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Abstract

In a Maker-Breaker game on a graph G, Breaker and Maker alternately claim edges of G.
Maker wins if, after all edges have been claimed, the graph induced by his edges has some
desired property. We consider four Maker-Breaker games played on random geometric graphs.
For each of our four games we show that if we add edges between n points chosen uniformly at
random in the unit square by order of increasing edge-length then, with probability tending to
one as n→ ∞, the graph becomes Maker-win the very moment it satisfies a simple necessary
condition. In particular, with high probability, Maker wins the connectivity game as soon
as the minimum degree is at least two; Maker wins the Hamilton cycle game as soon as
the minimum degree is at least four; Maker wins the perfect matching game as soon as the
minimum degree is at least two and every edge has at least three neighbouring vertices; and
Maker wins the H-game as soon as there is a subgraph from a finite list of “minimal graphs”.
These results also allow us to give precise expressions for the limiting probability that G(n, r)
is Maker-win in each case, where G(n, r) is the graph on n points chosen uniformly at random
on the unit square with an edge between two points if and only if their distance is at most r.

1 Introduction

Let H = (X,F) be a hypergraph. That is, X is a finite set and F ⊆ 2X is a collection of subsets
of X. The Maker-Breaker game on H is played as follows. There are two players, Maker and
Breaker, that take turns claiming unclaimed elements of X, with Breaker moving first. Maker
wins if, after all the elements of X have been claimed, the set M ⊆ X of elements claimed by him
contains an element of F (i.e. if F ⊆M for some F ∈ F). Otherwise Breaker wins.

The study Maker-Breaker games has a considerable history going back to Hales-Jewett [?] and
Lehman [13] and the subject has become increasingly popular over the past decade or so. Often
the case is considered where X = E(G) is the edge set of some graph G and F ⊆ 2E(G) is a
collection of graph theoretic structures of interest, such as the set of all spanning trees, the set
of all perfect matchings, the set of all Hamilton cycles, or the set of all subgraphs isomorphic
to a given graph H. In these cases we speak of, respectively, the connectivity game, the perfect
matching game, the Hamilton cycle game and the H-game.

Already in [6], an interesting connection between positional games on the complete graph and
the corresponding properties of the random graph was pointed out, roughly noting that the course

∗Department of Mathematics, Statistics and Computer Science, Macalester College, Saint Paul, MN. E-mail:
abeverid@macalester.edu
†Department of Mathematics, Western Michigan University, Kalamazoo, MI. E-mail: andrzej.dudek@wmich.edu.

Research supported in part by Simons Foundation Grant #244712
‡Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA. E-mail:

alan@random.math.cmu.edu. Supported in part by NSF Grant CCF1013110
§Mathematical Institute, Utrecht University, Utrecht, the Netherlands. E-mail: t.muller@uu.nl. Part of this

work was done while this author was supported by a VENI grant from Netherlands Organisation for Scientific
Research (NWO)
¶Department of Mathematics and Informatics, University of Novi Sad, Serbia. Email:

milos.stojakovic@dmi.uns.ac.rs. Partly supported by Ministry of Science and Technological Development,
Republic of Serbia, and Provincial Secretariat for Science, Province of Vojvodina.

1



of a game between the two (smart) players often resembles a purely random process. This many
time repeated and enriched paradigm in positional game theory later came to be known as Erdős’s
probabilistic intuition, and although still lacking the form of a precise statement, it has proved a
valuable source of inspiration. See [3] for an overview of the theory of positional games.

Combining two related concepts, Maker-Breaker games on the Erdős-Rényi model of random
graphs were first introduced and studied in [22]. Several works followed, including [10, 4], resulting
in precise descriptions of the limiting probabilities for Maker-win in games of connectivity, perfect
matching and Hamilton cycle, all played on the edges of a random graph G ∼ G(n, p). As for
the H-game, not that much is known. The limiting probability is known precisely only for several
special classes of graphs [17]. Recently, the order of the threshold probability was determined
for all graphs H that are not trees, and whose maximum 2-density is not determined by a K3

as a subgraph [18]. When it comes to other models of random graphs, some positional games on
random regular graphs were studied in [5].

