
Discrete Applied Mathematics 10 (1985) 57-77 57

North-Holland

THE SHORTEST-PATH PROBLEM FOR GRAPHS
WITH R A N D O M ARC-LENGTHS

A.M. FRIEZE
Dept. o f Computer Science and Statistics, Queen Mary College, London University, Mile
End Road, London E1 4NS, England

G.R. GRIMMETT
School of Mathematics, University of Bristol, Bristol BS8 1 TW, England

Received 31 March 1982

Revised 21 January 1983

We consider the problem of finding the shortest distance between all pairs of vertices in a com-

plete digraph on n vertices, whose arc-lengths are non-negative random variables. We describe

an algorithm which solves this problem in O(n(m + n log n)) expected time, where m is the ex-

pected number of arcs with finite length. If m is small enough, this represents a small improve-

ment over the bound in Bloniarz [3]. We consider also the case when the arc-lengths are random

variables which are independently distributed with distribution function F, where F(0) = 0 and F

is differentiable at 0; for this case, we describe an algorithm which runs in O(n 2log n) expected

time.
In our treatment of the shortest-path problem we consider the following problem in com-

binatorial probability theory. A town contains n people, one of whom knows a rumour. At the

first stage he tells someone chosen randomly from the town; at each stage, each person who

knows the rumour tells someone else, chosen randomly from the town and independently of all

other choices. Let Sn be the number of stages before the whole town knows the rumour. We

show that Sn/log2n--" 1 + loge 2 in probability as n ~ 0% and estimate the probabilities of large

deviations in Sn.

1. Introduction

We consider the problem of finding the shortest distances between each pair of
vertices in a digraph in which all the arcs have non-negative lengths. An n-vertex
problem can be solved in O(n3(log log n)l/3/(log n) 1/3) time using the algorithm of
Fredman [8] (in this paper all logarithms are natural unless explicitly stated other-
wise). Fredman's algorithm represents a small improvement in worst-case running
time over the O(n 3) algorithms of Dijkstra [6] and Floyd [7].

Spira[10] examined the problem of finding an algorithm with a good expected
running time, assuming the existence of a probability distribution on the set of non-
negatively weighted digraphs. He proposed an algorithm which has an expected run-
ning time of O((n log n) 2) for quite general distributions. Spira did not deal with the

0166-218X/85/$3.30 © 1985, Elsevier Science Publishers B.V. (North-Holland)

58 A.M. Frieze, G.R. Grimmett

case when arcs may have equal length, and this point was taken up in detail by
Bloniarz, Meyer and Fischer [4]. More recently, Bloniarz [3] has improved Spira 's
method and found an algorithm which runs in O(nElognlog*n) expected time,
where log*n=min{i:login<_ 1} and log / denotes the ith iterate of the logarithm
function.

The class of probabil i ty distributions for which these results hold is quite general.
Informally, all that is required is that the joint distribution of the lengths of arcs
in the digraph be independent of the vertices to which they point; it may however
depend on the vertices from which they point. Bloniarz [3] gives the following
definition. Let V~ = { 1, 2 n } and let Sn be the set of all digraphs on the vertex
set V~ which have non-negatively weighted arcs. We may identify Sn with the set of
n by n matrices with entries in [0,co]; that is, GeSn is identified with the n by n
matrix (co(i,j):i, j e Vn), where co(i,j) is the length of the arc (i,j). I f P is a pro-
bability measure on S,, let

Fp(G) = P ({ G ' eS~:cc,(i,j)<cG(i,j) for all i, j e V,}).

We say that P is endpoint-independent if, for all i,j, k ~ V~ and G ~ Sn, we have that

Fp(G) = Fp(G'),

where G' is obtained from G by interchanging the lengths of arcs (i,j) and (i, k).
In this paper, we describe an algorithm which runs in O(n(m + n log n)) expected

time whenever the joint distribution of the arc-lengths is endpoint-independent;
here, m is the expected number of edges of finite length in G. I f
m = o(n log n log* n), then this is a small improvement over the expected running

t ime of Bloniarz's algorithm [3].
We consider another case in some detail. Suppose that the arc-lengths of G are

independent, identically distributed random variables whose common distribution
function F is such that one or other of the following conditions holds:

(i) F(0) > 0,
(ii) F (0) = 0 and F ' (0) exists with F ' (0) > 0 .

In this case our algorithm may be modified to run in O(n21og n) expected time.
In our treatment of the shortest-path problem we encounter a problem in com-

binatorial probability theory which is closely related to the study of the spreads of
epidemics and rumours through finite populations. A town contains n people, exact-
ly one of whom has heard a rumour f rom a neighbouring town, and this rumour
spreads according to the following rules. At each epoch of time, each person who
currently knows the rumour communicates it to somebody else in the town, chosen
randomly f rom the entire population and independently of all previous choices. It
is clear that the number S~ of stages before the whole town knows the rumour is
at least log2n; we show in Section 5 that, as n ~ co,

&
- - -+ 1 + log 2 in probability,
log2n

The shortest-path problem 59

and we investigate the tail of Sn for large n. This process differs f rom the processes

of Daley and Kendall [5] and Berg [2] in that individuals tire of gossiping only when
everyone knows the gossip.

