e and \mathbb{M}_f in which they differ in at most k+1 edges (counting in the replacement of f by e at the (t+1)-th position).

Let $f = u_1 \dots u_k$ and $e = v_1 \dots v_k$. Further, let $r = k - |f \cap e|$ and suppose without loss of generality that $\{u_1 \dots u_r\} \cap \{v_1 \dots v_r\} = \emptyset$. Let Π_f be a random permutation underlying the multi-k-graph M_f . Note that Π_f differs from any permutation Π_e underlying M_e by having the multiplicities of v_1, \dots, v_r greater by one, and the multiplicities of u_1, \dots, u_r smaller by one than the corresponding multiplicities in Π_e .

Let Π^* be obtained from Π_f by replacing, for each i = 1, ..., r, a copy of v_i selected uniformly at random by u_i . Define \mathbb{M}^* by chopping Π^* into consecutive k-tuples and appending them to $G \cup e$ (see Figure 3).

It is easy to see that Π^* is uniform over all permutations of the multiset

$$\{1,\ldots,1,\ldots,n,\ldots,n\}$$

with multiplicities $r_{G \cup e}(v), v \in [n]$. This means that \mathbb{M}^* has the same distribution as \mathbb{M}_e and thus we will further identify \mathbb{M}^* and \mathbb{M}_e .

Observe that if we condition \mathbb{M}_f on being a simple k-graph H, then \mathbb{M}_e can be equivalently obtained by the following switching: (i) replace edge f by e; (ii) for each $i=1,\ldots,r$, choose, uniformly at random, an edge $e_i \in H \setminus (G \cup f)$ incident to v_i and replace it by $(e_i \setminus v_i) \cup u_i$ (see Figure 4). Of course, some of e_i 's may coincide. For example, if $e_{i_1} = \cdots = e_{i_l}$, then the effect of the switching is that e_{i_1} is replaced by $(e_{i_1} \setminus \{v_{i_1}, \ldots, v_{i_l}\}) \cup \{u_{i_1}, \ldots, u_{i_l}\}$.

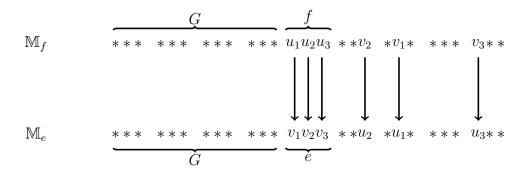


Figure 3: Obtaining \mathbb{M}_e from \mathbb{M}_f for k=r=3 by altering the underlying permutation.

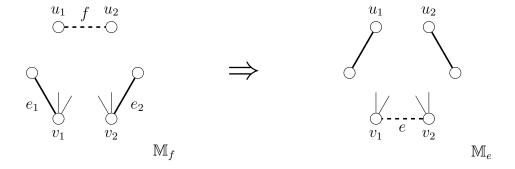


Figure 4: Obtaining \mathbb{M}_e from \mathbb{M}_f for k=r=2: only relevant edges are displayed; the ones belonging to $\mathbb{M}_f \setminus (G \cup f)$ are shown as solid lines.

The crucial idea is that such a switching is unlikely to create loops or multiple edges. However, for certain H this might not true. For example, if $e \in H \setminus (G \cup f)$, then the random choice of e_i 's in step (ii) is unlikely to destroy e, but in step (i) edge f has been replaced by an additional copy of e, thus creating a double edge. Moreover, if almost every (k-1)-tuple of vertices extending v_i to an edge in $H \setminus (G \cup f)$ also extends u_i to an edge in H, then most likely the replacement of v_i by u_i will create a double edge too. To avoid such and other bad instances, we say that $H \in \mathcal{R}_f$ is nice if the following three properties hold

$$e \notin H$$
 (34)

$$\max_{i=1,\dots,r} \deg_{H\setminus (G\cup f)}(u_i v_i) \le \ell_1 + k \log_2 n, \tag{35}$$

$$\max_{i=1,\dots,r} \operatorname{cod}_{H|G\cup f}(u_i, v_i) \le \ell_2 + k \log_2 n, \tag{36}$$

