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Abstract

We consider the rank of a class of sparse Boolean matrices of size n×n. In particular,
we show that the probability that such a matrix has full rank, and is thus invertible,
is a positive constant with value about 0.2574 for large n.

The matrices arise as the vertex-edge incidence matrix of 1-out 3-uniform hyper-
graphs. The result that the null space is bounded in expectation, can be contrasted
with results for the usual models of sparse Boolean matrices, based on the vertex-edge
incidence matrix of random k-uniform hypergraphs. For this latter model, the expected
co-rank is linear in the number of vertices n, [5], [8].

For fields of higher order, the co-rank is typically Poisson distributed.

1 Introduction

For positive integers r ≥ 1, s ≥ 2, let M(s, r, n) be the space of n× rn matrices with entries
generated in the following manner. For each i = 1, ..., n there are r columns Ci,j, j = 1, ..., r.
Each column Ci,j has a unit entry in row i, and s−1 other unit entries, in rows chosen
randomly with replacement from [n], or without replacement from [n]−{i}, all other entries
in the column being zero. In general we consider the arithmetic on entries in the matrix,
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(and thus the evaluation of linear dependencies), to be over GF (2). If so, in the “with
replacement case”, if two unit entries coincide the entry is set to zero. When r = 1, the
matrix consists of an identity matrix plus s−1 random units in each column.

If s = 2, and entries are chosen without replacement, M is the vertex-edge incidence matrix
of the random graph Gr−out(n). This model of random graphs has been extensively studied,
and is known to be r-connected for r ≥ 2, Fenner and Frieze [10], to have a perfect matching
for r ≥ 2, Frieze [11], and to be Hamiltonian for r ≥ 3, Bohman and Frieze [4]. If s ≥ 3
we are considering r-out, s-uniform hypergraphs. Random Boolean matrices based on the
vertex-edge incidence matrix of s-uniform hypergraphs where the columns (edges) are chosen
i.i.d. from all columns with s ones were studied by Cooper, Frieze and Pegden, [8]. A very
general paper by Coja-Oghlan, Ergür, Gao, Hetterich and Rolvien, [5], gives the limiting rank
in this latter model for a wide range of assumptions on the distribution of non-zero entries
in the rows and columns. The fundamental difference between the r-out model of random
matrices, and those of [5], [8] is the presence of an n× n identity matrix as a sub-matrix (in
the without replacement case).

We will use ρ to denote the (row) rank of our matrices and then the co-rank is n− ρ. If the
field is GF (2), x ∈ {0, 1}n is a linear dependency (dependency for short) if xM = 0. Let
|x| = | {j : xj = 1} |. We say that a set of rows D ⊆ [n] is a dependency if D = {j : xj = 1}
for some dependency x. An `-dependency is one where |x| = ` or |D| = `.

Of particular interest is the case r = 1 which gives n × n Boolean matrices. We will show
that over GF (2), for r = 1, s = 3, the linear dependencies among the rows of M are w.h.p.
either small bounded in expectation or large (of size about n/2), and the distributions of
these dependencies are somewhat entangled. Estimating the interaction between small and
large dependencies in matrices from M(3, 1, n) is the main problem we solve.

For r = 1, s = 3, define a Poisson parameter φ for small dependencies. The value of φ differs
between the “with replacement” φR, and “without replacement” models φR as follows:

φR =
∑
`≥1

1

`
(2e−2)`

`−1∑
j=0

`j

j!
, φR =

∑
`≥2

1

`
(2e−2)`

`−2∑
j=0

`j

j!
. (1)

The numeric values are φR ≈ 0.5215, and φR ≈ 0.1151, where a ≈ b means approximately
equal.

Let

P (σ, λ) =

(
1

2

)λ(λ+σ)
1∏λ

j=1

(
1−

(
1
2

)j) ∞∏
j=1

(
1−

(
1

2

)λ+σ+j
)
. (2)

The quantity P (σ, λ) is the limiting value of P(λ | σ) of the conditional probability of
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λ = d−σ given σ, where σ is the dimension of the space induced by small dependencies and
d the dimension of the space induced by all dependencies.

Theorem 1. Let the matrix M be chosen u.a.r. from M(3, 1, n). Let d ≥ 0 be integer.
Over GF (2), the limiting probability M has co-rank d is given by

lim
n→∞

P(co-rank(M) = d) = e−φ
d∑

σ=0

φσ

σ!
P (σ, d− σ). (3)

In particular,

P(rank(M) = n) ∼ e−φP (0, 0) = e−φ
∞∏
j=1

(
1−

(
1

2

)j)
.

Theorem 1 differs from many previous results on sparse random Boolean matrices. The
co-rank (dimension of the null space) is bounded in expectation, and the matrix is invertible
with probability e−φP (0, 0) ≈ 0.2574 in the without replacement model. The bounded co-
rank given by Theorem 1 can be contrasted with results for the edge-vertex incidence matrix
of random hypergraphs, ([5], [8]), where the expected co-rank is linear in the number of
vertices n, and the probability of a full rank matrix is exponentially small.

The matrices M (3, 1, n) exhibit a gap in the size of the dependencies (small or large), which
we next explain.

Theorem 2. Let M be chosen u.a.r. from M (3, 1, n), then w.h.p. either (i) a dependency
x is small i.e. |x| ≤ ω where ω →∞ slowly or (ii) x is large i.e. |x| = n/2 +O(

√
n log n).

A gap property in solutions to random XOR-SAT systems over GF (2) was previously ob-
served by Achiloptas and Molloy [1], and by Ibrahimi, Kanoria, Kraning and Montanari [13].
They found that the Hamming distance between XOR-SAT solutions was either O(log n) or
at least αn; where n is the number of variables. In our case, large dependencies have inter-
section about n/4 (see Section 4), giving a precise value of α.

A dependency x is fundamental if there is no other dependency y 6= x such that y ≤
x, componentwise. We will prove in Section 2 that the number Z of fundamental small
dependencies is asymptotically distributed as Po(φ) i.e. Poisson with mean φ. The quantity
P (σ, λ) in (3) is the limiting probability that small dependencies span a space of dimension
σ, and large dependencies increase the co-rank by λ.

The value of P (0, k) given in (2), is the same as the value π(k) given in (39). The probability
distribution defined by π was previously observed in a model of random matrices over GF (2)
in which the entries mi,j are i.i.d Bernoulli random variables with P(mi,j = 1) = p. For a wide
range of p the distribution of dimension k of the null space is given by π(k). The result was
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proved by Kovalenko et al., [14] for p = 1/2, and extended to the range min(p(n), 1−p(n)) ≥
(log n + c(n))/n, (where c(n) → ∞ slowly) by Cooper [6]. A similar distributional result
holds for the model of random matrices over the finite field GF (q), see Cooper [7]. Here
the non-zero entries α ∈ GF (q) \ {0} are independently and uniformly distributed with
P(mi,j = α) = p/(q − 1). The distribution of co-rank πq(k) equivalent to π(k) = π2(k) in
(39) is obtained by replacing the (1/2) terms in (39) by (1/q).