2. The algorithm SHORTPATH

The algorithm S H O R T P A T H described below is a modification of Spira 's
algorithm.

Let F ÷ (o) (respectively F - (o)) denote those vertices w for which the arc (o, w)
(respectively (w, o)) has finite length. Before we do anything else, we construct for
each v • V a list of the set F + (o), ordered by increasing value of arc-length c(o, w)
(we drop the suffix G f rom arc-lengths f rom now on). The procedure RESETNEXT
sets pointers to the beginning of each list, and a call to NEXT(o) returns the current
vertex, CURR(o), being pointed at, and moves the pointer to the next vertex in
F + (o). NEXT returns 0 when the end of the list in question has been passed. We
shall assume that, in constructing these and later orderings, arcs of equal length are
ordered randomly.

We solve a sequence of shortest path problems, taking each vertex in turn as the
source vertex s.

For a fixed vertex s, at each stage X denotes a set of vertices for which a shortest
path length f rom s has been determined. Q is a heap (used as a priority queue [1])
o f items of the form (x: v: w) where o • X, w • V, and x = d(o) + c(o, w), where d(v)
is the length of a shortest path f rom s to o. The heap Q is ordered by the value x
and is such that if y=min{d(o)+c(o, w): v e X , wq.X}, then Q contains an item
(y:o:w) with v e X , w ¢ X .

The basic step is to execute MIN(Q), which removes the minimal object
(x:co:cw) f rom Q. I f cw¢X, then a shortest path f rom s to cw of length x has now
been found; if this is so, then using NEXT(co), NEXT@w) we find the next nearest
neighbours o, w to co, cw respectively and add the two corresponding items to Q.

The proposed new feature of this algorithm is that, at those points of the
algorithm at which [X[reaches (approximately) n/2, 3n/4, 7n/8 all arcs of the
fo rm (o, w) where w • X are removed f rom further consideration, and we then
reconstruct Q f rom the items (d(o) + c(o, w):u: w) where o e X and w = CURR(o).

In order to delete arcs efficiently, we store the sorted set F ÷(o) as a doubly-
linked list. For each w • F ÷ (o), we store po(w) which is the position of w in the list
F+(o). Thus, if o e F - (w) , then w can be removed from F+(o) in O(1) time.

Algorithm S H O R T P A T H

begin
SORTARCS;
for s: = 1 to n do {use each vertex as a source in turn}

60 A . M . Frieze, G.R. Grimmett

begin
d(s): = 0; X: =0; Q: = (<0:s:s>); RESETNEXT; k: =0; r: = r½n7;
while r<n do
begin

while k < r do
begin

A: <x:cv:cw> : = MIN(Q);
o: = NEXT(co); if o #: 0 then INSERT(Q, < d(co) + c(co, o): co: o >);
if cw ~ X then
begin

k: = k + 1; X: = X U {cw}; d(cw): = x ;
w: = NEXT(cw); if w:#O then INSERT(Q, <d(cw) + c(cw, w):cw: w>);

end
end
{remove some redundant arcs}
for w e X do for o e F - (w) do remove w from F+(o) ;

C: ~{natura l ly this need only be done once for each o • Vn}
[_re-construct Q using only <d(u) + c(o, CURR(o)): o:CURR(o)> for o • X;

D: r: = r½(n + r) l ,

end

end
end

Note that although the above algorithm computes shortest distances rather than
shortest paths, it may easily be adapted to find the latter also, at the cost of increas-
ing the time complexity by a constant factor. The validity of S H O R T P A T H follows
f rom the validity of Spira 's algorithm.

3. Analysis of SHORTPATH

In this section we prove the following theorem.

Theorem 3.1. I f the arc-length distribution is endpoint-independent, then SHORT-
P A T H runs in O(n(m + n log n)) expected time, where m is the expected number o f
arcs o f finite length in G.

Proof . First fix a source vertex s. L e t p = LlogznJ + 1 and let X1,X2 Xp denote
the sequence of values of X at successive executions of statement D of the algorithm.
Let X 0 = 0 and ri=lXil, i=0 , 1 p.

Because of endpoint-independence and the 'clean up ' operation C, we have that
at line A if Xic_XCXi+I , then

The shortest-path problem 61

Prob(cw ~ X) -> n - Ix____~l
n - r i

Thus, the expected number ek of calls to MIN needed to add the (k + 1)th vertex to
X satisfies

n - r i
ek <<-n_ k ,

where i is such that r i < k < r i + I. Thus the total expected number

n - I

e = ~ ek
k - O

of calls to MIN is bounded above by

p - I r~+L-- I
e<-_ ~, ~, n - r i

i-o k=r, n - k

p l (n - r i _ l) <_ ~ (n - ri) log + O(log n).
i = 0 \ n - r i +

Now, ri+ 1 = F½(n + ri)7 implies

n - ri <_2-~ 2 .

n - r i + 1 n - r i - 1 '

hence

e_< 2n log 2 + O(log n).