where $\ell_1 = C_1 \tau d/n$ and $\ell_2 = C_2 \tau d^2/n^{k-1}$ are as in Claim 8. Note that \mathbb{M}_f , conditioned on $\mathbb{M}_f \in \mathcal{R}_f$, is distributed uniformly over $\mathcal{R}_{G \cup f}(n,d)$. Since we chose f such that by (30) is satisfied, we have that k-graph $G \cup f$ is admissible. Therefore by Claim 8 we have

$$\mathbb{P}\left(\mathbb{M}_{f} \text{ is not nice} \mid \mathbb{M}_{f} \in \mathcal{R}_{f}\right) \leq \frac{C_{0}\tau d}{n^{k-1}} + 2 \cdot r2^{-k\log_{2}n}$$

$$\leq \frac{C_{0}d + 2k}{n^{k-1}} \leq \frac{\epsilon}{4},$$
(37)

where the last inequality follows by (14) with $\alpha = 1$ and sufficiently large constant C'. By standard probability, we have

$$\frac{\mathbb{P}\left(\mathbb{M}_{e} \in \mathcal{R}_{e}\right)}{\mathbb{P}\left(\mathbb{M}_{f} \in \mathcal{R}_{f}\right)} \geq \mathbb{P}\left(\mathbb{M}_{e} \in \mathcal{R}_{e} \mid \mathbb{M}_{f} \in \mathcal{R}_{f}\right)$$

$$\geq \mathbb{P}\left(\mathbb{M}_{e} \in \mathcal{R}_{e} \mid \mathbb{M}_{f} \text{ is nice}\right) \mathbb{P}\left(\mathbb{M}_{f} \text{ is nice} \mid \mathbb{M}_{f} \in \mathcal{R}_{f}\right). \tag{38}$$

It suffices to show that

$$\mathbb{P}\left(\mathbb{M}_e \in \mathcal{R}_e \,|\, \mathbb{M}_f \text{ is nice}\right) \ge 1 - \epsilon/4,\tag{39}$$

since in view of (37) and (39), inequality (38) completes the proof of the claim.

Now we prove (39). Fix a nice k-graph $H \in \mathcal{R}_f$ and condition on the event $\mathbb{M}_f = H$. The event that \mathbb{M}_e is not simple is contained in the union of the following four events:

 $\mathcal{E}_1 = \{ \text{ two of the randomly chosen edges } e_1, \dots, e_r \text{ coincide } \},$

$$\mathcal{E}_2 = \{ (e_i \setminus v_i) \cup u_i \text{ is a loop for some } i = 1, \dots, r \},$$

$$\mathcal{E}_3 = \{ (e_i \setminus v_i) \cup u_i \in H \text{ for some } i = 1, \dots, r \},$$

$$\mathcal{E}_4 = \{ (e_i \setminus v_i) \cup u_i = (e_i \setminus v_i) \cup u_i \text{ for some distinct } i \text{ and } j \}.$$

Event \mathcal{E}_1 covers all cases when a double edge is created by replacing several vertices in the same edge. Creation of multiple edges in other ways is addressed by events \mathcal{E}_3 and \mathcal{E}_4 .

In what follows we will several times use the fact that

$$\deg_{H\setminus (G\cup f)}(v) \ge \tau d/2 \ge \epsilon d/2, \qquad \forall v \in [n], \tag{40}$$

which is immediate from (29) and $\tau \geq \epsilon$. To bound the probability of \mathcal{E}_1 , observe that, given $1 \leq i < j \leq r$, the number of choices of a coinciding pair $e_i = e_j$ is $\deg_{H \setminus (G \cup f)}(v_i v_j) \leq \deg_{H \setminus (G \cup f)}(v_i)$ and the probability that both v_i and v_j actually select a fixed common edge is $(\deg_{H \setminus (G \cup f)}(v_i) \deg_{H \setminus (G \cup f)}(v_j))^{-1}$. Therefore using (40) we obtain

$$\mathbb{P}\left(\mathcal{E}_{1}|\mathbb{M}_{f} = H\right) \leq \sum_{1 \leq i < j \leq r} \frac{\deg_{H\setminus(G\cup f)}(v_{i}v_{j})}{\deg_{H\setminus(G\cup f)}(v_{i}) \deg_{H\setminus(G\cup f)}(v_{j})} \leq \sum_{1 \leq i < j \leq r} \frac{1}{\deg_{H\setminus(G\cup f)}(v_{j})} \leq \frac{2\binom{k}{2}}{\epsilon d} \leq \frac{\epsilon}{16}, \quad (41)$$

where the last inequality follows from (13) with $\alpha = 1/2$ and sufficiently large C'.

