Between 2- and 3-colorability

Alan Frieze^{*}, Wesley Pegden Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh PA 15213.

September 30, 2014

Abstract

We consider the question of the existence of homomorphisms between $G_{n,p}$ and odd cycles when p = c/n, $1 < c \leq 4$. We show that for any positive integer ℓ , there exists $\varepsilon = \varepsilon(\ell)$ such that if $c = 1 + \varepsilon$ then w.h.p. $G_{n,p}$ has a homomorphism from $G_{n,p}$ to $C_{2\ell+1}$ so long as its odd-girth is at least $2\ell+1$. On the other hand, we show that if c = 4then w.h.p. there is no homomorphism from $G_{n,p}$ to C_5 . Note that in our range of interest, $\chi(G_{n,p}) = 3$ w.h.p., implying that there is a homomorphism from $G_{n,p}$ to C_3 . These results imply the existence of random graphs with circular chromatic numbers χ_c satisfying $2 < \chi_c(G) < 2 + \delta$ for arbitrarily small δ , and also that $2.5 \leq \chi_c(G_{n,\frac{4}{n}}) < 3$ w.h.p.

1 Introduction

The determination of the chromatic number of $G_{n,p}$, where $p = \frac{c}{n}$ for constant c, is a central topic in the theory of random graphs. For 0 < c < 1, such graphs contain, in expectation, a bounded number of cycles, and are almost-surely 3-colorable. The chromatic number of such a graph may be 2 or 3 with positive probability, according as to whether or not any odd cycles appear.

For $c \ge 1$, we find that the chromatic number $\chi(G_{n,\frac{c}{n}}) \ge 3$ with high probability, and letting $c_k := \sup_c \chi(G_{n,\frac{c}{n}}) \le k$, it is known for all k and $c \in (c_k, c_{k+1})$ that $\chi(G_{n,\frac{c}{n}}) \in \{k, k+1\}$, see Luczak [7] and Achlioptas and Naor [2]; for k > 2, the chromatic number may well be concentrated on the single value k, see Friedgut [5] and Achlioptas and Friedgut [1].

^{*}Research supported in part by NSF grant ccf1013110

In this paper, we consider finer notions of colorability for the graphs $G_{n,\frac{c}{n}}$ for $c \in (1, c_3)$, by considering homomorphisms from $G_{n,\frac{c}{n}}$ to odd cycles $C_{2\ell+1}$. A homomorphism from a graph G to $C_{2\ell+1}$ implies a homomorphism to C_{2k+1} for $k < \ell$. As the 3-colorability of a graph G corresponds to the existence of a homomorphism from G to K_3 , the existence of a homomorphism to $C_{2\ell+1}$ implies 3-colorability. Thus considering homomorphisms to odd cycles $C_{2\ell+1}$ gives a hierarchy of 3-colorable graphs amenable to increasingly stronger constraint satisfaction problems. Note that a fixed graph having a homomorphism to all odd-cycles is bipartite.

Our main result is the following:

Theorem 1. For any $\ell > 1$, there is an $\varepsilon > 0$ such that with high probability, $G_{n,\frac{1+\varepsilon}{n}}$ either has odd-girth $< 2\ell + 1$ or has a homomorphism to $C_{2\ell+1}$.

Conversely, we expect the following:

Conjecture 1. For any c > 1, there is an ℓ_c such that with high probability, there is no homomorphism from $G_{n,\frac{c}{n}}$ to $C_{2\ell+1}$ for $\ell \geq \ell_c$.

As c_3 is known to be at least 4.03, the following confirms Conjecture 1 for a significant portion of the interval $(1, c_3)$.

Theorem 2. For any c > 2.774, there is an ℓ_c such that with high probability, there is no homomorphism from $G_{n,\frac{c}{n}}$ to to $C_{2\ell+1}$ for $\ell \geq \ell_c$.

We also have that $\ell_4 = 2$:

Theorem 3. With high probability, $G_{n,\frac{4}{\pi}}$ has no homomorphism to C_5 .

Note that as $c_3 > 4.03 > 4$, we see that there are triangle-free 3-colorable random graphs without homomorphisms to C_5 . Our proof of Theorem 3 involves computer assisted numerical computations. The same calculations which rigorously demonstrate that $\ell_4 = 2$ suggest actually that $\ell_{3.75} = 2$ as well.

Our results can be reformulated in terms of the *circular chromatic number* of a random graph. Recall that the circular chromatic number $\chi_c(G)$ of G is the infimum r of circumferences of circles C for which there is an assignment of open unit intervals of C to the vertices of G such that adjacent vertices are assigned disjoint intervals. (Note that if circles C of circumference r were replaced in this definition with line segments S of length r, then this would give the ordinary chromatic number $\chi(G)$.) It is known that $\chi(G) - 1 < \chi_c(G) \leq \chi(G)$, that $\chi_c(G)$ is always rational, and moreover, that $\chi_c(G) \leq \frac{p}{q}$ if and only if G has a homomorphism to the circulant graph $C_{p,q}$ with vertex set $\{0, 1, \ldots, q - 1\}$, with $v \sim u$ whenever dist $(v, u) := \min\{|v - u|, v + q - u, u + q - v\} \geq q$. (See [9].) Since $C_{2\ell+1,\ell}$ is the odd cycle $C_{2\ell+1}$ our results can be restated as follows: **Theorem 4.** In the following, inequalities for the circular chromatic number hold with high probability.