For any given s we can divide the time spent finding shortest distances into
(a) calling MIN and INSERT (by the above, this takes O(n log n) expected time),
(b) deleting w from F + (o), for w e X and o e F - (w) (this clearly takes O(m + n)

expected time),
(c) reconstructing the heap Q (this takes O(pn) time as a heap can be constructed

in O(n) time [1]).
Thus, for each s, the above routine requires O(m + n log n) expected time. The in-

itial sorting requires O(nElogn) time, and the theorem is proved. []

We note that Bloniarz, Meyer and Fischer [4] dealt with certain ambiguities in
Spira's algorithm by treating equal-length arcs in F + (o) in blocks, and processing
each such block as soon as the first of its arcs is chosen in A. The effect of this
operation is to speed up the runtime of the algorithm, since fewer executions of MIN
are performed.

4. Independent arc-lengths

In this section we shall assume that the arc-lengths are independent non-negative

62 A.M. Frieze, G.R. Grimmett

random variables with common distribution function F, and shall make use of the
following algorithm.

Algorithm R A N D O M S H O R T P A T H

begin
p : = m i n { n - 1, 201ogn}
for o : = 1 to n do
begin

find the p shortest arcs leaving o and construct a doubly-linked list comprising
the vertices to which these arcs point, together with, for each vertex in the list,
a pointer to its position in the list

end;
for v : = 1 to n do

begin

construct a list of vertices w, whose list of p nearest neighbours contains o
end;

apply S H O R T P A T H to the digraph with vertices Vn and arcs joining each
vertex to its p nearest neighbours as above;
let d(o, w) denote the distance computed by S H O R T P A T H from o to w for
each pair (o, w)~An= V2-{(o, o) :oE Vn};
dmax: = max{d@, w):(v, w) e A , } ;
emin: =min{c(v, w):w is the p th vertex in o's list of nearest neighbours};
if dmax_< emin then terminate

else apply Floyd's algorithm to the original weighted digraph.
end

We wonder whether, in line 2 of R A N D O M S H O R T P A T H , 20 may be replaced
by 2 without affecting the consequences. The next theorem is our main result.

T h e o r e m 4.1. Suppose that F(O)=0. I f F is differentiable at 0 and F ' (0) > 0 , then
algorithm R A N D O M S H O R T P A T H runs in O(nElog n) expected time.

P r o o f . The initial sorting and list construction can be carried out in O(n 2) time, as
n heaps are constructed and the p minimal elements are drawn f rom each. By the
results of Section 3, the application of S H O R T P A T H will run in
O(n(np + n log n)) = O(n 2 log n) time. I f dmax_< emin, then the path lengths com-
puted by S H O R T P A T H are minimal for the complete digraph G, since the arcs
omitted are too long to be used in any shortest path. Later in this section, we shall
see that

Prob(dmax > emin) = O(n - 1), (4.1)

and the result follows immediately, since Floyd's algorithm runs in O(n 3)
time. []

The shortest-path problem 63

Note that the conclusion of Theorem 4.1 holds whenever the arc-length distribu-
tion function F is such that F(0) > 0, without any further assumption on F. It is not
difficult to see this, since it may be shown that, with probability 1 - O (n - 2) , all the
arcs used in R A N D O M S H O R T P A T H have length 0 and these arcs form a strongly
connected subgraph of the complete digraph on Vn; thus all shortest paths have
length 0 with probabili ty 1 - O(n-2) .

The rest of the paper is devoted to the proof of equation (4.1). In the following
analysis, we often use real quantities in positions where integers are required. It will
be clear that trivial but cumbersome changes may be effected to correct such aberra-
tions and their consequences. We shall prove equation (4.1) first for the case when
F is the uniform distribution function on [0,1], and shall then relax this condition
as indicated in the statement of Theorem 4.1. Here are some preliminary lemmas.

Lemma 4.2. Let X(k) be a random variable distributed as the kth smallest o f a sam-
ple o f n independent random variables which are uniformly distributed on [0,1].

(a) I f a > O, 2 < 1 and n is large, then

P r ° b (X(a'°gn)< 2 a l ° g n) < n a O + ' ° g a - ~) ' n

(b) Suppose that kl + k2 +.. . +km < a log n, and Y1, Y2 Ym are independent
random variables with Yi distributed as X(ki) f o r i = 1, 2 m. I f p > 1, then

Prob (YI + Y2 +.. . + Ym >- ualogn~n+ l / - < na(l +logu-u).

P roof . (a) I f 0 < p < 1, k is a positive integer, and B(n, p) is a random variable which
is binomially distributed with parameters n and p, then

Prob(X(k) < p) = Prob(B(n, p) _ k)

since X~k) < p if and only if at least k of the uniform random variables defining X~k)
are smaller than p .

