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Abstract

We consider the problem of generating a random q-colouring of a graph G = (V, E). We
consider the simple Glauber Dynamics chain. We show that if for all v ∈ V the average degree
of the subgraph Hv induced by the neighbours of v ∈ V is � ∆ where ∆ is the maximum
degree and ∆ > c1 ln n then for sufficiently large c1, this chain mixes rapidly provided q/∆ > α,
where α ≈ 1.763 is the root of α = e1/α. For this class of graphs, which includes planar graphs,
triangle free graphs and random graphs Gn,p with p � 1, this beats the 11∆/6 bound of Vigoda
[20] for general graphs.

1 Introduction

Markov Chain Monte Carlo (MCMC) is an important tool in sampling from complex distributions. It
has been successfully applied in several areas of Computer Science, most notably volume computation
[3], [15], [16] and estimating the permanent of a non-negative matrix [12]. It was used by Jerrum [10]
to generate a random q-colouring of a graph G, provided q > 2∆. This has led to the challenging
problem of determining the smallest value of q for which it is possible to generate a (near)-uniform
sample from the set Q of proper q-colourings of G in polynomial time. We cannot expect the chain
to mix for q ≤ ∆ + 1 and at present it is unknown as to whether or not it mixes rapidly for say
q = ∆ + 2. Vigoda [20] improved Jerrum’s result by reducing the lower bound on q to 11∆/6. This
is still the best lower bound on q for general graphs.

The lack of complete success on the general problem has led to the analysis of restricted classes
of graphs. Suppose that we consider Glauber dynamics on the set Q. Specifically we will consider
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the heat bath dynamics, which may be described as follows. We start from an arbitrary proper
q-colouring X0 ∈ Q. At step t > 0 of the process, in state Xt−1 ∈ Q, we choose a vertex vt ∈ V
uniformly at random. Then we choose jt uniformly at random from the colours with which vt may
be properly coloured, given Xt−1(V \ vt). We recolour vt with jt to give Xt ∈ Q.

Dyer and Frieze [2] considered this process restricted to the class of graphs G(c1, c2): the set of graphs
with n vertices, maximum degree ∆ ≥ c1 log n and girth g ≥ c2 log ∆. They showed using the idea
of “burn-in” that for c1, c2 sufficiently large, Glauber Dynamics mixed in O(n log n) time, provided
q > α∆ where α ≈ 1.763 is the root of α = e1/α. Molloy [17] improved this result by reducing the
lower bound on q to being more than β∆ where β ≈ 1.489 is the root of (1− e−1/β)2 + βe−1/β = 1.
The girth asumptions were then relaxed by Hayes [7] to g ≥ 5 for k/∆ > α and g ≥ 6 for k/∆ > β.
Subsequently, Hayes and Vigoda [8] made considerable progress, using a non-Markovian coupling,
and reduced the lower bound on k/∆ to (1 + ε) for all ε > 0, which is nearly optimal. Their result
requires girth g ≥ 9. However, the large maximum degree restriction remained. This was replaced
by ∆ ≥ ∆0 in Dyer, Frieze, Hayes and Vigoda [5], with the same restrictions on girth as in [7]. Dyer,
Flaxman, Frieze and Vigoda [4] show that for sparse random graphs, the number of colours required
for rapid mixing is of order the average rather than maximum degree whp. Goldberg, Martin and
Paterson [6] prove results on the related notion of strong spatial mixing.

In this paper we avoid girth restrictions and consider locally sparse graphs instead. We say that a
graph G = (V,E) is γ-locally sparse if for all v ∈ V , the average degree of the graph induced by the
neighbourhood N(v) is at most γ. Thus planar graphs are always 6-locally-sparse and triangle free
graphs are 0-locally-sparse.

Theorem 1.1 Suppose that q ≥ (α+ ε)∆ where ε is a small positive constant. Let G be an n-vertex

γ-locally sparse graph with γ ≤ ε2∆/10 and ∆ ≥ c1 log n. If c1 = c1(ε) is sufficiently large then

the Glauber dynamics converges to within variation distance e−1 from uniform over Q in at most

O(n ln n).

Notice that if G = Gn,p and c1 log n
n ≤ p ≤ ε2/11 then whp G satisfies the conditions of the theorem.

Note also that the chromatic number of a triangle-free graph is O(∆/ log ∆) – see Johansson [14] or
Molloy and Reed [18] or Alon, Krivelevich and Sudakov [1] or Vu [21].