In the current paper we add to this line of research, by considering Maker-Breaker games played
on the random geometric graph on the unit square. Given points x1, . . . , xn ∈ R2 and r > 0 we
define the geometric graph G(x1, . . . , xn; r) as follows. It has vertex set V = {x1, . . . , xn}, and an
edge xixj if and only if ‖xi − xj‖ ≤ r, where ‖.‖ is the Euclidean norm. The random geometric
graph G(n, r) = G(X1, . . . , Xn; r) is defined by taking X1, . . . , Xn i.i.d. uniform at random on
the unit square [0, 1]2. The random geometric graph essentially goes back to Gilbert [9] who
defined a very similar model in 1961. For this reason the random geometric graph is sometimes
also called the Gilbert model. Random geometric graphs have been the subject of a considerable
research effort in the last two decades or so. As a result, detailed information is now known on
aspects such as (k-)connectivity [19, 20], the largest component [21], the chromatic number and
clique number [16, 15] and the simple random walks on the graph [7]. A good overview of the
results prior to 2003 can be found in the monograph [21]. It is of course possible to define the
random geometric graph in dimensions other than two, using a probability measure other than
the uniform and using a metric other than the euclidean norm, and in fact several authors do this.
In the present work we have decided to stick with the two-dimensional, uniform, euclidean setting
because this is the most natural choice in our view, and this setting is already challenging enough.

Recall that, formally, a graph property P is a collection of graphs that is closed under isomor-
phism. We call a graph property P increasing if it is preserved under addition of edges (i.e. G ∈ P
implies G ∪ e ∈ P for all e ∈

(
V (G)

2

)
). Examples of increasing properties are being connected, be-

ing non-planar, containing a Hamilton cycle, or being Maker-win in any of the games mentioned
above. We define the hitting radius of an increasing property P as:

ρn(P) := inf{r ≥ 0 : G(X1, . . . , Xn; r) satisfies P}.

Here we keep the locations of the points X1, . . . , Xn fixed as we take the infimum.
We give explicit descriptions of the hitting radius for three different games, namely the con-

nectivity game, the Hamilton cycle game and the perfect matching game. For each game, we
have a very satisfying characterization: the hitting radius for G(n, r) to be Maker-win coincides
exactly with a simple, necessary minimum degree condition. Each characterization engenders an
extremely precise description of the behavior at the threshold value for the radius. We note that
these results require some very technical lemmas that explicitly catalog the structure of the graph
around its sparsest regions. Finally, we also state a general theorem for the H-game for a fixed
graph H. The hitting radius obeys a similar behavior, and can be determined by finding the
smallest k for which the H-game is Maker-win on the k-clique. Upper bounds for such k are
available, see e.g. [2], so determining k for a given H is essentially a finite problem.

We state these four results below, as couplets consisting of a theorem recognizing the co-
incidence of the hitting radii, followed by a corollary that describes the behavior around that
critical radius. We say that an event An holds whp (short for with high probability) to mean that
P(An) = 1− o(1) as n→∞.

Theorem 1.1 The random geometric graph process satisfies

ρn(Maker wins the connectivity game) = ρn(minimum degree ≥ 2) whp.
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Theorem 1.1 allows us to derive an expression for the limiting probability that Maker wins the
connectivity game on G(n, r), as follows. Let n ≥ 2 be an integer and r > 0 be arbitrary. Since
having minimum degree at least two is a necessary condition for Maker winning the connectivity
game, we have:

P(δ(G(n, r)) ≥ 2) ≥ P(Maker wins on G(n, r))
= P(Maker wins on G(n, r) and δ(G(n, r)) ≥ 2)
= P(δ(G(n, r)) ≥ 2)
−P(Maker loses on G(n, r) and δ(G(n, r)) ≥ 2)

≥ P(δ(G(n, r)) ≥ 2)
−P(ρn(Maker wins) 6= ρn(minimum degree ≥ 2)).

(1)

Combining this with Theorem 1.1 we see that, for any sequence (rn)n of positive numbers:

P(Maker wins the connectivity game on G(n, rn)) = P(δ(G(n, rn)) ≥ 2)− o(1). (2)

Combining this with a result of Penrose (repeated as Theorem 2.10 below), we find that:

Corollary 1.2 Let (rn)n be a sequence of positive numbers and let us write

xn := πnr2
n − lnn− ln lnn.