- 1. For any $\delta > 0$, there is an $\varepsilon > 0$ such that, $G = G_{n,\frac{1+\varepsilon}{n}}$ has $\chi_{c}(G) \leq 2+\delta$ unless it has odd girth $\leq \frac{2}{\delta}$.
- 2. For any c > 2.774, there exists r > 2 such that $\chi_c(G_{n,\frac{c}{n}}) > r$.

3.
$$2.5 \le \chi_{\rm c}(G_{n,\underline{4}}) < 3.$$

Note that for any c and $\ell > 1$, there is positive probability that $G_{n,\frac{c}{n}}$ has odd girth $< 2\ell + 1$, and a positive probability that it does not. In particular, as the probability that $G_{n,\frac{c}{n}}$ has small odd-girth can be computed precisely, Theorem 1 gives an exact probability in (0,1)that $G_{n,\frac{1+\varepsilon}{n}}$ has a homomorphism to $C_{2\ell+1}$. Indeed, Theorem 1 implies that if $c = 1 + \varepsilon$ and ε is sufficiently small relative to ℓ , then

$$\lim_{n \to \infty} \mathbf{Pr}(\chi_c(G_{n,\frac{c}{n}}) \in (2 + \frac{1}{\ell+1}, 2 + \frac{1}{\ell}]) = e^{-\phi_\ell(c)} - e^{-\phi_{\ell+1}(c)},$$
(1)

where

$$\phi_{\ell}(c) = \sum_{i=1}^{\ell-1} \frac{c^{2i+1}}{2(2i+1)}.$$

We close with two more conjectures. The first concerns a sort of pseudo-threshold for having a homomorphism to $C_{2\ell+1}$:

Conjecture 2. For any ℓ , there is a $c_{\ell} > 1$ such that $G_{n,\frac{c}{n}}$ has no homomorphism to $C_{2\ell+1}$ for $c > c_{\ell}$, and has either odd-girth $< 2\ell + 1$ or has a homomorphism to $C_{2\ell+1}$ for $c < c_{\ell}$.

The second asserts that the circular chromatic numbers of random graphs should be dense.

Conjecture 3. There are no real numbers $2 \le a < b$ with the property that for any value of c, $\mathbf{Pr}(\chi_c(G_{n,\frac{c}{n}}) \in (a,b)) \to 0$.

Note that our Theorem 1 confirms this conjecture for the case a = 2.

2 Structure of the paper

We prove Theorem 1 in Section 3. We first prove some structural lemmas and then we show, given the properties in these lemmas, that we can algorithmically find a homomorphism. We prove Theorem 2 in Section 4 by the use of a simple first moment argument. We prove Theorem 3 in Section 5. This is again a first moment calculation, but it has required numerical assistance in its proof.

3 Finding homomorphisms

Lemma 1. If $\alpha < 1/10$ and c is a positive constant where

$$c < c_0 = \exp\left\{\frac{1-6\alpha}{3\alpha}\right\}$$

then w.h.p. any two cycles of length less than $\alpha \log n$ in $G_{n,p}$, $p = \frac{c}{n}$, are at distance more than $\alpha \log n$.

Proof If there are two cycles contradicting the above claim, then there exists a set S of size $s \leq 3\alpha \log n$ that contains at least s + 1 edges. The expected number of such sets can be bounded as follows:

$$\sum_{s=4}^{3\alpha \log n} \binom{n}{s} \binom{\binom{s}{2}}{s+1} \left(\frac{c}{n}\right)^{s+1} \leq \sum_{s=4}^{3\alpha \log n} \left(\frac{ne}{s}\right)^s \left(\frac{se}{2}\right)^{s+1} \left(\frac{c}{n}\right)^{s+1}$$
$$\leq \frac{3c\alpha \log n}{n} \sum_{s=4}^{3\alpha \log n} \left(\frac{ce^2}{2}\right)^s$$
$$< \frac{(ce^2)^{3\alpha \log n} \log n}{n}$$
$$= o(1).$$

	-

Our next lemma is concerned with cycles in K_2 which is the 2-core of $G_{n,p}$. The 2-core of a graph is the graph induced by the edges that are in at least one cycle. When c > 1, the 2-core consists of a linear size sub-graph together with a few vertex disjoint cycles. By few we mean that in expectation, there are O(1) vertices on these cycles.

Let 0 < x < 1 be such that $xe^{-x} = ce^{-c}$. Then w.h.p. K_2 has

$$\nu \sim (1-x)\left(1-\frac{x}{c}\right)n$$
 vertices and $\mu \sim \left(1-\frac{x}{c}\right)^2 \frac{cn}{2}$ edges.

(See for example Pittel [8]).

If $c = 1 + \varepsilon$ for ε small and positive then $x = 1 - \eta$ where $\eta = \varepsilon + a_1 \varepsilon^2$, $|a_1| \le 2$ for $\varepsilon < 1/10$.