We next use the standard inequality (see, for example, Grimmett and Stirzaker

[91)

Prob(Z>_z)<e-tZExp(e tz) for t_>0, (4.2)

for any random variable Z. Applying (4.2) to B(n, p) we find that, for k = a log n
and p = 2an- i log n,

Prob(Xck)<p)<_e -atl°gn (1 - p + p e t) n if t_>0. (4.3)

We choose t to minimize the right-hand side of (4.3), giving

e t_ (1 - p) a log n
(n - a log n)p"

64 A.M. Frieze, G.R. Grimmett

Substitution into (4.3) leads eventually to

Prob(X(e) <p) _< ().e I - ~t)alog n

for all n, and (a) is proved.
(b) The density function fk(x) of X(g) is

f k (x)=(k)kXk- l (1 - -x)n-k for 0_<X_<I,

and hence the ith moment of X(k) is given by

= { n ~ k (i + k - 1) ! (n -k) !
\ k J (n + i)t

(4.4)

< k(k+ 1)... (k+ i - 1)
(n + 1) i

Thus, if O _ < t < n + l ,

- - t i - k - k
Exp(etX~k') < i=0~ (n - - ~) (i) = (1 - n+t 1)

If Z = Y1 + YE +. . . + Ym, then

Exp(e tz) = f i Exp(e tr')
i=1

_< 1 - if O _ < t < n + l .
n + l /

It follows from (4.2)that , for O_<t<n+ 1,

Prob(Z>l~a logn~<(l_n_~) -a 'Ognexp(tl2alogn~
- Ti / - -g- i /

We choose t = (n + l) (1 - / ~ -1) in order to minimize the right-hand side above,
obtaining

Prob(Z>_ 12alog_n~n+l J < (/2el-kt)al°gn" []

Lemma 4.3. Suppose that the arc-lengths c(o, w) of G are independent random
variables which are uniformly distributed on [0,1], and let a(o, k) be the length of
the kth shortest arc leaving vertex o. Then

Prob(/~/k_> 19.701ogn, o ~ V n, such

that a(o, k) < 12.02 n - 1 log n) = O(n- 1).

The shortest-path problem 65

Proof. The probabili ty in question does not exceed

n Prob(a(o, 19.701og n) _ 12.02 n-1 log n),

and the conclusion follows by an application of Lemma 4.2(a). []

Lemma 4.4. Suppose that the arc-lengths o f G are independent random variables

which are uniformly distributed on [0,1], and, f o r o= 1,2 n, let d(o) be the

length o f the shortest path f rom vertex 1 to vertex o in G. Then

Prob(ffo ~ V n such that d(o)> 12n - l logn) =O(n-2) . (4.5)

It

distribution) from Lemmas 4.3 and 4.4, since the latter implies that

P r o b (d m a x > 12n - l l o g n) = P (J o , w with d(o, w)> 12n - l logn)

= O (n - 1),

while the former implies

Prob(emin < 12.02 n - l log n) = O (n - l).

is clear that equation (4.1) follows immediately (in the case of the uniform

(4.6)

(4.7)

Proof of Lemma 4.4. We describe an algorithm which, given such a digraph G, con-
structs a spanning tree T of G which is rooted at vertex 1 and has the property that
the lengths of the paths in T f rom vertex 1 to all other vertices are not greater than
12.02 n - l l 0 g n , with the required probability.

We build the tree T recursively. It begins as T 0, the tree containing the single
vertex 1. I f (1,o) is the shortest arc leaving vertex 1, then vertex v is added to T O
together with the edge (1,v), and we call this tree T 1. At the next stage we add the
shortest arc leaving v and the second shortest arc leaving 1, and so on; we never in-
clude an edge which would complete a circuit in the ensuing graph. In the formal
description below, NEXT(v) acts as in the algorithm S H O R T P A T H (except in that
the underlying lists of arcs contain all arcs, regardless of whether their lengths are
finite or infinite). The algorithm MAKETREE builds a sequence of rooted trees
T o, T l where T k = (Xk, Ak) , until the whole of V n is spanned.

Algorithm MAKETREE

begin

k : = 0 ; X o : = { 1 } , A o : = 0
while X k =/= V n do

begin
Xk+l::Xk'~ Ak+l: =Ak;
for o e X k do

66 A.M. Frieze, G.R. Grimmett

begin
w: = NEXT(w);
if w ~X~: then begin

X k + l : = X k + l U { W } ;
Ak+l: =Ak+l U {(0, W)}

end
end;
k : = k + l

end
end

Let K be the value of k when this algorithm terminates. For w e V n, w~: 1,
let (o, w) be the unique arc such that (o, w) e A i ~ , and let r(w) be the position
of (o,w) in the ordering of the arcs leaving o. Define s (1) = 0 and s (o)=

r(u 1) + r(u2) + . . . + r(Um) where Po = (1, ul, u 2 u m = o) is the unique path f rom 1
to o in T~. It is clear f rom the definition of MAKETREE that

for O<_k<_K, if v e X k then s(o)<_k. (4.8)

Furthermore, it is a consequence of Corollary 5.1, in the next section, that

P r o b (K > 4.45 log n) = O(n - 2). (4.9)

The length of the path Pv, above, is the sum of independent random variables
I"1, Y2 Ym where Y/is the r(ui)th smallest of n - 1 independent random variables
which are uniformly distributed on [0,1]. We use (4.8), (4.9) and apply Lemma
4.2(b) to find that

P rob (d (o)> 12n -1 logn) =O(n -3) for all o, (4.10)

and (4.5) follows.
We have used Corollary 5.1, f rom the next section, to prove equation (4.1) (and

hence Theorem 4.1) for the case when F is the uniform distribution function. Next
we show how to adapt the proof to deal with the more general case when

F(O) = O, F'(O) = D > O.