Finally we mention some related cases for r-out s-uniform hypergraphs. For r = 1 and s = 2,
M has expected rank ∼ n− (log n)/2. This is because the expected number of components
in a random mapping is ∼ (1/2) log n, (see e.g., [12]). Note: For s even, the rows of M add
to zero modulo 2. The following theorem is immediate from the proof of Theorem 1.

Theorem 3. If r ≥ 2 and s = 2, 3, then M has rank n∗ = n− 1{s=2}, w.h.p.

The proof of Theorem 3, and results for finite fields of character q ≥ 3 can be found in [9].

Notation: Apart from O(·), o(·),Ω(·) as a function of n→∞, we use the notation An ∼ Bn

if limn→∞An/Bn = 1. The symbol a ≈ b indicates approximate numerical equality due to
decimal truncation. The notation ω(n) describes a function tending to infinity as n → ∞.
The expression with high probability (w.h.p.), means with probability 1 − o(1), where the
o(1) is a function of n, which tends to zero as n→∞.

Outline of the proof for GF (2) with r = 1, s = 3

Because the proofs are rather technical, we give a detailed proof in the “with replacement”
model. For brevity, we omit the proof that the results are also valid in the “without replace-
ment” model in this paper; the proof can be found in [9].

We refer to the rows of M as Mi, i ∈ [n] and to the columns as Cj, j ∈ [n]. By a set
of rows S, we mean the set of rows Mi, i ∈ S. A set of rows with indices L is linearly
dependent (zero-sum) if

∑
i∈LMi = 0(mod 2). A linear dependence L is small if |L| ≤ ω,

where ω = ω(n) is a function tending slowly to infinity with n. A linear dependence L is
large if |L| = (n/2)(1 + O(

√
log n/n)). As part of our proof, we show that w.h.p. there

are no other sizes of dependency. A set of zero-sum rows L is fundamental, if L contains no
smaller zero-sum set and L is disjoint from all other zero-sum sets. The zero-sum sets of size
about n/2 are not disjoint. We count k-sequences of large dependencies with a property we
call simple. Many of the problems with the proofs arise because large dependencies are not
disjoint, and are conditioned by the simultaneous presence of small dependencies in M .

We next outline the main steps in the proof of Theorem 1.

1. In Section 2 we prove that the number Z of small fundamental dependencies has
factorial moments E (Z)k ∼ φk, where φ is given by (1). Thus Z is asymptotically
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Poisson distributed and

P (M has i small fundamental linear dependencies) ∼ φi

i!
e−φ.

2. For M ∈ M (3, 1, n) w.h.p. any fundamental sets of zero-sum rows of M are either
small (of size ` ≤ ω) or large (of size ` = (n/2)(1 + O(

√
log n/n))). This is proved in

Section 3.

3. In Section 5 we discuss simple sequences of large dependencies, and in Section 6 we
estimate the moments of these sequences and determine their interaction with small
dependencies.

4. In Section 7 we estimate the number of simple sequences, conditional on the the num-
ber of small fundamental dependencies. This leads to an approximate set of linear
equations whose solution completes the proof of Theorem 1.

2 Small dependencies in GF (2): with replacement

Notation For 1 ≤ k ≤ ω, where ω → ∞ arbitrarily slowly with n, let Xk(M) or Yk(M)
denote the number of index sets of k-dependencies in M . A k-dependency is small if k ≤ ω
and we use Yk when k ≤ ω and use Xk when k ∼ n/2. We will show that for other values of
k, Xk = 0 w.h.p. We also use Zd, d ≤ ω to denote the number d of fundamental (minimal)
dependent sets among the rows of M .

We first consider dependencies with s = o(n1/2) rows. For S ⊆ [n], let F(S) denote the
event that the rows corresponding to S are dependent. Let Ys denote the number of s-set
dependencies.

Lemma 4. If |S| = s = o(n1/2) then

P(F(S)) ∼
(

2s

n

)s
e−s. (4)

If ω →∞, ω ≤ s = o(n1/2) then Ys = 0 w.h.p.

Proof. Suppose that s = o(n1/2) and S = [s]. Then,

P(F(S)) =

(
2
( s
n

)(n− s
n

))s(( s
n

)2

+

(
n− s
n

)2
)n−s

∼
(

2s

n

)s
e−2s, using s = o(

√
n). (5)
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Explanation: The probability that exactly one of the two random choices in a column of
S lies in a row of S is 2

(
s
n

) (
n−s
n

)
. The probability that both or neither of the two random

choices in a column of [n] \ S lies in a row of S is
(
s
n

)2
+
(
n−s
n

)2
.

This verifies (4). It follows that

E (Ys) ∼
(
n

s

)(
2s

n

)s
e−2s ∼ (2s)se−2s

s!
,

As EYs+1/E (Ys) ∼ 2/e we have that EYω = e−Ω(ω) and so w.h.p. there are no dependencies
with ω ≤ s = o(n1/2).

Define σs, κs by

σs =
s−1∑
j=0

sj

j!
, and κs =

(s− 1)!

ss
σs. (6)

For S ⊆ [n], let F∗(S) denote the event that the rows corresponding to S form a fundamental
dependency. The next three lemmas deal with small fundamental dependencies.

Lemma 5. P(F∗(S) | F(S)) = κs.

Proof. The rows of the dependency S consist of an s×s sub-matrix MS,S and a zero (s×n−s)
sub-matrix. For i ∈ S, if Mi,i = 1, then w.h.p. there is a unique entry Mj,i = 1 which gives
rise to an edge (i, j). If Mi,i = 0 we regard this as a loop (i, i). Thus MS,S is the incidence
matrix of a random functional digraph DS, and S is fundamental iff the underlying graph
of DS is connected. For s ≥ 1, P(DS is connected) = κs (see e.g., [2] or [12]).

Lemma 6. Small fundamental dependent sets of M are pairwise disjoint, w.h.p.