Then the following holds in the random geometric graph G(n, rn):

lim
n→∞

P(Maker wins the connectivity game) =


1 if xn → +∞,

e−(e−x+
√
πe−x) if xn → x ∈ R,

0 if xn → −∞.

Let us define N(v) to be the set of neighbors of vertex v, and the edge-degree of an edge
e = uv ∈ E(G) as d(e) = |(N(v) ∪N(u)) \ {u, v}|.

Theorem 1.3 The random geometric graph process satisfies, for n even:

ρn(Maker wins the perfect matching game) = ρn(min. deg. ≥ 2 and min. edge-deg. ≥ 3) whp.

A similar argument to the one we used for the connectivity game yields the following.

Corollary 1.4 Let (rn)n be a sequence of positive numbers and let us write

xn := πnrn
2 − lnn− ln lnn.

Then the following holds in the random geometric graph G(n, rn):

lim
n→∞,
n even

P(Maker wins the perfect matching game) =


1 if xn → +∞,

e−((1+π2/8)e−x+
√
π(1+π)e−x/2) if xn → x ∈ R,

0 if xn → −∞.

Theorem 1.5 The random geometric graph process satisfies

ρn(Maker wins the Hamilton cycle game) = ρn(minimum degree ≥ 4) whp.

Again, we can make use of this result to obtain the precise relation between the radius r and
the probability of Maker-win in the Hamilton cycle game.

Corollary 1.6 Let (rn)n be a sequence of positive numbers and let us write

xn :=
1

2

(
πnrn

2 − (lnn+ 5 ln lnn− 2 ln(6))
)
.

Then the following holds in the random geometric graph G(n, rn):

lim
n→∞

P(Maker wins the Hamilton cycle game) =


1 if xn → +∞,

e−e
−x

if xn → x ∈ R,
0 if xn → −∞.
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Our next result, on the H game, is a bit different from our results for the other games. In
particular, the “action” now takes place long before the connectivity threshold, when the average
degree πnr2 decays polynomially in n.

Theorem 1.7 Let H be any fixed graph and let kH denote the least k for which the H-game is
Maker’s win on a k-clique, and let FH denote the family of all graphs on kH vertices for which
the game is Maker-win. Then

ρn(Maker wins the H-game) = ρn(the graph contains a subgraph ∈ FH) whp.

Again the theorem on the hitting radius allows us to determine the hitting probability. This
time we make use of a theorem of Penrose [21] (stated as Theorem 2.9 below) on the appearance
of small subgraphs to obtain:

Corollary 1.8 Let H be any fixed graph, and let kH denote the smallest k for which the H-game
is Maker-win on a k-clique. If r = c · n−k/2(k−1) with c ∈ R fixed then

P(Maker wins the H-game) 7→ f(c),

where 0 < f(c) < 1 (is an expression which can be computed explicitly in principle and) satisfies
f(c)→ 0 as c→ −∞; and f(c)→ 1 as c→∞.

1.1 Overview

The proofs of the main theorems leverage a characterization of the local structure of the graph
G(n, r). In particular, we meticulously describe the graph around its sparser regions. Section 2
contains our background results. We start with a short list of known results about Maker-Breaker
games, followed by a selection of results about random geometric graphs, drawn or adapted from
[21]. Next, we give some geometric preliminaries, most of which provide approximations of small
areas defined by intersecting disks in [0, 1]2.

Section 3 contains the technical lemmas that chart a detailed cartography of G(n, r). We
dissect the unit square [0, 1]2 into cells, which are squares of side length roughly ηr where η > 0
is very small. We fix a large constant T > 0 (made explicit later). We say that a cell c is good
if it is dense, meaning that there are at least T vertices in c. The sparse cells are bad. We show
that bad cells come in clusters of very small diameter, which we call obstructions. Moreover, these
obstructions are well-separated from one another. These results are collected in the Dissection
Lemma 3.3. Next, we prove the Obstruction Lemma 3.4, which shows that for each obstruction,
there are enough points in nearby good cells to allow Maker to overcome these bottlenecks.