Let e > 0 be such that

12 12.02
- - < - - , (4.11)
D - e D + e

and find J = J (e) > 0 such that 0 < J < (2 D) -1 and

(D - e) x < _ F (x) < _ (D + e) x for 0_<x_<J.

Let F I and F 2 be the two distribution functions given by

~(D+ e)x if 0_<x_< J,
F1(x)= (m a x { (D + e) J , F (x) } if x > J ,

~(D - e)x
F2(x) = (F(x)

and note that

The shortest-path problem

if O<X<O,
if X___O,

67

Fz(X)<_F(x)<_FI(x) for all x_>0. (4.12)

Let emin I (respectively dmaxz) be the value of emin (respectively dmax) in RAN-
DOMSHORTPATH when the arc-lengths have distribution function F 1 (respec-
tively F2). We shall show that

12.02 log n'~ = O (n _ l) ' (4.13)
Prob emin I <_ (D + a)n ,I

Prob(dmax2 > 12 log n "~ = (D-a)nJ O(n- 1)' (4.14)

and equation (4.1) follows immediately by (4.11), since (4.12) implies that for all x,

Prob(emin _<x) _ Prob(emin 1 _x) ,

Prob(dmax > x) < Prob(dmax 2 > x).

First consider (4.13), and write

eminl = min{ Yl, Y2 Yn}

where the Y's are independent, identically distributed random variables, each
distributed as the pth smallest of n - 1 independent variables with distribution func-
tion F 1. Thus

Prob(Y/_0 for some 1 <_i<_n)<nProb(Yl>_O)

_< n Prob(B(n - 1, r/) _<p)

where q=(D+a)Oe(O,1). By standard inequalities concerning the tail of the
binomial distribution

Prob(Y/>_O for some l<_i<_n)=o(n-1),

and thus, except for an event with probability o(n- 1), we have that Y/< 0 for all i.
The distribution of Y1, conditioned upon the event that YI < 0, is the same as the
distribution of the pth smallest, X~p), of n - 1 independent random variables which
are uniformly distributed on [0,(D+e)-1] conditioned on the event that X(p)<0.
Hence

Prob{eminl _< 12.02 log n'~
k (D+e)n /t

__<(1 + o(n- 1)) Prob(e_< 12"02 l°g n) n + o (n - ')

68 A.M. Frieze, G.R. Grimmett

where e is the value of emin in RANDOMS H O RTP A TH when the arc-length
distribution is uniform on [0,I]. Equation (4.7) yields (4.13).

An exactly analogous argument holds for dmax 2, showing that

Prob (d m a x a > 12 log n "~

_<(1 + o (n - ')) P r o b (d > 12~gn)+ 0 (/ , / _ 1) '

where d is the value of dmax in R A N D O M S H O R T P A T H when the arc-length
distribution is uniform on [0,1], and (4.6) implies (4.14). []

5. The telephone call problem

Consider the following problem. A town contains exactly n people 1, 2 n, each
of whom possesses a private working telephone. One person hears a rumour from
another town and spreads it in the following way. He chooses someone randomly
from the n people in the town (including himself), calls that person and tells him
the rumour. The process is said to be in state k if exactly k people know the rumour.
At the stage when the process is in state k, each of these k people who know the
rumour selects someone else at random from the n people in the town, independent-
ly of all other choices, and calls that person to tell him the rumour. At the next stage
the process is in state k + l where 1 is the number of 'new' people called by the
previous k. Thus the number of people who are 'in the know' grows stage by stage
until, sooner or later, everyone knows the rumour. Let Y/be the state of the pro-
cess after i stages, so that Y0--1, and define

S~ =min{i: Y/=n}

to be the number of stages until the whole town knows the rumour. We have two
results about S n, dealing with asymptotic behaviour and large deviation estimates
for large n, respectively. As usual, all logarithms are natural unless otherwise stated.
Also, non-integer-valued quantities are used in contexts where integers are called
for; changes which are trivial in spirit but cumbersome in nature are necessary to
correct the consequences of this aberration.

Theorem 5.1. As n --, oo

Sn ~ log 2
log2n

in probabifity.

Theorem 5.2. I f 7 > 0 then, fo r all e > 0 ,

Prob(Sn > (1 + e)a(y) log2n) = o(n - Y) (5.1)

The shortest-path problem 69

where a (?) = 1 + (~ + 1) log 2. Furthermore, the constant a(y) in (5.1) is best possible

in the sense that i f 0_<f l<a (?) , then

P r o b (S n > fl log2 n) :~ o(n - y). (5.2)

Before we p rove these theorems, we note a corol lary which was used in the p r o o f
o f T h e o r e m 4.1.

Coro l la ry 5.3. In the notation o f the p r o o f o f Lemma 4.4,

P r o b (K > 4.45 log n) = O(n-2) .

P r o o f . In the above process, let Z k be the set o f people who know the r u m o u r af ter
k stages. The evolut ions of the sequences X0, X1 and Z 0, Z1 differ in var ious
small respects, but it is clear that the X ' s grow at least as fast as the Z ' s in the sense
that , for all A c_ { 1, 2 n } and k_> 0,

P r o b (X k -3 A) >_ P r o b (Z k -3 A).