Proof. Let S, T be two small fundamental zero-sum row sets with a non-trivial intersection
C = S ∩ T and differences A = S\T , B = T \S, where A ∪ B 6= ∅. Suppose A 6= ∅. As the
functional digraphs DS, DT are connected, one of the following events must occur. Either
(i) some column of C has two non-zero entries in the rows of S ∪ T ; or (ii) some column j
of A has a non-zero entry in the rows of C. The latter is not possible as then a column of S
has a non-zero entry in the rows of T . Let k = |S ∪ T |. The former has probability at most

2ω∑
k=2

(
n

k

)
k

(
k

n

)k−1(
k

n

)2

= o(1). (7)

Given this lemma we can now prove a Poisson distribution.
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Lemma 7. The number Z of small fundamental dependent sets among the rows of M is
asymptotically Poisson distributed with parameter φR, and thus

P(Z = d) ∼ φdR
d!
e−φR . (8)

Proof. Fix S ⊆ [n] and let S1, . . . , Sd be a partition of S with |Si| = si, i = 1, 2, . . . , d. Let
P (s1, . . . , sd) be the probability that each Si, i = 1, 2, . . . , d is a fundamental set, given that
S is a dependency. Thus,

P (s1, . . . , sd) =
(s1)s1 · · · (sd)sd

ss

∏
i=1,...,d

P(DSi connected) =
1

ss

d∏
i=1

(si − 1)!σsi .

Explanation: the factor (s1)s1 ···(sd)sd

ss
is the conditional probability that the random choices

for columns with index in Si are in rows with index in Si.

Thus, using (4), we see that

E (Z)d ∼
∑
s≥1

(2s)s

s!
e−2s

∑
s1+···+sd=s

(
s

s1, . . . , sd

)
P (s1, . . . , sd) (9)

=
∑
s≥1

∑
s1+...+sd=s

d∏
i=1

(2e−2)si
1

si
σsi

=

(∑
s≥1

1

s
(2e−2)sσs

)d

=φdR. (10)

Thus, by the method of moments, the number of small disjoint fundamental zero-sum sets
Z tends tend to a Poisson distribution with parameter φR.

3 Large zero-sum sets: First moment calculations

Define an index set Ja as follows,

Ja = {n/2−
√
an log n ≤ ` ≤ n/2 +

√
an log n} and Ja = [n] \ Ja, a ≥ 0. (11)

Lemma 8. (Large linearly dependent sets.) Let X` denote the number of `-dependencies
among the rows of M .
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(i)
∑

`∈J1 EX` ∼ 1.

(ii) Let F = [n]\([ω]∪J1), where ω →∞ arbitrarily slowly with n. Then
∑

`∈F EX` = o(1).

Proof. From (5), the expected number of dependencies of size ` is

EX` =

(
n

`

)(
2

(
`

n

)(
n− `
n

))`((
`

n

)2

+

(
n− `
n

)2
)n−`

.

We next approximate the expression for EX`. We note the following expansion.

(1+x) log(1−x2)+(1−x) log(1+x2) = −2

(
x3 +

x4

2
+
x7

3
+
∑
k≥4

1{k even}
x2k

k

(
1 +

kx3

k + 1

))
.

(12)
We write EX` =

(
n
`

)
Φn
` , ` = (n/2)(1 + ε), where

Φ` =

(
1− ε2

2

) (1+ε)
2

((
1 + ε

2

)2

+

(
1− ε

2

)2
) (1−ε)

2

=
1

2
(1− ε2)

(1+ε)
2 (1 + ε2)

(1−ε)
2

=
1

2
exp

{
1

2

(
(1 + ε) log(1− ε2) + (1− ε) log(1 + ε2)

)}
=

1

2
exp

{
−

(
ε3 +

ε4

2
+
ε7

3
+
∑
k≥4

1{k even}ε
2k

(
1

k
+

ε3

k + 1

))}

=
1

2
exp

{
−
(
ε3 +

ε4

2
+ ε7

)}
, (13)

where |ε7| ≤ 2|ε|7/3 for sufficiently small ε.

Also for ` = (n/2)(1 + ε), |ε| < 1,(
n

`

)
=

(
1 +O

(
1

n

))
2n√

2πn(1− ε2)
exp

(
−n
(
ε2

2
+
ε4

12
+ ε6

))
, (14)

where |ε6| ≤ |ε|6/10.

Case 1: ` ∈ J1 . From (14) with |ε| = 2
√

(log n)/n we have

1

2n

∑
`/∈J1

(
n

`

)
= O(1/n5/2),
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so that
1

2n

∑
`∈J1

(
n

`

)
= 1−O(1/n5/2).

Using (13), for ` ∈ J1, Φ`
n = eΘ(nε3)/2n. Then, as nε3 = O(log3/2 n/

√
n),∑

`∈J1

EX` =
∑
`∈J1

(
n

`

)
1

2n
eΘ(nε3) = 1 + o(1).

For future reference, we note that for |ε| < c < 1,

EX` =

(
n

`

)
1

2n
exp

{
−n
(
ε3 +

ε4

2
+ ε7

)}
=

(1 + o(1))√
2πn(1− ε2)

exp

{
−n
(
ε2

2
+ ε3 +

ε4

2
+
ε4

12
+ ε6 + ε7

)}
=

(1 + o(1))√
2πn(1− ε2)

exp

{
−nε

2

2

(
(1 + ε)2 +

ε2

6
+O(ε4)

)}
. (15)

Case 2: ` ∈ F . Write F = [n] \ ([ω]∪ J1) as F = F1 ∪F2 ∪F3 where F1 = {ω, . . . , 3n/10},
F2 = {7n/10, . . . , n} and F3 = F \ (F1 ∪ F2). Thus, for ` ∈ F3, ` = (n/2)(1 + ε) where
−2/5 ≤ ε ≤ −

√
(2 log n)/n or

√
(2 log n)/n ≤ ε ≤ 2/5.

Case ` ∈ F1. For sufficiently large n, Stirling’s approximation implies that(
n

`

)
≤ nn

``(n− `)n−`
,

so for some constant C (in both with and without replacement models)

EX` ≤
Cnn

``(n− `)n−`

(
2

(
`

n

)(
n− `
n

))`((
`

n

)2

+

(
n− `
n

)2
)n−`

. (16)

Continuing with this expression, using ` = λn for λ < 1/2,

EX` ≤C
(

2λ

λλ(1− λ)1−λλ
λ(1− λ)λ(λ2 + (1− λ)2)1−λ

)n
=C

(
2λ(1− λ)λ

(
1− λ+

λ2

1− λ

)1−λ
)n

≤C
(

2λ(1− λ)λe−λ(1−λ)+λ2
)n

=C
(
2(1− λ)e−1+2λ

)λn
=C[g(λ)]λn.
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The function g(λ) is strictly concave and has a unique maximum at λ = 1/2 with g(1/2) = 1.
For λ ≤ 3/10, g(λ) ≤ g(3/10) = (7/5)e−2/5 < 1 so that∑

`∈F1

EX` ≤ C
∑
`∈F1

g(3/10)` = o(1).