The degree sequence of K_2 can be generated as follows, see for example Aronson, Frieze and Pittel [3]: Let λ be the solution to

$$\frac{\lambda(e^{\lambda}-1)}{e^{\lambda}-1-\lambda} = \frac{2\mu}{\nu} \sim \frac{c-x}{1-x} = \frac{2+a_1\varepsilon}{1+a_1\varepsilon}$$

We deduce from this that

$$\lambda \le 4|a_1|\varepsilon \le 8\varepsilon.$$

We generate the degrees $d(1), d(2), \ldots, d(\nu)$ as independent copies of the random variable Z where for $d \ge 2$,

$$\mathbf{Pr}(Z=d) = \frac{\lambda^a}{d!(e^\lambda - 1 - \lambda)}$$

We condition that the sum $D_1 = d(1) + d(2) + \cdots + d(n) = 2\mu$. We let

$$\theta_k = \frac{\Pr(d(i) = d_i, i = 1, 2, \dots, k \mid D_1 = 2\mu)}{\Pr(d(i) = d_i, i = 1, 2, \dots, k)}$$
$$= \frac{\Pr(d(k+1) + \dots + d(n) = 2\mu - (d_1 + \dots + d_k))}{\Pr(d(1) + \dots + d(n) = 2\mu)}$$

It is shown in [3] that if Z_1, Z_2, \ldots, Z_N are independent copies of Z then

$$\mathbf{Pr}(Z_1 + \dots + Z_N = N \mathbf{E}(Z) - t) = \frac{1}{\sigma\sqrt{2\pi N}} \left(1 + O\left(\frac{t^2 + 1}{N\sigma^2}\right)\right)$$
(2)

where $\sigma^2 = \Theta(1)$ is the variance of Z.

We observe next that the maximum degree in $G_{n,p}$ and hence in K_2 is q.s.¹ at most log n. It follows from this and (2) that

$$\theta_k = 1 + o(1)$$
 for $k \le \log^2 n$ and $\theta_k = O(n^{1/2})$ in general.

Lemma 2. For any α, β , there exists $c_0 > 1$ such that w.h.p. any cycle C of length greater than $\alpha \log n$ in the 2-core of $G_{n,p}$, $p = \frac{c}{n}$, $1 < c < c_0$, has at most $\beta |C|$ vertices of degree ≥ 3 .

Proof Suppose that

$$e^{1+8\varepsilon} \left(\frac{8\varepsilon e}{\beta}\right)^{\beta} < 1.$$

We will show then that w.h.p. the K_2 does not contain a cycle C where (i) $|C| \ge \alpha \log n$ and (ii) C contains $\beta |C|$ vertices of degree greater than two.

We can bound the probability of the existence of a "bad" cycle C as follows: In the following display we choose the vertices of our cycle in $\binom{\nu}{k}$ ways and then arrange these vertices in a cycle C in (k-1)!/2 ways. Then we choose βk vertices to have degree at least three. We then sum over possible degree sequences for the vertices in C. This explains the factor $\theta_k \prod_{i=1}^k \frac{\lambda^{d_i}}{d_i!(e^{\lambda}-1-\lambda)}$. We now resort to using the configuration model of Bollobás [4]. This would explain the product $\prod_{i=1}^k \frac{d_i(d_i-1)}{2\mu-2i+1}$. We use the denominator $2\mu - k$ to simplify the calculation. The configuration model computation will inflate our estimate by a constant

¹A sequence of events \mathcal{E}_n is said to occur quite surely q.s. if $\mathbf{Pr}(\neg \mathcal{E}_n) = O(n^{-C})$ for any constant C > 0.

factor that we hide with the notation \leq_b . We write $A \leq_b B$ for A = O(B) when O(B) is "ugly looking".

$$\begin{aligned} \Pr(\exists C) &\leq_{b} \sum_{k=\alpha \log n}^{\nu} \binom{\nu}{k} \frac{(k-1)!}{2} \binom{k}{\beta k} \theta_{k} \sum_{\substack{d_{1}, \dots, d_{\beta k} \geq 3 \\ d_{\beta k+1}, \dots, d_{k} \geq 2}} \prod_{i=1}^{k} \left(\frac{\lambda^{d_{i}}}{(i!(e^{\lambda}-1-\lambda))} \cdot \frac{d_{i}(d_{i}-1)}{2\mu-2k} \right) \right) \\ &\leq \sum_{k=\alpha \log n}^{\nu} \frac{1}{2k} \left(\frac{\nu}{(2\mu-2k)(e^{\lambda}-1-\lambda)} \right)^{k} \lambda^{2k} \binom{k}{\beta k} \theta_{k} \sum_{\substack{d_{1}, \dots, d_{\beta k} \geq 3 \\ d_{\beta k+1}, \dots, d_{k} \geq 2}} \prod_{i=1}^{k} \frac{1}{(d_{i}-2)!} \\ &\leq \sum_{k=\alpha \log n}^{\nu} \frac{e^{k^{2}/\mu}}{2k} \left(\frac{\nu}{2\mu(e^{\lambda}-1-\lambda)} \right)^{k} \lambda^{2k} \binom{k}{\beta k} \theta_{k} (e^{\lambda}-1)^{\beta k} e^{(1-\beta)k\lambda} \\ &= \sum_{k=\alpha \log n}^{\nu} \frac{e^{k^{2}/\mu}}{2k} \left(\frac{\lambda}{e^{\lambda}-1} \right)^{k} \binom{k}{\beta k} \theta_{k} (e^{\lambda}-1)^{\beta k} e^{(1-\beta)k\lambda} \\ &\leq \sum_{k=\alpha \log n}^{\nu} \frac{\theta_{k}}{2k} \left(e^{k/\mu} \cdot \frac{\lambda}{(e^{\lambda}-1)^{1-\beta}} \cdot \left(\frac{e}{\beta} \right)^{\beta} \cdot e^{(1-\beta)\lambda} \right)^{k} \\ &\leq \sum_{k=\alpha \log n}^{\nu} \frac{\theta_{k}}{2k} \left(e \cdot \lambda^{\beta} \cdot \left(\frac{e}{\beta} \right)^{\beta} \cdot e^{\lambda} \right)^{k} \\ &= o(1). \end{aligned}$$