Wri t ing a = 4.45, it follows that

P r o b (K < a log n) = Prob(Xalog n _3 { 1, 2 n })

_> Prob(Zalog n _3 {1, 2 n})

= Prob(Sn < a log n) = 1 - O (n - 2)

by T h e o r e m 5.2. []

The rest o f this section is devoted to the p roofs o f Theorems 5.1 and 5.2. We shall
suppose that person 1 knows the rumour initially, and it is convenient to think o f
h im as the person who makes all the te lephone calls in sequence; thus, in state i,
we allow 1 to m a k e exactly i calls, sequentially, to people chosen independent ly at
r a n d o m . The fol lowing basic facts are useful. Let W/be the total n u m b e r calls re-
quired to move f r o m state i to state i + 1. Then

P r o b (W / = r) = (/) r - ' (1 - /) for l < r < ~ , (5.3)

n Exp(etW,)= n - i if e t< - , (5.4)
ne - t - i ' t

and it fol lows tha t

P r o b (W / < x) > P r o b (W j < x) for all x and i < j , (5.5)

Exp(e tW,)<Exp(e t~) for all i < j and t > 0 . (5.6)

The idea of the p r o o f is as follows. We describe a policy which uses

70 A.M. Frieze, G.R. Grimmett

(1 +e)(1 + (y + 1) log 2) log2n stages

and which informs the whole population with probabili ty 1 - o (n- r) . This policy
prescribes ' targets ' for each stage and stops when these targets are met; we shall
show that the probabili ty that all the targets are met is 1 - o (n - Y) . The actual pro-
cess grows at least as fast as that controlled by the targets, and the upper bound
for S n will follow; the lower bound is much easier. The policy may be divided
broadly into five main steps, defined in terms of target states to be attained by these
steps.

Step I.
Step II.
Step III .
Step IV.
Step V.

From state 1 to state N, for some fixed large N.
From state N to state ~n, where ~ is small and positive.
From state ~n to state (1 - r/)n, where r/ is small and positive.
From state (1 - r /) n to state n - R , for some fixed large R.
From state n - R to state n.

We shall estimate the number of stages required at each step. It turns out that
these steps require the following numbers of stages, with the following probabilities
(the constants al,a2,a3 are small and positive):

Step I.
Step II.
Step III .
Step IV.
Step V.

O(1), with probabili ty 1 - o (n - Y) ,
(1 + t~l)log2n, with probabili ty 1 - o(n-Y),
O(1), with probability 1 - o(n-~),
(1 + a2) log n, with probabili ty 1 - o (n - ~),
o(logn), with probabili ty 1 - o (1) , or

(1 + a3)y log n, with probability 1 - o (n- ~).

Here and later, o- and O- terms are non-random and refer to the limit as n --, oo.
Note that state n - R is attainable in little more than (1 +log2) log2n stages with
probabili ty 1 - o(n-Y); it is only the final step which introduces the complication
necessary to obtain the required error probabili ty in Theorem 5.2. In the proofs, we
shall make considerable use of (4.2).

Fix y, e > 0 and let 0 < r / < ~ ; later we shall take the limit as q~O.

Step I. Let N be a positive integer such that

N > 4y/~ (5.7)

and let T be the number of stages of the process until state N is attained. Then, by
(4.2),

Prob(T_> 2N) _< P rob (W 1 +.. . + WN>-- 2N)

u n - i t 11
~ e - 2 N t 1-I for 1 --<e < - -

i=l n e - t - - i N

The shortest-path problem 71

< e - 2Nt (. rl -- y _ .|U\ by (5.6)
\ n e - t - N /

<

-- \ n - Net /

=(2~Nn)N2N choosing et= n
2N

= o (n - Y) since N > y.

Thus, after 2N stages the process is in state N at least, with probability 1 - o (n - r) .
Our policy requires that we stop making calls when state N has been attained, and
move on to Step II.

Step II. We set the target of moving from state N t o state (n by multiplying the cur-
rent state by (2 - r /) at each stage. This is possible, with large probability, so long
as ~ = ~(t/) is sufficiently small. Suppose that ~ -- ((q) > 0 is small enough to ensure
that

(2~(2 -- r/).), < (1 . r /) l - , (5.8)

If t_>O, then by (4.2), for e t<n/ (i (2 -q)) ,

Prob(W//+ W/+ 1 + ... + W~2_~)i_> i)

_i,(21-~)iet(l'l-j) rite (n--(2--r /) i ~(l-r/)i
<<_e ~_, n_je--- 7 <_e- \n-_~2-L-_-e~tj =(g(tff (5.9)

where

(_n_z (2 - r/)i "~ '- ,
g (t) = e - " t \ n _ (2 _ q) i e , / •

Choose t = r where

e~_ nr/ (5.10)
i(2 - t /) '

noting that (5.8) implies that

n
1 < e r < - - whenever N_< i_< ~n;

i(2 - I/)

we have chosen r so that g(r) is a minimum. From (5.9) and (5.10), if N<_i<_(n,
then

(5.11)

72 A.M. Frieze, G.R. Grimmett

Suppose the process is in state i at some stage, and write E(i) for the event that at
the next stage the process is in some state strictly less than (2 - r /) i . By (5.11)

Prob(E(i)) < v where v = v (r /) - vff(1 - v/) 1-~"

Let K be the least integer such that N (2 - v/)K___ ~n. Then

Prob(~iE(N(2--vl)k))<k~L(V(N(2n~)k)n)N+k~L(v,n)N(2-n)k

<--vNK(~) qN'4 l(V~rl)m-- V~ rl since v (" < l

by (5.8), where m=N(2-Vl) L and O<_L<K. Choose L such that m=]/n, note that
K = O(log n), and use (5.7) to find that

P r o b (~ i E (N (2 - t /)k))= o(n-Y).