Case ` ∈ F2. Referring to (15), the function h(ε) = (ε2/2)((1 + ε)2 + ε2/6 + ε6 + ε7) satisfies
h(ε) > 2/25 for ε ≥ 2/5, and so∑

`∈F2

EX` ≤
∑
`∈F2

e−Ω(n) = o(1).

Case ` ∈ F3. For
√

(2 log n)/n ≤ |ε| ≤
√

(25 log n)/n, the function h(ε) ≥ (1−o(1))(log n)/n.
Let F3a be the values of ` in this range∑

`∈F3a

EX` = O(
√
n log n)/n1−o(1)) = o(1/n1/3).

Let F3b = F3 \F3a. Then ε2/2 ≥ (25/2)(log n)/n, and (1 + ε)2 + ε2/6 + ε6 + ε7 > 9/25.
Referring to (15), ∑

`∈F3b

EX` = O(n)/n4 = o(1/n3).

4 Higher moments of large zero-sum sets: Background

Let A⊕B denote the symmetric set difference of the sets A and B. Thus A⊕B = (A ∪B)\
(A ∩ B) = (A\B) ∪ (B\A). Suppose that, over GF (2), the rows M [i], i ∈ A indexed by A
are zero-sum, thus zA =

∑
i∈AM [i] = 0. Let B be another set such that zB = 0. We can

write zA = zA\B + zA∩B and zB = zB\A + zA∩B. Adding these two sets of rows modulo 2
has the effect of canceling the intersection A ∩ B. Thus (i) zA + zB = 0, whether zA∩B is
itself zero-sum or not; and (ii) zA + zB = zA⊕B.

Recall that a set of zero-sum rows is fundamental if it contains no smaller zero-sum set of
rows. For small sets we were able to count fundamental dependencies directly. We have to
adopt an alternative strategy for large zero-sum sets. We use an approach similar to the one
given in [6]. We count simple sequences of large linearly dependent row sets B = (B1, ..., Bk),
k ≥ 1 constant, and where |Bi| ∈ J1 so that |Bi| ∼ n/2. A k-tuple of large dependent sets
B = (B1, ..., Bk) is simple, if for all sequences (j1 < j2 < ... < jl) and (1 ≤ l ≤ k) the set
differences satisfy

|Bj1⊕Bj2⊕· · ·⊕Bjl | ∈ J1 (17)
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For any given matrix M there is a largest k such that B1, ..., Bk are simple. In which case,
we say k is maximal and B1, ..., Bk is a maximal simple sequence.

Let V (M) = {∅} ∪ {B : B is zero-sum in M}, then (V (M),⊕) is a vector space over GF 2

under the convention that 0 · B = ∅, 1 · B = B. In V (M) a simple sequence (B1, ..., Bk) is
an ordered basis for a subspace S of dimension k.

Given k linearly dependent sets of rows with index sets B1, · · · , Bk, there are 2k intersections
of these sets and their complements. For each x = (x1, · · · , xk), x ∈ {0, 1}k we let Ix =

∩i=1,...,kB
(xi)
i where B

(0)
i = Bi = [n] \ Bi and B

(1)
i = Bi. The index sets Ix are disjoint by

definition and their union (including x0 = (0, · · · , 0)) is [n].

Next for x ∈ {0, 1}k let B(x) =
⊕

i:xi=1Bi. Let K = 2k − 1. Let U be a K × K matrix

indexed by x,y ∈ {0, 1}k, x,y 6= 0; with entries U(x,y) = 1 if Iy ⊆ B(x), and U(x,y) = 0
otherwise. In summary,

Row index x = (x1, x2, . . . , xk) is the indicator vector for B(x) =
⊕

i:xi=1
Bi,

Column index y = (y1, y2, . . . , yk) is the indicator vector for Iy =
⋂

i=1,...,k

B
(yi)
i .

The row of U representing the set B(x) is formed by adding the rows of those sets Bi such
that xi = 1 in x; the addition being over GF (2). Thus B(x) is the union of the sets Iy,
where yi = 1 for an odd number of those sets Bi where xi = 1. This can be seen inductively
by generating B1, B1⊕B2, (B1⊕B2)⊕B3 etc. in the given order. In summary U(x,y) = 1
iff both xi = 1 and yi = 1 for an odd number of indices i, and thus, over GF (2),

U(x,y) =
k∑
i=1

xiyi. (18)

Our aim is to use U , treated as a real matrix to show that w.h.p. |Ix| ∼ n/2k for every
x. We do this by observing that given the characterisation U(x,y) = 1Iy⊆B(x), the vector

(|Ix|, x ∈ {0, 1}k , x 6= 0) is the solution z over the reals of an equation

Uz = b where b ∼ n

2
1, (19)

assuming that B = (B1, ..., Bk) is simple. To prove that |Ix| ∼ n/2k, we prove the properties
of U listed in Lemma 9 below.

Equation (18) implies that by arranging the rows and column indices of U in the same order,
U will be symmetric. We will choose an ordering such the first k rows correspond to Bi, i =
1, ..., k. Thus xi = ei, i = 1, 2, . . . , k where e1 = (1, 0, . . . , 0) etc., and yi = ei, i = 1, 2, . . . , k.
After this we let Q be the k ×K matrix with column indices x made up of the first k rows.

11



Thus row i represents Bi, i = 1, ..., k and U contains a k × k identity matrix in the first k
rows and columns.

The row indexed by x = (x1, ..., xk) is the linear combination
∑k

i=1 xiri of the rows of Q,
and corresponds to B(x) in the vector space V (M) given above.

Lemma 9. The K ×K matrix U has the following properties:

(i) The matrix U symmetric.

(ii) Every row or column of U has 2k−1 non-zero entries.

(iii) Any two distinct rows of U have 2k−2 common non-zero entries.

(iv) The matrix U is non-singular when the entries are taken to be over the real numbers,
and the matrix S = UU> = U2 = 2k−2(I + J) is symmetric, with inverse S−1 =
(1/2k−2)(I − J/2k); where J is the all-ones matrix.

Proof. (i) This follows immediately from (18), and the above construction.

(ii) Fix x and assume that x1 = 1. There are 2k−1 choices for the values of yi, i = 2, 3, . . . , k.
Having made such a choice, there are two choices for y1, exactly one of which will give∑k

i=1 xiyi = 1.

(iii) Fix x,x′ and think of rows x,x′,x + x′ as non-empty subsets of [2k]. Then we have
|x| = |x′| = |x\x′|+ |x′\x| = 2k−1, by (iii). Thus |x|+ |x′|−(|x\x|+ |x′\x|) = 2|x∩x′| =
2k−1.

(iv) That the matrix U is non-singular over the real numbers, uses an argument given in
[3] (pages 11-13). Let S = UU>. Let u,v be distinct rows of U , then u · u = 2k−1 and
u · v = 2k−2. Thus S = 2k−2(I + J), where J is the all-ones matrix. The reader can check
that S−1 = 1

2k−2 (I − 1
2k
J) 2k−1 which implies that U is invertible too.