Our proof uses coupling and relies on a recent idea from Hayes and Vigoda [9] that utilises the
fact that we can couple against the steady state distribution of the chain. Note that the theorem
generalises Theorem 4 of [9].

In what follows we will assume that n is sufficiently large and ε is sufficiently small to satisfy our
inequalities.

2 Preliminaries

We will consider two copies of Glauber Dynamics, (Xt, t ≥ 0) and (Yt, t ≥ 0). Here X0 is an
arbitrary colouring and Y0 is chosen from the uniform (stationary) distribution over Q. At time t,
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the Hamming distance between Xt, Yt is defined by

H(Xt, Yt) =
∑

v∈V

1Xt(v)6=Yt(v).

We will couple the two processes as in Jerrum [10]. Here vt is the same in both processes and then
the choice of colours is maximally coupled. For vertex w let

A(Xt, w) = {c ∈ [q] : c /∈ Xt(N(w))}

be the set of colours available to colour w in Xt if vt = w.

Let a(Xt, w) = |A(Xt, w)| and define the terms A(Yt, w), a(Yt, w) analogously.

It is shown in [9] that

E(H(Xt+1, Yt+1) − H(Xt, Yt)) ≤ −
1

n
H(Xt, Yt) +

1

n

∑

w∈V

|{u ∈ N(w) : Xt(u) 6= Yt(u)}|

max{a(Xt, w), a(Yt, w)}
. (1)

We will show that for w ∈ V and δ = ε/10,

Pr(a(Yt, w) ≤ ∆/(1 − δ)) ≤ n−4. (2)

Assuming that a(Yt, w) ≥ ∆/(1 − δ) in (1) we get

E(H(Xt+1, Yt+1) − H(Xt, Yt)) ≤ −
1

n
H(Xt, Yt) +

1

n

H(Xt, Yt)∆

∆/(1 − δ)

≤ −
δ

n
H(Xt, Yt).

So conditional on an event of probability 1 − O(n−3), we have

E(H(Xt+1, Yt+1) | Xt, Yt) ≤

(

1 −
δ

n

)

H(Xt, Yt).

Thus if T = n(1 + ln n)δ−1 then conditional on an event of probability 1 − O(n−2 log n), we have

E(H(XT , YT )) ≤ e−1

and so unconditionally
E(H(XT , YT )) ≤ e−1 + o(1).

Hence the mixing time of the Glauber Dynamics is O(n ln n) as claimed.

3 Bounding the number of available colours

Fix v ∈ W and let Hv be the subgraph of G induced by N(v). Let B(v) be the vertices of N(v)
that have degree at least γδ−1 in Hv. Note that γδ−1 ≤ ε∆ and

|B(v)| ≤ δ|N(v)|, (3)
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since G is γ-locally-sparse.

Let
N∗(v) = N(v) \ B(v) = {w1, w2, . . . , wd}.

Now let let us fix the colours κ(v) used at

v ∈ Wv = V \ N∗(v).

Let us use the term allowable for colorings of N ∗(v) which respect this conditioning. Let Ω be the
set of allowable colourings of N∗(v).

Let a∗(σ, v) be the number of colours not used on N ∗(v). Note that (3) implies

a(σ, v) ≥ a∗(σ, v) − δ|N(v)|. (4)

Now consider the following process Pσ for producing an allowable colouring of Hv. Here σ ∈ Ω. We
let σ0 = σ and for j = 1, 2, . . . , d let σj be obtained from σj−1 as follows: Keep σj(wk) = σj−1(wk)
for k 6= j and choose σj(wj) randomly from what is available to it.

Let Zσ be the number of colours not appearing on a vertex in N ∗(v) if we start with σ0 = σ.

Lemma 3.1 If σ is chosen uniformly from Ω then for any c > 0,

Pr(a∗(σ, v) ≥ c) = Pr(Zσ ≥ c).

Proof We first prove that

If σ0 is chosen uniformly from Ω then σd is also uniform over Ω. (5)

We do this by induction on j, with base case j = 0.

Pr(σj = σ) =
∑

σ′∈Ω

Pr(σj = σ | σj−1 = σ′) Pr(σj−1 = σ′)

=
1

|Ω|

∑

σ′∼σ

Pr(σj = σ | σj−1 = σ′)

Here σ′ ∼ σ if σ, σ′ differ only at wj .

=
1

|Ω|

∑

σ′∼σ

1

|{σ′ : σ′ ∼ σ}|

=
1

|Ω|
.