To bound the probability of \mathcal{E}_2 , note that a loop in \mathbb{M}_e can only be created when for some $i = 1, \ldots, r$, the randomly chosen edge e_i contains both v_i and u_i . There are at most $\deg_{H \setminus (G \cup f)}(u_i v_i)$ such edges. Therefore, by (35) and (40) we get

$$\mathbb{P}\left(\mathcal{E}_{2} \mid \mathbb{M}_{f} = H\right) \leq \sum_{i=1}^{r} \frac{\deg_{H \setminus (G \cup f)}(u_{i}v_{i})}{\deg_{H \setminus (G \cup f)}(v_{i})} \leq \frac{2k(\ell_{1} + k \log_{2} n)}{\tau d} \\
\leq \frac{2k\ell_{1}}{\tau d} + \frac{2k^{2} \log_{2} n}{\epsilon d} = \frac{2kC_{1}}{n} + \frac{2k^{2} \log_{2} n}{\epsilon d} \leq \frac{\epsilon}{16}, \quad (42)$$

where the last inequality is implied by (13) with $\alpha = 1/2$, (15) and sufficiently large C'.

Similarly we bound the probability of \mathcal{E}_3 , the event that for some i we will choose $e_i \in H \setminus (G \cup f)$ with $(e_i \setminus v_i) \cup u_i \in H$. There are $\operatorname{cod}_{H|G \cup f}(u_i, v_i)$ such edges. Thus, by (36) and (40) we obtain

$$\mathbb{P}\left(\mathcal{E}_{3} \mid \mathbb{M}_{f} = H\right) \leq \sum_{i=1}^{r} \frac{\operatorname{cod}_{H\mid G\cup f}(u_{i}, v_{i})}{\operatorname{deg}_{H\setminus(G\cup f)}(v_{i})} \leq \frac{2k(\ell_{2} + k \log_{2} n)}{\tau d} \\
\leq \frac{2k\ell_{2}}{\tau d} + \frac{2k^{2} \log_{2} n}{\tau d} \leq \frac{2kC_{2}d}{n^{k-1}} + \frac{2k \log_{2} n}{\epsilon d} \leq \frac{\epsilon}{16}, \quad (43)$$

where the last inequality follows from (13) with $\alpha = 1/2$, (14) with $\alpha = 1$ and sufficiently large C'.

Finally, note that, given $1 \leq i < j \leq r$, if a pair $e_i, e_j \in H \setminus (G \cup f)$ satisfies the condition in \mathcal{E}_4 , then the edge e_j is uniquely determined by e_i . Therefore the number of such pairs is at most $\deg_{H \setminus (G \cup f)}(v_i)$ and we get exactly the same bound as in (41):

$$\mathbb{P}\left(\mathcal{E}_4 \mid \mathbb{M}_f = H\right) \le \sum_{1 \le i \le j \le r} \frac{1}{\deg_{H \setminus (G \cup f)}(v_j)} \le \frac{\epsilon}{16}.$$
 (44)

Combining (41)-(44) and averaging over nice H, we obtain (39), as required.

5 Concluding Remarks

Theorem 1 remains valid if we replace random hypergraph $\mathbb{G}^{(k)}(n,m)$ by $\mathbb{G}^{(k)}(n,p)$ with $p = (1-2\gamma)d/\binom{n-1}{k-1}$, say. To see this one can modify the proof of Theorem 1 as follows. Let $B_n \sim \text{Bin}(\binom{n}{k},p)$ be a random variable independent of the process $(\mathbb{G}(t))_t$. If $B_n \leq m \leq |S|$, sample $\mathbb{G}^{(k)}(n,p)$ by taking the first B_n edges of S (which are uniformly distributed over all k-graphs with B_n edges). Otherwise sample $\mathbb{G}^{(k)}(n,p)$ among k-graphs with B_n edges independently. In view of the assumption (3), Chernoff's inequality (see [9, (2.5)]) and (12) imply

$$\mathbb{P}\left(\mathbb{G}^{(k)}(n,p) \not\subset \mathbb{R}^{(k)}(n,d)\right) \leq \mathbb{P}\left(B_n > m\right) + \mathbb{P}\left(|S| < m\right) \to 0, \text{ as } n \to \infty.$$