The definition of a simple k-tuple (B1, ..., Bk) requires that all sets Bi be large and their set
differences to be distinct and of size ∼ n/2. Let (|B1|, . . . , |Bk|) ∼ (n/2)1 be the vector of
these set sizes. Over the reals, solving (19) gives the sizes of the subsets Ix.

Lemma 10. Let (B1, ..., Bk) be a simple sequence. Then for all x ∈ {0, 1}k,

|Ix| =
n

2k

(
1± 2k

√
log n

n

)
. (20)

Proof. Let i = 1, ..., K index the rows of U and let B(x) be the set corresponding to the row
x of U . Let Ux = b where bx = 2|B(x)|/n = 1 + εi, where |εi| ≤ 2

√
log n/n. The matrix

12



S = U2, so Sx = Ub = c where ci = 2k−1(1 + δx) where δx =
∑
εj/2

k−1, the summation
being over a 2k−1-subset of rows x of U . Thus, as J is K ×K where K = 2k − 1,

x = S−1c =
1

2k−2

(
I − 1

2k
J

)
2k−1(1 + δ) =

1

2k−1
1 + η,

where |η| ≤ 2k
√

log n/n. It follows that w.h.p. the solution to (19) satisfies |Ix| = (n/2k)(1±
2k
√

log n/n) for all x ∈ {0, 1}k.

Remark 11. The proofs above generalize to the case where b ∼ (ξn, ξn, . . . , ξn) for some
constant ξ ∈ (0, 1/2] in equation (19). In which case (20) becomes

|Ix| =
2ξn

2k

(
1± 2k

√
log n

n

)
.

5 Simple sequences of large zero-sum sets.

Let B1, B2, . . . , Bk be a simple sequence. In row Mi of the matrix M , there is a 1 in the
diagonal entry Mi,i. As s = 3 there need to be two (random) 1’s in column Ci chosen in a
way to ensure the linear dependence of B1, . . . , Bk. The following lemma describes where
these non-zeros must be placed.

Lemma 12. B1, · · · , Bk are dependencies if and only if the following holds for all i ∈ [n].
Suppose that row i is in Ix, and that the two random non-zeros e1(i), e2(i) in column i are
in Iu, Iv respectively. Then we must have x = u+ v(mod 2).

Proof. Let x = (x1, ..., xk) and consider xm for 1 ≤ m ≤ k. If xm = 0 then i /∈ Bm, so either
none or both of j, j′ are in Bm, and so zero or two unit entries in this column are in Bm. We
must therefore have either um = vm = 0 or um = vm = 1 and xm = um + vm. If xm = 1 then
i ∈ Bm and so exactly one of e1(i), e2(i) must also be in Bm. Hence um = 1, vm = 0, or vice
versa. Thus in all cases xm = um + vm.

The main result of this section is the following.

Lemma 13. Let k ≥ 1 be a positive integer, and let Xk count the number of simple k-
sequences of large dependencies. Then E (Xk) ∼ 1.

Proof. We have to estimate the expected number of simple sequences (B1, ..., Bk) of large de-
pendencies. By (20) of Lemma 10 the index sets Ix have size |Ix| = (n/2k)(1+O(

√
log n/n)).

13



Let K = 2k − 1 as above, and let

Ω =

{
h = (h0, h1, ..., hK) : hi satisfies (20),

K∑
i=1

hi ∈ J1

}
.

Then we define Φ(h, k) by

E (Xk) =
∑
h∈Ω

(
n

h0, h1, . . . , hK

)∏
x6=0

2
∑
{u,v}

u+v=x

hu
n

hv
n


hx (∑

u

(
hu
n

)2
)h0

(21)

=
∑
h∈Ω

(
n

h0, h1, . . . , hK

)
Φ(h, k). (22)

Explanation of (21). Let hx = |Ix|. The multinomial coefficient
(

n
h0,h1,...,hK

)
counts the

number of choices for the subsets Ix. In the product, in order for B1, ..., Bk to be zero-sum,
for x 6= 0 we need to cancel the diagonal entries Mj,j = 1 of j ∈ Ix within the columns
indexed by Ix. This is achieved by putting one entry in rows Iu and one in rows Iv where
u+ v = x. The last factor counts the choices for the entries of columns indexed by I0 over
the row index sets Iu, either zero or two in an index set, in order to preserve the zero-sum
property.

Set hx = (n/2k)(1 + εx) where |εx| = O(
√

log n/n). We note that
∑

x εx = 0, implies that

∑
x

hxεx =
n

2k

∑
x

(εx + ε2
x) =

n

2k

∑
x

ε2
x and

∑
x

hxε
2
x =

n

2k

∑
x

ε2
x +O

(
log3/2 n

n1/2

)
.

And then Stirling’s approximation implies that(
n

h0, h1, . . . , hK

)
∼ nn

√
2πn∏

x∈{0,1}k((n/2
k)(1 + εx))hx(

√
2πn/2k)2k

= 2kn exp

−
K∑

x∈{0,1}k
hx

(
εx −

ε2
x

2

)
+O(log n)


= 2kn exp

− n

2k+1

K∑
x∈{0,1}k

ε2
x +O(log n)

 = 2knnO(1).

In addition, by considering random 2k-colorings of [n] we see from the Chernoff bounds that∑
h∈Ω

(
n

h0, h1, . . . , hK

)
= 2kn(1−O(n−2k/3)). (23)
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With respect to (21), using
∑

x εx = 0, we see that ∑
u∈{0,1}k

(
hu
n

)2
h0

=

(∑
u

1

22k
(1 + 2εu + ε2

u)

)h0

=

(
1

2k

)h0 (
1 +

1

2k

∑
u

ε2
u

)h0

=

(
1

2k

)h0
exp

{
n

2k
(1 + ε0) log

(
1 +

∑
u

ε2
u

2k

)}

=

(
1

2k

)h0
exp

{
n

22k

∑
u

ε2
u +O

(
log3/2 n

n1/2

)}
. (24)

If x 6= 0 then each index z occurs exactly once in
∑

{u,v}
u+v=x

(εu+εv) and so
∑

{u,v}
u+v=x

(εu+εv) =∑
z εz = 0. Therefore,2

∑
{u,v}

u+v=x

hu
n

hv
n


hx

=

2
∑
{u,v}

u+v=x

1

22k
(1 + εu + εv + εuεv)


hx

=

(
1

2k

)hx1 +
1

2k

∑
{u,v}

u+v=x

2εuεv


hx

=

(
1

2k

)hx
exp

 n

2k
(1 + εx) log

1 + 2
∑
{u,v}

u+v=x

εuεv
2k




=

(
1

2k

)hx
exp

 n

2k

∑
{u,v}

u+v=x

2εuεv
2k

+O

(
log3/2 n

n1/2

) .