Section 4 contains the straight-forward proof for the connectivity game. A classic result [13]
states that the connectivity game on a graph G is Maker-win if and only if G has two disjoint
spanning trees. Our characterization of obstructions quickly reveal that such a pair of trees exist.

The argument for the Hamilton cycle game, found in Section 5, is far more delicate. In order
to win the game on G(n, rn), Maker plays lots of local games. The games that are played in
and around the obstructions require the most judicious play: this is where Maker must directly
play against Breaker to keep his desired structure viable at a local level. Ultimately, he is able
to construct long paths that span the obstructions and have endpoints in nearby good cells.
Meanwhile, Maker plays a different kind of game in each good cell. Therein, he creates a family
of flexible blob cycles, which consist of cycles that also contain a fairly large clique. In addition,
Maker plays to claim half the edges between the vertices in nearby local games. Once the edge
claiming is over, Maker stitches together his desired structure. The soup of blob cycles in each
cell gives Maker the flexibility to connect together the local games. Each local game is absorbed
into a nearby blob cycle. This process is repeated by merging the current blob cycles in a good
cell into one blob cycle in the cell. Along the way, we also absorb other vertices that are not yet
attached, and also connect the blob cycles in nearby good cells, following a pre-determined tree
structure. The final result is a Hamilton cycle.
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Section 6 considers the perfect matching game. The argument and game play is similar to the
Hamilton cycle game. The local games in and around the obstructions are played head-to-head
with Breaker, creating a matching that saturates each obstruction (and uses some nearby vertices
in good cells). Meanwhile, Maker creates a Hamilton cycle through the rest of the vertices (as in
the previous game) and then takes every other edge to get the perfect matching.

In Section 7, we handle the H-game with a straight-forward argument. Once we reach the
threshold for the appearance of a clique on which Maker can win the H-game, we use a Poisson
argument for independent copies of such a clique appearing in well-separated regions of the graph.

Finally, we conclude in Section 8 and list some directions for future research.

2 Preliminaries

In this section, we present some preliminary results that will be useful in the sequel. We start with
a modest collection of previous results on Maker-Breaker games. The Maker-Breaker connectivity
game is also known as the Shannon switching game. A classical result by Lehman [13] states:

Theorem 2.1 ([13]) The connectivity game played on G is Maker-win if and only if G admits
two disjoint spanning trees.

This has the immediate corollary:

Corollary 2.2 The connectivity game is Maker-win on Kn if and only if n ≥ 4.

The following is a standard result.

Theorem 2.3 ([2]) Let H be a finite graph. There is an N = N(H) such that Maker can win
the H-game on Ks for all s ≥ N .

It turns out that the Hamilton cycle game, as well as several other standard games on graphs,
are easy wins for Maker when played on a sufficiently large complete graph. To make the game
more balanced, Chvátal and Erdős [6] introduced biased games. In the (1 : b) biased game, Maker
claims a single edge in each move, as before, but Breaker claims b edges. The parameter b is
called the bias (towards Breaker). Due to the “bias monotonicity” of Maker-Breaker games, it is
straightforward to conclude that for any positional game there is some value b(n) such that Maker
wins the game for all b < b(n), while Breaker wins for b ≥ b(n). We call b(n) the threshold bias for
that game. Later on, we make use of a recent break-through result of Krivelevich on the threshold
bias of the Hamilton cycle game on Kn.

Theorem 2.4 (Krivelevich [12]) The threshold bias of the Hamilton cycle game on Kn satisfies
b(n) = (1 + o(1))n/ lnn.

2.1 Probabilistic preliminaries

Throughout this paper, Po(λ) will denote the Poisson distribution with parameter λ, and Bi(n, p)
will denote the binomial distribution with parameters n, p. Recall that the Bi(1, p)-distribution
is also called the Bernoulli distribution. We will make use of the following incarnation of the
Chernoff bounds. A proof can for instance be found in Chapter 1 of [21].

Lemma 2.5 Let Z be either Poisson or Binomially distributed, and write µ := EZ.

(i) For all k ≥ µ we have
P(Z ≥ k) ≤ e−µH(k/µ),

(ii) For all k ≤ µ we have
P(Z ≤ k) ≤ e−µH(k/µ),
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where H(x) := x lnx− x+ 1. �

An easy inequality on the Poisson distribution that we will use below is as follows. For com-
pleteness we spell out the short proof.