Now a∗(σd, v) = Zσ0
and so

Pr(a∗(σd, v) ≥ c) = Pr(Zσ0
≥ c)

and the lemma follows from (5) 2
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For w ∈ N∗(v) let
L(w) = [q] \ {κ(u) : u ∈ N(w) \ N∗(v)}

be the colours not specifically barred from w by the current conditioning. Then let

L∗(wj) = [q] \ {σj−1(u) : u 6= wj} for j = 1, 2, . . . , d

be the colours available to wj when it is re-coloured by σj .

We will first estimate the (conditional) expectation of Zσ for arbitrary σ. Suppose that x ∈ [q]. Let
θx,j = 1x∈L(wj) and let θ∗x,j = 1x∈L∗(wj). Then we have

Pr(x /∈ σd(N
∗(v))) =

d
∏

j=1

Pr(σd(wj) 6= x | σd(wi) 6= x, 1 ≤ i < j)

=

d
∏

j=1

E

(

(

1 −
1

|L∗(wj)|

)θ∗

x,j

)

≥
d
∏

j=1

(

1 −
1

|L(wj)| − γδ−1

)θx,j

since |L∗(wj)| ≥ |L(wj)| − γδ−1 and L∗(wj) ⊆ L(wj) implying θ∗x,j ≤ θx,j .

Then, following [2],

E(Zσ) ≥
∑

x∈[q]

d
∏

j=1

(

1 −
1

|L(wj)| − γδ−1

)θx,j

≥ q





∏

x∈[q]

d
∏

j=1

(

1 −
1

|L(wj)| − γδ−1

)θx,j





1/q

= q





d
∏

j=1

(

1 −
1

|L(wj)| − γδ−1

)|L(wj)|




1/q

≥ q exp







−
1

q

d
∑

j=1

|L(wj)|

|L(wj)| − 1 − γδ−1







, using 1 − x ≥ e−x/(1−x) for 0 < x < 1,

≥ q exp

{

−
∆

q
·

q − ∆

q − ∆ − 1 − γδ−1

}

≥
(

1 +
ε

2

)

∆. (6)

(If f(x) = xe−1/x then f(α) = 1 and f ′(α) ∼ .891.)

We will now prove that for all σ ∈ Ω, Zσ is concentrated around its mean via the use of the
Azuma-Hoeffding martingale inequality. To this end, let x1, x2, . . . , xd be the colours assigned to
w1, w2, . . . , wd. Thus we can write Zσ = Zσ(x1, x2, . . . , xd). Now let

Zσ,i = Zσ,i(x1, x2, . . . , xi) = E(Z | x1, x2, . . . , xi).
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We will show next that for all feasible colours x1, x2, . . . , xi, x
′
i that

|Zσ,i(x1, x2, . . . , xi−1, xi) − Zσ,i(x1, x2, . . . , xi−1, x
∗
i )| ≤ 2. (7)

The aforementioned inequality will then imply that for any t ≥ 0,

Pr(Zσ − E(Zσ) ≤ −t) ≤ e−t2/(2d)

and then taking t = ε∆/4 and using (6) we get

Pr
(

Zσ ≤
(

1 +
ε

4

)

∆
)

≤ e−ε2∆/32.

This together with Lemma 3.1 and (4) implies (2).

To prove (7), fix i, x1, x2, . . . , xi, x
∗
i . In one instance of Pσ we start by colouring w1, w2, . . . , wi with

x1, x2, . . . , xi to produce colouring τ . In another instance we start by colouring w1, w2, . . . , wi with
x1, x2, . . . , x

∗
i to produce colouring τ∗.

We couple these two constructions in order to minimise the expected difference in the number of
vertices U with a different colour. A paths of disagreement argument gives that

E(U) ≤ 1 +

d
∑

j=i+1

(

γδ−1

|L(wj)| − γδ−1

)j−i

≤ 2 (8)

and (7) follows. 2

Explanation of (8): We claim that if cj , c
∗
j is the colour of vj in σd, σ

∗
d respectively, then

Pr(cj 6= c∗j ) ≤

(

γδ−1

|L(wj)| − γδ−1

)j−i

.

This is because if cj 6= c∗j then there is a path of disagreements vi1 , vi2 , . . . , vis
where i = i1 < i2 <

· · · < is = j such that cir
6= c∗ir

for 1 ≤ r ≤ s. There are at most (λδ−1)j−i such paths and each has
probability at most (|L(wj)| − γδ−1)i−j of all vertices being coloured differently. 2
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