-	-	-	-

Lemma 3. For any α and any $k \in \mathbb{N}$, there exists $\varepsilon_0 > 0$ such that w.h.p. we can decompose the edges of the $G = G_{n,p}$, $p = \frac{1+\varepsilon}{n}$, $0 < \varepsilon < \varepsilon_0$, as $F \cup M$, where F is a forest, and where the distance in F between any two edges in M is at least k.

Proof By choosing $\beta < \frac{1}{2k}$ in Lemma 2 we can find, in every cycle of length $> \alpha \log n$ of the 2-core K_2 of G (which includes all cycles of G), a path of length at least 2k + 1whose interior vertices are all of degree 2. We can thus choose in each cycle of K_2 of length $> \alpha \log n$ such a path of maximum length, and let \mathcal{P} denote the set of such paths. (Note that, in general, there will be fewer paths in \mathcal{P} than long cycles in K_2 due to duplicates, but that the elements of \mathcal{P} are nevertheless disjoint paths in K_2 .) We now choose from each path in \mathcal{P} an edge from the center of the path to give a set M_1 . Note that the set of cycles in $G \setminus M_1$ is the same as the set of cycles in $G \setminus \bigcup_{P \in \mathcal{P}} P$. (In particular, the only cycles which remain have length $\leq \alpha \log n$ and are at distance $\geq k$ from M.) Thus, letting M_2 consist of one edge from each cycle of $G \setminus M_1$, Lemma 1 implies that $M = M_1 \cup M_2$ is as desired. \Box Proof of Theorem 1. Our goal in this section is to give a $C_{2\ell+1}$ -coloring of $G = G_{n,\frac{1+\varepsilon}{n}}$ for $\varepsilon > 0$ sufficiently small. By this we will mean an assignment $c : V(G) \to \{0, 1, \ldots, 2\ell\}$ such that $x \sim y$ in G implies that $c(x) \sim c(y)$ as vertices of $C_{2\ell+1}$; that is, that $x = y \pm 1 \pmod{2\ell + 1}$.

Consider a decomposition of G as $F \cup M$ as given by Lemma 3, with $k = 4\ell - 2$.

We begin by 2-coloring F. Let $c_F : V \to \{0, 1\}$ be such a coloring. Our goal will be to modify this coloring to give a good $C_{2\ell+1}$ coloring of S.

Let \mathcal{B} be the set of edges $xy \in M$ for which $c_F(x) = c_F(y)$, and let B be a set of distinct representatives for \mathcal{B} , and for i = 0, 1, let $B^i = \{v \in B \mid c_F(v) = i\}$.

We now define a new $C_{2\ell+1}$ coloring $c: V \to \{0, 1, \ldots, 2\ell\}$, by

$$c(v) = \begin{cases} c_F(v) & \text{if } \operatorname{dist}_F(v, B) \ge 2\ell - 1\\ c_F(x) - (-1)^j (\operatorname{dist}_F(x, v) + 1) & \text{if } \exists x \in B^j \text{ s.t. } \operatorname{dist}(x, v)_F < 2\ell - 1. \end{cases}$$
(3)

(Color addition and subtraction are computed modulo $2\ell + 1$.)

Since edges in M are separated by distances $\geq 4\ell - 2$, this coloring is well-defined (i.e., there is at most one choice for x). Moreover, c is certainly a good $C_{2\ell+1}$ -coloring of F. Thus if cis a not a good $C_{2\ell+1}$ -coloring of S, it is bad along some edge $xy \in M$. But if such an edge was already properly colored in the 2-coloring c_F , it is still properly colored by c, since it has distance $\geq 4\ell - 2 \geq 2\ell - 1$ from other edges in M. On the other hand, if previously we had $c_F(x) = c_F(y) = i$, and WLOG $x \in B^i$, then the definition of c(v) gives that we now have that $c(x) \in \{i - 1, i + 1\}$ (modulo $2\ell - 1$). Thus if c is not a good $C_{2\ell+1}$ -coloring of S, then there is an edge $xy \in M$ such that $x \in B^i$ and y's color also changes in the coloring c; but by the distance between edges in M, this can only happen if x and y are at F-distance $< 2\ell - 1$. Note also that $c_F(x) = c_F(y)$ implies that dist_F(x, y) is even. Thus in this case, $F \cup \{xy\}$ contains an odd cycle of length $\le 2\ell - 1$, and so G has odd girth $< 2\ell + 1$, as desired.