Lemma 2.6 Let Z be a Poisson random variable. Then P(Z ≥ k) ≤ (EZ)k, for all k ∈ N

Proof: Using Markov’s inequality we have

P(Z ≥ k) = P(Z(Z − 1) · · · (Z − k + 1) ≥ 1) ≤ E
[
Z(Z − 1) . . . (Z − k + 1)

]
= (EZ)k,

where we also used the well-known, elementary fact that the k-th factorial moment of the Poisson
equals the k-th power of its first moment. �

The total variational distance between two integer-valued random variables X,Y is defined as:

dTV(X,Y ) = sup
A⊆Z
|P(X ∈ A)− P(Y ∈ A)|.

Let g : Rd → [0,∞) be a bounded, measurable function. A Poisson process on Rd with intensity
g is a random set of points P ⊆ Rd with the properties that:

(PP-1) For every measurable A ⊆ Rd, we have P(A)=d Po
(∫
A
g(x)dx

)
, where P(A) := |A ∩ P|

denotes the number of points of P that fall into A;

(PP-2) If A1, . . . , An are disjoint and measurable, then P(A1), . . . ,P(An) are independent.

An important special case is when
∫
Rd g(x)dx < ∞. In this case we can write g = λ · f ,

with f (the probability density of) an absolute continuous probability measure. In this case the
Poisson process P can also be generated as follows. Let X1, X2, . . . ∈ Rd be an infinite supply
of random points, i.i.d. distributed with probability density f ; and let N=d Po(λ) be independent
of X1, X2, . . . . Then P=d {X1, . . . , XN}. A proof of this folklore result and more background on
Poisson point processes can for instance be found in [11].

It is often useful to consider a Poissonized version of the random geometric graph. Here we
mean the following. Let us take X1, X2, . . . i.i.d. uniform at random on the unit square, and we
let N=d Po(n) be independent of X1, X2, . . . . Following Penrose [21], we will write

Pn := {X1, . . . , XN}. (3)

(Thus Pn is a Poisson process with intensity n on the unit square and intensity 0 elsewhere.) The
Poisson random geometric graph is defined as

GP(n, r) := G(Pn; r).

The properties (PP-1) and (PP-2) above make GP(n, r) often slightly easier to deal with than the
ordinary random geometric graph. For notational convenience (and again following Penrose [21])
we set:

Xn := {X1, . . . , Xn}. (4)

The usual random geometric graph G(n, r) = G(Xn; r) is sometimes also called the bino-
mial random geometric graph. By defining both G(n, r) and GP(n, r) on the same set of points
X1, X2, . . . we get an explicit coupling which often helps to transfer results from the Poissonized
setting to the original setting.

The next theorem is especially useful for dealing with the subgraph counts and counts of other
“small substructures” in the Poissonized random geometric graph. The statement and its proof
are almost identical to Theorem 1.6 of [21], but for completeness we include a proof in Appendix A.
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Theorem 2.7 Let Pn be as in (3), and let h(a1, . . . , ak;A) be a bounded measurable function
defined on all tuples (a1, . . . , ak;A) with A ⊆ R2 finite and a1, . . . , ak ∈ A. Let us write

Z :=
∑

a1,...,ak∈Pn,
a1,...,ak distinct

h(a1, . . . , ak;Pn).

Then
EZ = nk · Eh(Y1, . . . , Yk; {Y1, . . . , Yk} ∪ Pn),

where Y1, . . . , Yk are i.i.d. uniform on the unit square, and are independent of Pn.

The previous theorem can be used to count “small substructures” in the Poisson setting. We
are primarily interested in the binomial random graph. The next lemma is useful for transferring
results from the Poisson random geometric graph to the binomial random graph. The proof is
relatively standard. For completeness we provide the proof in Appendix B, since it is not available
in the literature as far as we are aware. Here and in the rest of the paper, B(x, r) := {y ∈ R2 :
‖x− y‖ < r} denotes the ball of radius r around the point x.