Thus we fail to attain the targets of Step II with probability o(n-Y). I f we meet
these targets, then we attain state ~n at least, in no more than log2_~n stages. We
assume that no more calls are made in this step once state ~n has been attained.

Step III . We set the target of getting f rom ~n to (1 - r/)n in O(1) stages. Choose
0 < v < +r/ and define

2x
g(x) = (1 - v) 1 + ~ " (5.12)

Let a>O, b=g(a), and note that

g(x)>x whenever x < 1-¼r/.

In the usual way, inequality (4.2) implies that

Prob(Wan +... + Won >- an) <_ (h(t)) n

where

h (t) = e - (2 a - b) t (~) b-a and l_.<et<b -1.

It is easy to check that, if 0 < a < l - ¼ v / , then there exists r = r (a) such that
1 ___e~<b -~ and h (r) < 1 (just check that h ' (0)<0) . Let K be the least positive in-
teger such that gK(O>__ 1-v / , where gK denotes the Kth iterate of g; note that

gX(~) <_ g(1 -- V/) < (1 -- V)(1 -- ¼r/),

and the fixed point x of g, being the root of the equation g(x)= x, is given by

x = 1 - 2v > (1 - v)(1 - ¼v/).

The shortest-path problem 73

F o r each O<_i<K, there exists ri such tha t h (r i) < 1 and

P r o b (Wg~(~)n +.. . + Wg~ + l(~)n ___ gi(~)n) <_ (h (ri)) n.

Def ine h = m a x { h (r i) : 0 < i < K} , and write E(k) for the event tha t , f rom state k, we

fai l to a t t a in state ng(k/n) by the next stage. Then

P rob (E(~n) U E(g(~)n) O.. . U E(g K- l (~)n)) _< Kh n = o(n - r)

as requi red . Thus , a f te r a fur ther K stages we a t t a in at least s ta te (1 - #/)n, with p ro-

bab i l i t y 1 - o (n - Y) ; we assume tha t we s top at exac t ly state (1 - r /) n .

Step IV. The to ta l n u m b e r o f calls requi red to a t ta in state n - R f rom state (1 - r/)n

is at most

S = W~ +. . . + Wn_R.

C h o o s e R = R(r/) > 2 such tha t

R > 2?/rl. (5.13)

In the usual way,

H = P r o b (W 1 + ... + W,_R>_(1 + r/)n log n)

satisfies

n-R n - i 17<~e-t(l+t l)nl°gn 1-I - - - - -
i=l n e - t - i

Set e - t = 1 - R(2n) - 1 to ob t a in

and thus

i f l___et< (l - R) -1

n-R i ="ivi 1 II "77 i
~=~ ne- - i s : . n - ½ R - (n - J)

= I I 1+
j =R

< e x p ~=R 2 j - R

l d x

"<[(' '°'n 2nj

=[(1 ,o,n

_< exp(- ½Rr# log n)

= o (n -y) by (5.13).

74 A.M. Frieze, G.R. Grimmett

Thus, with probabili ty 1 - o(n-~), at most (1 + r/)nlog n calls are required at this
step. But, at each stage, there are at least (1 - r/)n callers, and so the number of
stages is at most

1 +r/logn
l - r /

with probabili ty 1 - o(n-~). Assume now that we are in state n - R exactly.

Step V. The total number of calls required to complete the spread of the rumour is

T= W,_R+... + Wn_I.

I f we require an error probability which is only o(1), then not many stages are
necessary, since

Prob(T_> x) _< Pro - i ~
. =

-<R P r o b (W n - l - > R)

=R=~x/ - _
i R ~

- R 1 - - - ~ 0 i f x = n t (n) where t (n) - - '~ , (5.14)

giving that the required number of stages is at most

nil(n)
- - - l (n)
n - R

with probabili ty 1 - o(1); set i (n) = log log n, say.
To obtain a smaller error probabili ty we require a more sophisticated argument

than that of (5.14). Set a = ~ , + r / > y . Then, if l _ < e t < (1 - n - l) -~,

Prob(T>anlogn)<e -anti°g" f i j-(
j=l ne -t n - j) "

Set t = r where

e - ~ = l - f l and O < i < l .
n

Then

Prob(T>anlogn)<_(1-fl-)anl°gn f i j
n~ J=~ J - - t

- A (l , R)n -a~

The shortest-path problem 75

where A is a constant. Set

f l_ 2Y+q <1
2(y + r/)

to find that

P rob (T> an log n) = o(n- Y).