4 Avoiding homomorphisms to long odd cycles

For large ℓ , one can prove the non-existence of homomorphisms to $C_{2\ell+1}$ using the following simple observation:

Observation 4. If G has a homomorphism to $C_{2\ell+1}$, then G has an induced bipartite subgraph with at least $\frac{2\ell}{2\ell+1}|V(G)|$ vertices.

Proof. Delete the smallest color class.

Proof of Theorem 2. The probability that $G_{n,\frac{c}{n}}$ has an induced bipartite subgraph on βn vertices is at most

$$\binom{n}{\beta n} 2^{\beta n} \left(1 - \frac{c}{n}\right)^{\beta^2 n^2/4} < \left(\frac{2^{\beta} e^{-c\beta^2/4}}{\beta^\beta (1 - \beta)^{1 - \beta}}\right)^n \tag{4}$$

The expression inside the parentheses is unimodal in β for fixed c, and, for c > 2.774, is less than 1 for $\beta > .999971$. In particular, for c > 2.774, $G_{n,\frac{c}{n}}$ has no homomorphism to $C_{2\ell+1}$ for $2\ell + 1 \ge 1, 427, 583$.

5 Avoiding homomorphisms to C_5

A homomorphism of $G = G_{n,p}$, $p = \frac{c}{n}$ into C_5 induces a partition of [n] into sets V_i , $i = 0, 1, \ldots, 4$. This partition can be assumed to have the following properties:

- **P1** The sets V_i , i = 0, 1, ..., 4 are all independent sets.
- **P2** There are no edges between V_i and $V_{i+2} \cup V_{i-2}$. Here addition and subtraction in an index are taken to be modulo 5.
- **P3** Every $v \in V_i$, i = 1, 2, 3, 4 has a neighbor in V_{i-1} .
- **P4** Every $v \in V_2$ has a neighbor in V_3 .

Hatami [6], Lemma 2.1 shows that we can assume **P1,P2,P3**. Given **P1,P2,P3**, if $v \in V_2$ has no neighbors in V_3 then we can move v from from V_2 to V_0 and still have a homomorphism. Furthermore, this move does not upset **P1,P2,P3**.

We let $|V_i| = n_i$ for i = 0, 1, ..., 4. For a fixed partition we then have

$$\mathbf{Pr}(\mathbf{P1} \wedge \mathbf{P2}) = (1-p)^S \text{ where } S = \binom{n}{2} - \sum_{i=0}^4 n_i n_{i+1}.$$
(5)

$$\mathbf{Pr}(\mathbf{P3} \mid \mathbf{P1} \land \mathbf{P2}) = \prod_{i=1}^{4} (1 - (1 - p)^{n_{i-1}})^{n_i}.$$
 (6)

$$\mathbf{Pr}(\mathbf{P4} \mid \mathbf{P1} \land \mathbf{P2} \land \mathbf{P3}) \le \left(1 - \left(1 - \frac{1}{n_2}\right)^{n_3} (1 - p)^{n_3}\right)^{n_2} \tag{7}$$

Equations (5) and (6) are self evident, but we need to justify (7). Consider the bipartite subgraph Γ of $G_{n,p}$ induced by $V_2 \cup V_3$. **P3** tells us that each $v \in V_3$ has a neighbor in V_2 . Denote this event by \mathcal{A} . Suppose now that we choose a random mapping ϕ from V_3 to V_2 . We then create a bipartite graph Γ' with edge set $E_1 \cup E_2$. Here $E_1 = \{xy : x \in V_3, y = \phi(x)\}$ and E_2 is obtained by independently including each of the n_2n_3 possible edges between V_2 and V_3 with probability p. We now claim that we can couple Γ, Γ' so that $\Gamma \subseteq \Gamma'$. Event \mathcal{A} can be construed as follows: A vertex in $v \in V_3$ chooses B_v neighbors in V_2 where B_v is distributed as a binomial $Bin(n_2, p)$, conditioned to be at least one. The neighbors of v in V_2 will then be a random B_v subset of V_2 . We only have to prove then that if v chooses B'_v random neighbors in Γ' then B'_v stochastically dominates B_v . But B'_v is one plus $Bin(n_2 - 1, p)$ and domination is easy to confirm. We have $n_2 - 1$ instead of n_2 , since we do not wish to count the edge v to $\phi(v)$ twice.