Lemma 2.8 Let hn(v1, . . . , vk;V ) be a sequence of {0, 1}-valued, measurable functions defined on
all tuples (v1, . . . , vk;V ) with V ⊆ R2, v1, . . . , vk ∈ V and set

Zn :=
∑

v1,...,vk∈Pn

hn(v1, . . . , vk;Pn), Z̃n :=
∑

v1,...,vk∈Xn

hn(v1, . . . , vk;Xn),

with Pn as in (3) and Xn as in (4). Suppose that EZn = O(1) and that there exists a sequence (rn)n
such that πnr2

n = o(
√
n) and the value of hn(v1, . . . , vk;V ) does not depend on V \ (B(v1; rn) ∪

· · · ∪B(vk; rn)). Then Zn = Z̃n whp.

We will need two results of Penrose [21] that were proved using Poissonization. The first of
these two results is on the occurrence of small subgraphs. For H a graph, we shall denote by
N(H) = N(H;n, r) the number of induced subgraphs of G(n, r) that are isomorphic to H. For H
a connected geometric graph on k vertices, let us denote

µ(H) :=
1

k!

∫
R2

. . .

∫
R2

1{G(0,x1,...,xk−1;1)∼=H}dx1 . . . dxk−1 (5)

(Here G ∼= H means that G and H are isomorphic and 1A is the indicator function of the set A, in

our case the set of all (x1, . . . , xk−1) ∈
(
R2
)k−1

that satisfy G(0, x1, . . . , xk−1; 1) ∼= H.) It can be
seen that, since H is a connected geometric graph, 0 < µ(H) <∞. The following is a restriction
of Corollary 3.6 in [21] to the special case of the uniform distribution on the unit square and the
Euclidean norm.

Theorem 2.9 (Penrose [21]) For k ∈ N, let H1, . . . ,Hm be connected, non-isomorphic geomet-

ric graphs on k ≥ 2 vertices. Let (rn)n be a sequence of positive numbers satisfying rn = α·n−
k

2(k−1)

for some constant α > 0. Then

(N(H1), . . . , N(Hm))→d (Z1, . . . , Zm),

where Z1, . . . , Zm are independent Poisson random variables with means EZi = α2(k−1) · µ(Hi).

We shall also need a result on the minimum degree of the random geometric graphs. The following
is a reformulation of Theorem 8.4 in [21], restricted to the case of the Euclidean metric in two
dimensions.

Theorem 2.10 (Penrose [21]) Let (rn)n be a sequence of positive numbers. The following hold
for the random geometric graph G(n, rn):
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(i) If πnr2
n = lnn+ x+ o(1) for some fixed x ∈ R then

lim
n→∞

P[G(n, rn) has min. deg. ≥ 1] = e−e
−x
.

(ii) If πnr2
n = lnn+ ln lnn+ x+ o(1) for some fixed x ∈ R then

lim
n→∞

P[G(n, rn) has min. deg. ≥ 2] = e−(e−x+
√
πe−x).

(iii) If πnr2
n = lnn+ (2k − 3) ln lnn+ 2 ln((k − 1)!) + 2x+ o(1) for some fixed x ∈ R and k > 2

then
lim
n→∞

P[G(n, rn) has min. deg. ≥ k] = e−e
−x
.

Later on we will do some reverse-engineering of Theorem 2.10. For this purpose it is convenient
to state also the following intermediate result that was part of the proof of Theorem 2.10.

Lemma 2.11 ([21]) Let (rn)n be such that πnr2
n = lnn+ ln lnn+ x+ o(1) for some x ∈ R, and

let Wn denote the number of vertices of degree exactly one in G(n, rn). Then

EWn → e−x +
√
πe−x.

2.2 Geometric preliminaries

This section begins with two elementary results about geometric graphs. The remainder of the
section is devoted to approximating the area of intersecting regions in [0, 1]2. We start with a
standard elementary result. Because we are not aware of a proof anywhere in the literature, we
provide a proof in Appendix C.

Lemma 2.12 Let G be a connected geometric graph. Then G has a spanning tree of maximum
degree at most five.

Note that Lemma 2.12 is best possible since K1,5 is a connected geometric graph. We also need
the following observation. We leave the straightforward proof to the reader.