The lower bound on d in Theorem 1 is necessary because the second moment method applied to $\mathbb{G}^{(k)}(n,p)$ (cf. Theorem 3.1(ii) in [2]) and asymptotic equivalence of $\mathbb{G}^{(k)}(n,p)$ and $\mathbb{G}^{(k)}(n,m)$ yields that for $d=o(\log n)$ and $m\sim cM$ there is a sequence $\Delta=\Delta(n)\gg d$ such that the maximum degree $\mathbb{G}^{(k)}(n,m)$ is at least Δ a.a.s.

In view of the above, our approach cannot be extended to $d = O(\log n)$ in part (i) of Theorem 5. Nevertheless, we believe (as it was already stated in [7]) that for loose Hamilton cycles it suffices to assume that $d = \Omega(1)$.

Conjecture 1. For every $k \geq 3$ there is a constant d_k such that if $d \geq d_k$, then a.a.s. $\mathbb{R}^{(k)}(n,d)$ contains a loose Hamilton cycle.

We also believe that the lower bounds on d in parts (ii) and (iii) of Theorem 5 are of optimal order.

Conjecture 2. For all integers $k > \ell \geq 2$ if $d \ll n^{\ell-1}$, then a.a.s. $\mathbb{R}^{(k)}(n,d)$ is not ℓ -Hamiltonian.

References

- [1] P. Allen, J. Böttcher, Y. Kohayakawa, and Y. Person. Tight Hamilton cycles in random hypergraphs. *Random Structures Algorithms*, 46(3):446–465, 2015.
- [2] B. Bollobás. Random graphs, volume 73 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 2001.
- [3] C. Cooper, A. Frieze, and B. Reed. Random regular graphs of non-constant degree: connectivity and Hamiltonicity. *Combin. Probab. Comput.*, 11(3):249–261, 2002.
- [4] A. Dudek and A. Frieze. Loose Hamilton cycles in random uniform hypergraphs. *Electron. J. Combin.*, 18(1):Paper 48, pp. 14, 2011.
- [5] A. Dudek and A. Frieze. Tight Hamilton cycles in random uniform hypergraphs. *Random Structures Algorithms*, 42(3):374–385, 2013.
- [6] A. Dudek, A. Frieze, P.-S. Loh, and S. Speiss. Optimal divisibility conditions for loose Hamilton cycles in random hypergraphs. *Electron. J. Combin.*, 19(4):Paper 44, pp. 17, 2012.
- [7] A. Dudek, A. Frieze, A. Ruciński, and M. Šileikis. Loose Hamilton cycles in regular hypergraphs. *Combin. Probab. Comput.*, 24(1):179–194, 2015.
- [8] A. Frieze. Loose Hamilton cycles in random 3-uniform hypergraphs. *Electron. J. Combin.*, 17(1):Note 28, pp. 4, 2010.
- [9] S. Janson, T. Łuczak, and A. Rucinski. *Random graphs*. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience, New York, 2000.
- [10] M. Karoński and A. Frieze. *Introduction to Random Graphs*. Cambridge University Press, 2015. http://www.math.cmu.edu/~af1p/Book.html.
- [11] J. H. Kim and V. H. Vu. Sandwiching random graphs: universality between random graph models. *Adv. Math.*, 188(2):444–469, 2004.
- [12] M. Krivelevich, B. Sudakov, V. H. Vu, and N. C. Wormald. Random regular graphs of high degree. *Random Structures Algorithms*, 18(4):346–363, 2001.
- [13] B. D. McKay. Asymptotics for symmetric 0-1 matrices with prescribed row sums. *Ars Combin.*, 19(A):15–25, 1985.
- [14] R. W. Robinson and N. C. Wormald. Almost all regular graphs are Hamiltonian. Random Structures Algorithms, 5(2):363–374, 1994.