We now write $n_i = \alpha_i n$ for i = 0, ..., 4. We are particularly interested in the case where c = 4. Now (4) implies that $G_{n,\frac{4}{n}}$ has no induced bipartite subgraph of size βn for $\beta > 0.94$. Thus we may assume that $\alpha_i \ge 0.06$ for i = 0, ..., 4. In which case we can write

$$\mathbf{Pr}(\mathbf{P1} \wedge \mathbf{P2} \wedge \mathbf{P3} \wedge \mathbf{P4}) \le e^{o(n)} \times \exp\left\{-c\left(\frac{1}{2} - \sum_{i=0}^{4} \alpha_i \alpha_{i+1}\right)n\right\} \times \left(\prod_{i=1}^{4} (1 - e^{-c\alpha_{i-1}})^{\alpha_i}\right)^n \times (1 - e^{-\alpha_3/\alpha_2} e^{-c\alpha_3})^{\alpha_2 n}.$$

The number of choices for V_0, \ldots, V_4 with these sizes is

$$\binom{n}{n_0, n_1, n_2, n_3, n_4} = e^{o(n)} \times \left(\frac{1}{\prod_{i=0}^4 \alpha_i^{\alpha_i}}\right)^n \le 5^n.$$

Putting $\alpha_4 = 1 - \alpha_0 - \alpha_1 - \alpha_2 - \alpha_3$ and

$$b = b(c, \alpha_0, \alpha_1, \alpha_2, \alpha_3) = \frac{1}{\alpha_0^{\alpha_0} \alpha_1^{\alpha_1} \alpha_2^{\alpha_2} \alpha_3^{\alpha_3} \alpha_4^{\alpha_4}} e^{c(\alpha_0 \alpha_4 - \frac{1}{2})} (e^{c\alpha_0} - 1)^{\alpha_1} (e^{c\alpha_1} - 1)^{\alpha_2} (e^{c\alpha_2} - 1)^{\alpha_3} (e^{c\alpha_3} - 1)^{\alpha_4} (1 - e^{-\alpha_3/\alpha_2} e^{-c\alpha_3})^{\alpha_2},$$

we see that since there are $O(n^4)$ choices for n_0, \ldots, n_4 we have

$$\mathbf{Pr}(\exists \text{ a homomorphism from } G_{n,\frac{4}{n}} \text{ to } C_5) \le e^{o(n)} \left(\max_{\substack{\alpha_0 + \dots + \alpha_3 \le 0.94 \\ \alpha_0, \dots, \alpha_3 \ge 0.06}} b(4, \alpha_0, \alpha_1, \alpha_2, \alpha_3) \right)^n.$$
(8)

In the next section, we describe a numerical procedure for verifying that the maximum in (8) is less than 1. This will complete the proof of Theorem 3.

6 Bounding the function.

Our aim now is to bound the partial derivatives of $b(4.0, \alpha_0, \alpha_1, \alpha_2, \alpha_3)$, to translate numerical computations of the function on a grid to a rigorous upper bound.

Before doing this we verify that w.h.p. $G_{n,p=\frac{4}{n}}$ has no independent set S of size s = 3n/5 or more. Indeed,

$$\mathbf{Pr}(\exists S) \le 2^n (1-p)^{\binom{s}{2}} \le 2^n e^{-18n/25} e^{12/5} = o(1).$$

In the calculations below we will make use of the following bounds: They assume that $0.06 \le \alpha_i \le 0.6$ for $i \ge 0$.

$$\log(\alpha_i) > -2.82; \quad -1.31 < \log(e^{4\alpha_i} - 1) < 2.31; \quad \frac{e^{4\alpha_i}}{e^{4\alpha_i} - 1} < 4.69$$
$$\frac{1}{e^{4\alpha_i} - 1} < 3.69; \quad \log(e^{\alpha_3/\alpha_2 + 4\alpha_3} - 1) > -0.91; \quad \frac{1 + 4\alpha_2}{e^{\alpha_3/\alpha_2} e^{4\alpha_3} - 1} < 8.40.$$

We now use these estimates to bound the absolute values of the $\frac{1}{b} \cdot \frac{\partial b}{\partial \alpha_i}$. Our target value for these is 30. We will be well within these bounds except for i = 2

Taking logarithms to differentiate with respect to α_0 , we find

$$\frac{\partial b}{\partial \alpha_0} = b(c, \alpha_0, \alpha_1, \alpha_2, \alpha_3) \times \left(c \left(-\alpha_0 + \alpha_1 + \frac{\alpha_1}{e^{\alpha_0 c} - 1} + \alpha_4 \right) - \log(\alpha_0) + \log(\alpha_4) - \log(e^{\alpha_3 c} - 1) \right).$$
(9)

In particular, for c = 4,

$$\frac{1}{b} \cdot \frac{\partial b}{\partial \alpha_0} \ge -4\alpha_0 + \log(\alpha_4) - \log(e^{4\alpha_3} - 1) > -2.4 - 2.82 - 2.31,$$

$$\frac{1}{b} \cdot \frac{\partial b}{\partial \alpha_0} \le 4\left(\alpha_1 + \frac{\alpha_1}{e^{\alpha_0 c} - 1} + \alpha_4\right) - \log(\alpha_0) - \log(e^{4\alpha_3} - 1) < 4 \times 4.69 + 2.82 + 1.31.$$