Hence, with probability 1 -o(n-Y) , the number of stages required for this step is
at most

(y + r/)n log n
= (1 + o(1))(y + r/) log n.

n - R

To see that this is the best possible order of magnitude subject to an error probabili-
ty of o(n-~), note that

and thus, if n is large then with probability at least In -y , we have that

W n_l>_ ynlog n, implying that at least y log n stages are needed to reach state n
from state n - 1 .

This final step requires loglogn stages with probability 1 -o (1) , or
(1 + o(1))(y + r/) log n stages with probability 1 - o(n- Y).

We are now ready to finish the proofs of Theorems 5.1 and 5.2. With probability
1 - o(n -y) all the above steps attain their targets and use in all at most

2N+ log2_ ~n + O(1) + 1 + r/log n + (1 + o(1))(y + r/) log n
l - r /

stages, where the o- and O-terms depend on r/alone. Thus

+ l+qX~ 2) = l _ o (n - y) P r o b (Sn < l o g 2 _ n 2 + (y + r / log
\ log2n _ 1 - - i ' ~ /

for all small, positive r/. Let r/~0 to obtain that, for all e > 0,

P r o b (Sn _ < (l + e) (l + (y + l) l o g 2)) = l - o (n -y)
\ log2n

which proves (5.1).
From (5.1), for all e > 0 ,

P r o b { S, > (l + e) (l + l o g 2) '] ~ 0 a s n ~ o o (5.16)
\ logzn 7

7 6 A . M . Frieze, G.R. Grimmet t

and Theorem 5.1 will follow as soon as we have shown that, for all e > 0 ,

P r o b f \ logzn Sn < (1 - c) (l + l o g 2)) ~ 0 as n ~ o o ; (5.17)

this lower bound for S, is easy to see. If 0 < 5 < 1, then we require at least loga(5n)
stages to attain state On from state 1. Furthermore, the total number

U = W o n + -]- W n _ 1

of remaining required calls is such that

Var(U)
Prob(U_< (1 - e)n log n)

((1 - e)n log n - Exp(U)) 2

by Chebyshev's inequality. But

n - 1 (I ~_~)n],/

Exp(U)= ~ Exp(W/)= ~ - - - n l o g n ,
i=On i= 1 l

, - I ni ~ 1
Var(U) = ~ n 2 i=a, (n - i)2 i=1 ~ =Bn2 '

for some constant B, and hence

Bn 2
P r o b (U < (1 - e) n l o g n) _ < (e n l o g n) 2 ~0 a s n ~ o o .

Therefore, with probability 1 - o(1), at least (1 - e)n log n calls are required to attain
state n from state t~n, and this requires at least (1 - e) l o g n stages. Hence

P r o b (S n < l o g 2 (~ n) + (1 - e) l o g n) - - + O as n ~ oo

which implies that (5.17) holds for all e > 0 , and Theorem 5.1 is proved.
Finally we show that (5.2) holds for ~<t~0,). Suppose 0</L< 1. To attain state

(1- /~)n from state 1 requires at least log2((1-/~)n) stages. To attain state n - 1
from state (1- /x)n requires

V= W(1- u),, + ... + W, _ 2

calls, and a calculation similar to that of Step IV above shows that

Prob(V_< (1 -/~)n log n) = o(n- Y).

By (5.15), if n is large then, with probability at least ½n-Y, at least y log n stages are
required to attain state n from state n - l; this implies that

P rob (Sn- log2((1 - /~)n) + (1 -/~) log n + y log n) _> ½n- Y(1 + o(1)).

Choose ft such that

8_< 1 + log2(1 -/~) + (y + 1 -/~) log 2 < 1 + (y+ 1) log 2

to deduce (5.2). []

The shortest-path problem 77

References

[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Computer Algorithms
(Addison-Wesley, Reading, MA, 1974).

[2] S. Berg, Random contact processes, snowball sampling and factorial series distributions, J. Appl.
Probability 20 (1983) 31-46.

[3] P.A. Bloniarz, A shortest-path algorithm with expected time O(n21og n log*n), Technical Report
80-3, Dept. of Computer Science, State Univ. of New York at Albany, August 1980.

[4] P.A. Bloniarz, R.M. Meyer and M.J. Fischer, Some observations on Spira's shortest path
algorithm, Technical Report 79-6, Dept. of Computer Science, State Univ. of New York at Albany,
December 1979.

[5] D. Daley and D.G. Kendall, Stochastic rumours, J. Inst. Math. Appl. 1 (1965) 42-55.
[6] E.W. Dijkstra, A note on two problems in connection with graphs, Numer. Math. 1 (1959)

269- 271.
[7] R.W. Floyd, Algorithm 97: shortest path, Comm. ACM 5 (1962) 345.
[8] M. Fredman, New bounds on the complexity of the shortest path problem, SIAM J. Comput. 5

(1976) 83-89.
[9] G.R. Grimmett and D.R. Stirzaker, Probability and Random Processes (Clarendon Press, Oxford,

1982).
[10] P. Spira, A new algorithm for finding all shortest paths in a graph of positive edges in average time

O(n21og2n), SIAM J. Comput. 2 (1973) 28-32.