Note that
Λ =

∑
x6=0

∑
{u,v}

u+v=x

2εuεv =
∑
u

εu
∑
x+u
x6=0

εx+u =
∑
u

εu
∑
v 6=u

εv,

gives

Λ +
∑
u

ε2
u =

(∑
u

εu

)2

= 0.
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Thus using
∑

x hx = n,

Φ(h, k) =

(
1

2k

)∑
x hx

exp

 n

22k

∑
u

ε2
u +

∑
x6=0

∑
{u,v}

u+v=x

2εuεv

+O

(
log3/2 n

n1/2

)
=

1

2kn
eO(log3/2 n/

√
n). (25)

It follows from (22), (23) and (25) above that

E (Xk) = 1 +O

(
log3/2 n√

n

)
= 1 + o(1). (26)

6 Conditional expected number of small zero-sum sets

Let (B1, . . . , Bk) be a fixed sequence of subsets of [n] with |Bi| ∈ J1 for i = 1, 2, . . . , k ≤ ω.
Let B be the event

B = {(B1, ...Bk) is a simple sequence of large row dependencies} . (27)

We need to understand the conditioning imposed by this event B. Suppose that |Ix| = hx ∼
n/2k for x ∈ {0, 1}k.

Lemma 14. Given B and i ∈ Ix, the distribution of the row indices k, ` of the other two
non-zeros in column i is as follows: if x 6= 0 then choose u,v such that x = u + v mod 2
with probability

p(u,v) =
2huhv∑

y+z=x hyhz
,

and then randomly choose k ∈ Iu, ` ∈ Iv. If x = 0 then choose u with probability

p(u,u) =
h2
u∑

y∈{0,1}k h
2
y

,

and then randomly choose k, ` ∈ Iu.

Proof. This follows from the fact that the non-zeros in each column are independently chosen
with replacement and from the condition given in Lemma 12.
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Let (Sj, sj = |Sj| ≤ ω, j = 1, 2, . . . , ` ≤ ω) be a sequence of pairwise disjoint small subsets

of [n] and S =
⋃`
j=1 Sj and s = |S|. We define the events

Sj = {Sj is a small zero-sum row set} for j = 1, 2, . . . , ` and S =
⋂̀
j=1

Sj.

S∗j = {Sj is a small fundamental zero-sum row set} for j = 1, 2, . . . , ` and S∗ =
⋂̀
j=1

S∗j .

Lemma 15.
P(S∗ | B) ∼ P(S∗). (28)

Proof. Let Ix, x ∈ {0, 1}k, be as defined in Section 4. Let Sx = S ∩ Ix and Jj,x = Sj ∩ Ix
and `j,x = |Jj,x| for i = 1, 2, . . . ,m and Jx =

⋃m
j=1 Jj,x and `x = |Jx|. Let J0 = I0 \ S

and `0 = |S0|. We now consider the probability that column i is consistent with S. We let
hx = |Ix| and sx = |Sx| for x ∈ {0, 1}k.

Case 1: i ∈ I0\J0. For each column i ∈ I0\J0, the task here is to estimate the probability
that the two non-zeros e1(i), e2(i) are in rows consistent with the occurrence of S. Because
i ∈ I0 and B occurs, we know from Lemma 12 that e1(i), e2(i) ∈ Iu for some u ∈ {0, 1}k.
For S to occur, we require that zero or two of e1(i), e2(i) fall in Ju, an event of conditional
probability (1− su/hu)2 + (su/hu)2.

Let Eu denote the number of non-zero pairs from I0 \ J0 falling in Ju. Then the conditional
probability that the non-zeros of I0 \ S0 are consistent with S is given by

P(I0 \ S0 is consistent S | B) = E

∏
u

(
1− 2

su
hu

+ 2

(
su
hu

)2
)Eu

 (29)

Given B, we see that Eu is distributed as Bin(h0 − s0, p(u,u)), and has expectation

E (Eu) = (h0 − s0)
h2
u

h2
0 + h2

1 + · · ·+ (h2k−1)2
∼ h0

2k
.

The Chernoff bounds imply that Eu is concentrated around its mean (h0− s0)p(u,u) ∼ N
2k

,
where N = n/2k. Thus,∣∣∣∣Eu −

h0
2k

∣∣∣∣ ≤ n2/3 with probability at least 1− e−Ω(n1/3). (30)
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Going back to (29) and using (30) we have

P(I0 \ S0 is consistent with the occurrence of S | B) ∼∏
u

(
1− 2su

N

)N/2k
∼ exp

{
−2
∑
u

su
2k

}
= e−s/2

k−1

. (31)

Case 2: i ∈ Ix \ Jx, x 6= 0. Given B, and i ∈ Ix, suppose that the non-zeros e1(i), e2(i)
of column i lie in Iu, Ix+u respectively, u ∈ {0, 1}k. The probability of this is p(u,x + u).
The number Ex(u,x+ u) of such pairs of non-zeros in Iu, Ix+u has distribution Bin((hx −
sx)p(u,x+ u)), and expectation asymptotic to (hx − sx)/2k−1.

The rows of S1, . . . , S` have to be zero-sum in this column, so either exactly one non-zero
falls in each of Sj,u, Sj,x+u for some 1 ≤ j ≤ ` or exactly one non-zero falls in each of
Iu \ Su, Ix+u \ Sx+u. The probability of this is

P (u,x+ u) =E

(∑̀
j=1

sj,u
hu

sj,x+u

hx+u

+
hu − su
hu

hx+u − sx+u

hx+u

)Ex(u,x+u)


∼

(∑̀
j=1

sj,usj,x+u

N2
+
N − su
N

N − sx+u

N

)(N−sx)/2k−1

∼ e−(su+sx+u)/2k−1

.