Similarly, we find

$$\frac{\partial b}{\partial \alpha_1} = b(c, \alpha_0, \alpha_1, \alpha_2, \alpha_3) \times \left(c \left(-\alpha_0 + \alpha_2 + \frac{\alpha_2}{e^{\alpha_1 c} - 1} \right) - \log(\alpha_1) + \log(\alpha_4) + \log\left(\frac{e^{\alpha_0 c} - 1}{e^{\alpha_3 c} - 1}\right) \right), \quad (10)$$

and so for c = 4,

$$\frac{1}{b} \cdot \frac{\partial b}{\partial \alpha_1} \ge -4\alpha_0 + \log(\alpha_4) + \log(e^{4\alpha_0} - 1) - \log(e^{4\alpha_3} - 1) > -2.4 - 2.82 - 3.62,$$

$$\frac{1}{b} \cdot \frac{\partial b}{\partial \alpha_1} \le 4\left(\alpha_2 + \frac{\alpha_2}{e^{4\alpha_1} - 1}\right) - \log(\alpha_1) - \log(e^{4\alpha_3} - 1) < 2.4 \times 4.69 + 2.82 + 1.31.$$

We next find that

$$\frac{\partial b}{\partial \alpha_2} = b(c, \alpha_0, \alpha_1, \alpha_2, \alpha_3) \times \\ c\left(-\alpha_0 + \alpha_3 + \frac{\alpha_3}{e^{\alpha_2 c} - 1}\right) - \frac{\alpha_3/\alpha_2}{e^{\alpha_3/\alpha_2 + c\alpha_3} - 1} + \\ \log \alpha_4 - \log \alpha_2 + \log(e^{\alpha_1 c} - 1) - \log(e^{\alpha_3 c} - 1) - \frac{\alpha_3}{\alpha_2} - c\alpha_3 - \log(e^{\alpha_3/\alpha_2 + c\alpha_3} - 1); \quad (11)$$

and so for c = 4,

$$\frac{1}{b} \cdot \frac{\partial b}{\partial \alpha_2} \ge -4\alpha_0 - \frac{\alpha_3}{\alpha_2} \frac{e^{\alpha_3/\alpha_2 + c\alpha_3}}{e^{\alpha_3/\alpha_2 + c\alpha_3} - 1} - \log(e^{\alpha_3/\alpha_2 + c\alpha_3} - 1) + \log(\alpha_4) + \log\left(\frac{e^{4\alpha_1} - 1}{e^{4\alpha_3} - 1}\right)$$

We need to be a little careful here. Now $\alpha_3/\alpha_2 \leq 10$ and if $\alpha_3/\alpha_2 \geq 9$ then $\alpha_3 \geq 0.54$ and then $\alpha_i \leq 0.46 - 3 \times .06 = 0.28$ for $i \neq 3$. We bound $-\frac{1}{b} \cdot \frac{\partial b}{\partial \alpha_i}$ for both possibilities. Continuing we get

$$\begin{aligned} \frac{\alpha_3}{\alpha_2} &\geq 9: \frac{1}{b} \cdot \frac{\partial b}{\partial \alpha_2} > -1.12 - 10.01 - 12.4 - 2.82 - 3.62 = -29.97, \\ \frac{\alpha_3}{\alpha_2} &\leq 9: \frac{1}{b} \cdot \frac{\partial b}{\partial \alpha_2} > -2.4 - 9.01 - 11.4 - 2.82 - 3.62, \\ \frac{1}{b} \cdot \frac{\partial b}{\partial \alpha_2} &\leq 4 \left(\alpha_3 + \frac{\alpha_3}{e^{4\alpha_2} - 1} \right) - \log(\alpha_2) + \log\left(\frac{e^{4\alpha_1} - 1}{e^{4\alpha_3} - 1}\right) - \log(e^{\alpha_3/\alpha_2 + c\alpha_3} - 1) \\ &< 2.4 \times 3.69 + 2.82 + 3.62 + 0.91. \end{aligned}$$

Finally, we find that

$$\frac{\partial b}{\partial \alpha_3} = b(c, \alpha_0, \alpha_1, \alpha_2, \alpha_3) \times \\ c\left(-\alpha_0 + \alpha_4 \frac{e^{c\alpha_3}}{e^{c\alpha_3} - 1}\right) + \frac{1 + c\alpha_2}{e^{\alpha_3/\alpha_2} e^{c\alpha_3} - 1} + \log(\alpha_4) - \log(\alpha_3) + \log\left(\frac{e^{\alpha_2 c} - 1}{e^{\alpha_3 c} - 1}\right)$$
(12)
and so for $c = 4$

and so for c = 4

$$\frac{1}{b} \cdot \frac{\partial b}{\partial \alpha_3} \ge -4\alpha_0 + \log(\alpha_4) + \log(e^{4\alpha_2} - 1) - \log(e^{4\alpha_3} - 1) > -2.4 - 2.82 - 3.62,
\frac{1}{b} \cdot \frac{\partial b}{\partial \alpha_3} \le 4\alpha_4 \frac{e^{4\alpha_3}}{e^{4\alpha_3} - 1} + \frac{1 + 4\alpha_2}{e^{\alpha_3/\alpha_2} e^{4\alpha_3} - 1} - \log(\alpha_3) + \log\left(\frac{e^{4\alpha_2} - 1}{e^{4\alpha_3} - 1}\right)
< 2.4 \times 4.69 + 8.40 + 2.82 + 3.62.$$

We see that $|\frac{1}{b} \cdot \frac{\partial b}{\partial \alpha_i}| < 30$ for all $0 \le i \le 3$. Thus, if we know that $b(c, \alpha_0, \alpha_1, \alpha_2, \alpha_3) \le B$ for some B, this means that we can bound $b(4, \alpha_0, \alpha_1, \alpha_2, \alpha_3) < \rho$ by checking that $b(4, \alpha_0, \alpha_1, \alpha_2, \alpha_3) < \rho - \varepsilon$ on a grid with step-size $\delta \le \varepsilon/(2 \cdot B \cdot 30)$.

The C++ program in Appendix A checks that $b(4, \alpha_0, \alpha_1, \alpha_2, \alpha_3) < .949$ on a grid with step-size $\delta = .0008$ (it completes in around an hour or less on a standard desktop computer, and is available for download from the authors' websites). Suppose now that $B \ge 1$ is the supremum of $b(4, \alpha_0, \alpha_1, \alpha_2, \alpha_3)$ in the region of interest. For $\varepsilon = 60\delta B = 0.048B$, we must have at some δ -grid point that $b(4, \alpha_0, \alpha_1, \alpha_2, \alpha_3) \ge B - \varepsilon = .962B \ge .962$. This contradicts the computer-assisted bound of < .949 on the grid, completing the proof of Theorem 3. \Box

References

[1] D. Achlioptas and E. Friedgut, A sharp threshold for k-colorability, Random Structures and Algorithms 14 (1999) 63-70.

- [2] D. Achlioptas and A. Naor, The two possible values of the chromatic number of a random graph, *Annals of Mathematics* 162 (2005), 1333-1349.
- [3] J. Aronson, A. Frieze and B. Pittel, Maximum matchings in sparse random graphs: Karp-Sipser revisited, *Random Structures and Algorithms* **12** (1998), 111-178.
- [4] B. Bollobás, A probabilistic proof of an asymptotic formula for the number of labeled graphs, *European Journal on Combinatorics* 1(1980) 311-316.
- [5] E. Friedgut, Sharp Thresholds of Graph Properties, and the k-sat Problem, Journal of the American Mathematical Society 12 (1999) 1017-1054.
- [6] H. Hatami, Random cubic graphs are not homomorphic to the cycle of size 7, *Journal* of Combinatorial Theory B 93 (2005) 319-325.
- [7] T. Łuczak, A note on the sharp concentration of the chromatic number of random graphs, *Combinatorica* 11 (1991) 295-297.
- [8] B. Pittel, On Tree Census and the Giant Component in Sparse Random Graphs, *Random Structures and Algorithms* 1 (1990) 311-342.
- X. Zhu, Circular chromatic number: a survey, Discrete Mathematics 229 (2001) 371–410. Xuding Zhu

A C++ code to check function bound

```
#include <iostream>
#include <math.h>
#include <stdlib.h>
using namespace std;
int main(int argc, char* argv[]){
  double delta=.0008;
                            //step size
  double maxIndSet=.6;
                         //no independent sets larger than this fraction
  double minClass=.06;
                           //all color classes larger than this fraction
  double val=0;
  double maxval=0;
  double maxa0, maxa1, maxa2, maxa3; //to record the coordinates of max value
  maxa0=maxa1=maxa2=maxa3=0;
  double A23, A, B, C;
                               //For precomputing parts of the function
  double c=4:
  for (double a3=minClass; a3 + 4*minClass<1; a3+=delta){</pre>
    B=\exp(c*a3)-1;
    for (double a2=minClass; a3 + a2 + 3*minClass<1; a2+=delta){</pre>
      A23=1/(pow(a2,a2)*pow(a3,a3)) * exp(-c/2)
                 * pow(exp(c*a2)-1,a3) * pow(1-exp(-a3/a2)*exp(-c*a3),a2);
      for (double a1=minClass;
           a3+a1<maxIndSet && a3 + a2 + a1 + 2*minClass<1;
           a1+=delta){
        A=A23/pow(a1,a1)* pow(exp(c*a1)-1,a2);
        for (double a0=max(max(minClass,.4-a2-a3),.4-a1-a3);
             a2+a0<maxIndSet && a3+a0<maxIndSet
              && a3 + a2 + a1 + a0 + minClass<1;
             a0+=delta){
          double a4=1-a0-a1-a2-a3;
          C=exp(c*a0);
          val=1/pow(a0,a0) * A * pow(B*C/a4,a4)* pow(C-1,a1);
          if (val>maxval){
            maxval=val;
            maxa0=a0; maxa1=a1; maxa2=a2; maxa3=a3;
          }
        }
      }
    }
  }
  cout << "Max is "<<maxval<<", obtained at ("</pre>
       <<maxa0<<","<<maxa1<<","<<maxa2<<","<<maxa3<<","
       <<1-maxa0-maxa1-maxa2-maxa3<<")"<<endl;
}
```

program output:

\$./bound

Max is 0.948754, obtained at (0.2904,0.2568,0.1704,0.1632,0.1192)