For a given x there are 2k−1 unordered pairs Su, Sx+u, so

P(Ix \ Sx is consistent with S) ∼ exp

− 1

2k−1

∑
{u,x+u}

(su + sx+u)

 = e−s/2
k−1

. (32)

(In the sum in (32) su + sx+u and sx+u + su contribute as one term.) Thus

P(Ix \ Sx is consistent with S,∀x 6= 0) ∼ e−(2k−1)s/2k−1

. (33)

Case 3: i ∈ Sj,x ⊆ Ix, x 6= 0. For i ∈ Sj,x, one non-zero needs to be in Sj, and the
other to avoid Sj. Let v = x + u. Suppose that the pair e1(i), e2(i) fall in Iu, Iu+x. The
probability this happens is

Pj(u,v) ∼ 1

2k−1

(
sj,u
hu

hv − sj,v
hv

+
sj,v
hv

hu − sj,u
hu

)
. (34)
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The events {u,x+ u} are disjoint and exhaustive, so for a given i ∈ Sj,x the probability
p(i, j) of success (i.e. the Sj-indexed rows of column i sum to zero) is

p(i, j) =
∑

{u,u+x}

Pj(u,u+ x) ∼ 1

2k−1

∑
u,v=x+u

(
sj,u
N

N − sj,v
N

+
sj,v
N

N − sj,u
N

)
∼ sj
N2k−1

(
1 +O

( ω
N

))
. (35)

Every column of Sj,x has to succeed or Sj is not a small zero-sum set. Thus

P(Sx succeeds) ∼
(
sj(1 +O(s/N))

N2k−1

)sj,x
.

As
∑
sj,x = sj,

P(Sx succeeds ∀x) ∼
( sj
N2k−1

)sj−sj,0
. (36)

Case 4: i ∈ Sj,0 ⊆ Ij,0. In the case that x = 0, and Sj,0 ⊆ Ij,0, the non-zeros in a column
of Sj,0 must both fall in the same index set Iu; one in Sj,u and one in Iu \Sj,u. Thus P (u,u)
is now summed over all Iu, a total of 2k such sets. For i ∈ Sj,0, the probability p(i) of success
is

p(i) =
∑
{u,u}

P (u,u) ∼ 1

2k

∑
u

(
2
sj,u
N

N − sj,u
N

)
∼ sj
N2k−1

(
1 +O

( ω
N

))
.

The final term is the same as in (35), and we obtain

P(Sj,0 succeeds) ∼
( sj
N2k−1

)sj,0
(37)

Using (31), (33), (36) and (37), we obtain

P(S | B) ∼
m∏
j=1

( sj
N2k−1

)sj
e−(2k−1)s/2k−1

e−s/2
k−1

=
m∏
j=1

(
2sj
n

)sj
e−2s, (38)

after using (5). This completes the proof of P(S | B) ∼ P(S). To replace S by S∗ we just
need to let Kj, j = 1, 2, . . . ,m denote the set of i in Case 3 where i ∈ Sj,x. We see from (34)
that the positions of the non-zeros in the columns Kj are asymptotically uniform over Sj.
This is because each k ∈ Jj,u is chosen with probability asymptotic to 1

sj,u
· sj,u
hu

and similarly

for k ∈ Jj,x+u. In which case, the conditional probability that Sj is fundamental is obtained
by multiplying by κsj . This completes the proof of the lemma.

We can now use inclusion-exclusion to prove

19



Lemma 16. Let Σσ be the event that there are exactly σ disjoint small fundamental depen-
dencies. Then,

P(Σσ | B) ∼ φσRe
−φR

σ!
∼ P(Σσ).

Proof. Let

T` =
1

`!

∑
1≤s1,...,s`≤ω

∑
|Si|=si,i=1,...,`

P

(⋂̀
i=1

S∗i
∣∣∣∣B
)
∼ 1

`!

∑
1≤s1,...,s`≤ω

∑
|Si|=si,i=1,...,`

P

(⋂̀
i=1

S∗i

)
∼

1

`!

∑
1≤s1,...,s`≤ω

(
n

s1, . . . , s`

)∏̀
i=1

(
2si
n

)si
e−2siκsi ∼

1

`!

∑
1≤s1,...,s`≤ω

∏̀
i=1

(2si)
si

si!
e−2siκsi

∼ 1

`!

(
∞∑
s=1

(2e−2)s

s
σs

)`

∼ φ`R
`!
.

The first approximation follows from Lemma 15 and the second from (5), (6).

Using Inclusion-Exclusion, we have

P(Σσ | B) =
∑
`≥σ

(−1)k−σ
(
`

σ

)
T` ∼

∑
`≥σ

(−1)`−σ
(
`

σ

)
φ`R
`!

=
φσRe

−φR

σ!
.

Lemma 8 gives us the unconditional probability.

Let Xk count the number of simple k-sequences as in Lemma 13.

Lemma 17. If σ = O(1) then E (Xk | Σσ) ∼ 1.
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Proof.

E (Xk | Σσ) =
∑

B=(B1,...,Bk)

P(B | Σσ)

=
∑

B=(B1,...,Bk)

P(Σσ | B)P(B)

P(Σσ)

=
∑

B=(B1,...,Bk)

P(B)

P(Σσ)

∑
`≥σ

(−1)`−σ
(
k

σ

)
T`

=
∑

B=(B1,...,Bk)

P(B)

P(Σσ)

∑
`≥σ

(−1)`−σ
(
k

σ

)
1

`!

∑
1≤s1,...,s`≤ω

∑
|Si|=si,i=1,...,`

P

(⋂̀
i=1

S∗i
∣∣∣∣B
)

∼
∑

B=(B1,...,Bk)

P(B)

P(Σσ)

∑
`≥σ

(−1)`−σ
(
k

σ

)
1

`!

∑
1≤s1,...,s`≤ω

∑
|Si|=si,i=1,...,`

P

(⋂̀
i=1

S∗i

)

∼
∑

B=(B1,...,Bk)

P(B)

P(Σσ)
P(Σσ)

= E (Xk) ∼ 1.

7 Joint distribution of small and large dependencies

We first state a preparatory lemma. Let π be the probability distribution given by

π(k) =


∏∞

j=1

(
1−

(
1
2

)j)
k = 0.∏∞

j=k+1

(
1−( 1

2)
j
)

∏k
j=1

(
1−( 1

2)
j
) (1

2

)k2
k ≥ 1.

(39)

A proof of the next result for ck = 1 can be found in [6], [7]. We give a full and different
proof for completeness.

Lemma 18. For λ ≥ 0, the solutions to

ck =
∞∑
λ=k

qλ

k−1∏
i=0

(2λ − 2i), k ≥ 0. (40)
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are given by

qλ =
∞∑
k=λ

(−1)k−λ2(k−λ2 )
[
k

λ

]
2

ψkck, (41)

where ψk = 1/
(

2(k2)
∏k

i=1(2i − 1)
)
. In particular, if ck = 1, qλ = π(λ) of (39).

Proof. Gaussian coefficients are defined as[
λ

k

]
z

=

∏k
i=1(zλ−i+1 − 1)∏k

i=1(zi − 1)
. (42)

Using (42) with z = 2, equation (40) can be rewritten as

ck = 2(k2)
k∏
i=1

(2i − 1)
∞∑
λ=k

qλ

[
λ

k

]
2

. (43)

Put ψk = 1/
(

2(k2)
∏k

i=1(2i − 1)
)

, we see that qλ is the solution to

∞∑
λ=k

[
λ

k

]
2

qλ = ψkck, k ≥ 0. (44)

Fix δ ≥ 0, multiply equation k ≥ δ in (44) by (−1)k−δ2(k−δ2 )[k
δ

]
2
, and sum these equations

over k ≥ δ. This gives

∞∑
k=δ

(−1)k−δ2(k−δ2 )
[
k

δ

]
2

ψkck =
∞∑
k=δ

∞∑
λ=k

(−1)k−δ
[
k

δ

]
2

2(k−δ2 )
[
λ

k

]
2

qλ (45)

=
∞∑
k=δ

∞∑
λ=k

(−1)k−δ
[
λ− δ
k − δ

]
2

2(k−δ2 )
[
λ

δ

]
2

qλ

=
∞∑
λ=δ

[
λ

δ

]
2

qλ

λ∑
k=δ

(−1)k−δ
[
λ− δ
k − δ

]
2

2(k−δ2 ) (46)

= qδ. (47)

Explanation: (46) to (47): Gaussian coefficients satisfy the identity

(1 + x)(1 + zx) · · · (1 + zr−1x) =
r∑
`=0

[
r

`

]
z

z(`2)x`. (48)
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To prove the last summation on the right hand side of (46) is zero for λ > δ, use (48) with

x = −1, z = 2, ` = k − δ and r = λ− δ. This gives
∑λ−δ

`=0

[
λ−δ
`

]
2
2(`2)(−1)` = 0 for λ > δ.

For z < 1, taking the limit of (48) gives

∞∏
`=0

(1 + z`x) =
∞∑
`=0

z(`2)x`∏`
i=1(1− zi)

. (49)

Replacing δ by λ, and putting ck = 1 in (41), we see that the solution qλ to (40) is

qλ =
∞∑
k=λ

(−1)k−λ2(k−λ2 )−(k2)∏λ−1
i=0 (2λ−i − 1)

∏k−1
i=λ (2k−i − 1)

=

(
1
2

)λ2∏λ
i=1

(
1−

(
1
2

)i) ∞∑
`=0

(−1)`
(

1
2

)(`2) (1
2

)(1+λ)`∏`
i=1

(
1−

(
1
2

)i) (50)

=

(
1

2

)λ2 ∏∞
i=λ+1

(
1−

(
1
2

)i)
∏λ

i=1

(
1−

(
1
2

)i) = π(λ), (51)

where π(λ) is given in (39). To get from (50) to (51), use (49) with z = 1/2 and x =
(−1/2λ+1).

Quotient space argument

Given M , let B = {Bi : i ∈ [N ]} denote the set of large dependencies and S = {Sj : j ∈ [T ]}
denote the set of small dependencies. The following observations complete the proof of
Theorem 1.

P1 Suppose that V, VS are the vector spaces generated by all dependencies, and small de-
pendencies, respectively. Suppose that these spaces have dimensions d, σ respectively.

Let W = V/VS be the quotient space and fS be the canonical map fS : V → W . Thus
fS maps small dependencies to zero and W = {fS(B) : B ∈ B} ∪ {0}. Each vector in
W corresponds to an equivalence class of vectors in V . In terms of dependencies in B,
B ∼ B′ iff B ⊕B′ = S where S ∈ S. As the small dependencies are disjoint, the size of
the equivalence class of B is 2σ.

P2 Note that dim(W ) = dim(V ) − dim(VS) = d − σ. Let λ denote the maximum number
of independent large dependencies. This will be the same as the maximum length of a
simple sequence. We next prove that λ = dim(W ).
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Let bi, i = 1, 2, . . . ,m be a basis of W then Bi ∈ fS−1(bi), i = 1, 2, . . . ,m form a simple
sequence. If not then for some A ⊆ [m] we have ⊕i∈ABi ∈ VS which implies that
fS (⊕i∈ABi) =

∑
i∈A bi = 0. Conversely, if B1, B2, . . . , Bk is a simple sequence then

bi = fS(Bi), i = 1, 2, . . . , k are independent. If not then for some A ⊆ [k],
∑

i∈A bi = 0
which implies that ⊕i∈ABi ∈ VS.

P3 The first i independent members of a simple sequence generate a vector space Wi of size
2i. The next independent entry of the sequence is chosen from W \Wi, a space of size
2λ − 2i. Each entry is chosen from an equivalence class of size 2σ. It follows that the
number Xk of simple sequences of length k is equal to

k−1∏
i=0

((2λ − 2i)× 2σ) = 2kσ
k−1∏
i=0

(2λ − 2i).

P4 Let bt = P(λ = t | σ = s). By Lemma 17, E (Xk | σ = s) ∼ 1, so

1 ∼ E (Xk | σ = s) = 2sk
∞∑
t=k

k−1∏
i=0

(2t − 2i)bt. (52)

This can be re-written (with ∼ replaced by =) as,

2−sk = 2(k2)
k∏
i=1

(2i − 1)
∞∑
t=k

bt

[
t

k

]
2

By Lemma 18 we find that

bt =
∞∑
k=t

(−1)k−t2(k−t2 )
[
k

t

]
2

ψkck

=
∞∑
k=t

(−1)k−t2(k−t2 )−(k2)−ks∏k
i=1(2i − 1)

[
k

t

]
2

=
1

(2t − 1) · · · (2− 1)

∑
k≥t

(−1)k−t2(k−t2 )−(k2)−ks−(k+1−t
2 ) 1∏k−t

i=1(1− (1/2)i)

=

(
1

2

)t(t+s)
1∏t

j=1(1− 1/2j)

∑
j≥0

(
1

2

)(j2)
(
−1

(
1

2

)1+s+t
)j

1∏j
i=1(1− (1/2)i)

=

(
1

2

)t(t+s)
1∏t

j=1(1− 1/2j)

∞∏
j=0

(
1−

(
1

2

)(s+t+1)+j
)

=P (s, t),
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as given in (2), and where we used (49) with z = 1/2 and x = −(1/2)s+t+1 to replace
the alternating sum.

P5 The P (s, t) only asymptotically satisfy the solution bt(s) = P(λ = t | σ = s) in (52)
asymptotically. So to prove the lemma, we show that for large K,∑

t≥K
s≥0

bt(s) ≤ ε, (53)

where ε > 0 is arbitrarily small. For t ≥ k,

k−1∏
i=0

(2t − 2i) = 2kt
k−1∏
i=0

(
1− 1

2t−i

)
≥ 2kt

(
1−

k−1∑
i=0

1

2t−i

)
≥ 2(k−1)t.

It follows that ∑
t≥K
s≥0

bt(s) ≤ 2−K(K−1).

Thus (53) holds if K ≥
√

2 log2 1/ε.
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