Lemma 2.13 Let G = (x1, . . . , xn; r) be a geometric graph and suppose that xixj , xaxb ∈ E(G)
are two edges that do not share endpoints. If the line segments [xi, xj ] and [xa, xb] cross then at
least one of the edges xixa, xixb, xjxa, xjxb is also in E(G). �

We now turn to approximating areas in [0, 1]2. First, we give an expression for the area of
the difference between two disks of the same radius. We leave the proof, which is straightforward
trigonometry, to the reader.

Lemma 2.14 For x, y ∈ R2 we have, provided d := ‖x− y‖ ≤ 2r:

area(B(x; r) \B(y; r)) = πr2 − 2r2 arccos(d/2r) + dr
√

1− (d/2r)2.

�

Using the fact that π
2 (1 − x) ≤ arccos(x) ≤ π

2 − x for 0 ≤ x ≤ 1, and the Taylor approximations

arccos(x) = π
2 − x + O(x2) and

√
1− x = 1 − x/2 + O(x2), we get the following straightforward

consequence of Lemma 2.14 that will be useful to us later:

Corollary 2.15 For x, y ∈ R2 we have, provided d := ‖x− y‖ ≤ 2r:

dr ≤ area(B(x; r) \B(y; r)) ≤ 4dr, (6)

and
area(B(x; r) \B(y; r)) = 2dr −O(d2), (7)

as d ↓ 0. �
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We also need expressions for the area of the intersection of a disk of radius r with the unit square.
Again the proof is straightforward trigonometry that we leave to the interested reader.

Lemma 2.16 Suppose that r < 1
2 and x ∈ [0, r)× (r, 1− r). Writing h for the first coordinate of

x, we have:

area(B(x; r) ∩ [0, 1]2) = πr2 − arccos(h/r) · r2 + hr
√

1− (h/r)2.

�

Again using π
2 (1 − x) ≤ arccos(x) ≤ π

2 − x for 0 ≤ x ≤ 1, and the Taylor approximations

arccos(x) = π
2 − x+O(x2) and

√
1− x = 1− x/2 +O(x2), we get:

Corollary 2.17 Suppose that r < 1
2 and x ∈ [0, r)× (r, 1− r). Writing h for the first coordinate

of x, we have:
π

2
r2 + hr ≤ area(B(x; r) ∩ [0, 1]2) ≤ π

2
r2 + 2hr, (8)

for 0 ≤ h ≤ r, and

area(B(x; r) ∩ [0, 1]2) =
π

2
r2 + 2hr −O(h2), (9)

as h ↓ 0. �

We need one more geometric approximation, that combines the bounds from (7) and (9).

Lemma 2.18 Suppose that x ∈ [0, r) × (2r, 1 − 2r), y ∈ B(x; r), with y to the right of x. Let
h denote the first coordinate of x, and let α, d be defined by v := y − x = (d cosα, d sinα) (see
Figure 1). Then

area([0, 1]2 ∩ (B(x; r) ∪B(y; r))) =
π

2
r2 + 2hr + (1 + cosα)dr +O((d+ h)2), (10)

and
area([0, 1]2 ∩ (B(y; r) \B(x; r))) = (1 + cosα)dr +O(d(d+ h)) (11)

where the error terms are uniform over all −π/2 ≤ α ≤ π/2.

y

xh
α

d

Figure 1: Computing the area of (B(x; r) ∪B(y; r)) ∩ [0, 1]2.

Proof: Let `1 denote the vertical line through x, and let `2 denote the vertical line through the
midpoint of [x, y]. Let A1 denote the part of B(x; r) ∪ B(y; r) between the y-axis and `1; let A2

denote the part of B(x; r)∪B(y; r) between `1 and `2; and let A3 denote the part of B(x; r)∪B(y; r)
to the right of `2.

By symmetry, and (7), we have.

area(A3) =
1

2
area(B(x; r) ∪B(y; r)) =

π

2
r2 + dr +O(d2).
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Observe that A2 is contained in a rectangle of sides d · 1
2 cos(α) and 2r + d. Hence, area(A2) ≤

dr cos(α)+O(d2). On the other hand, A2 contains the portion of B(x; r) between `1 and `2. Thus,
using (9) we see that in fact

area(A2) = dr cosα+O(d2).

Similarly, A1 is contained inside a rectangle of sides h and 2r + d; and it contains the part of
B(x; r) between the y-axis and `1, giving:

area(A1) = 2hr +O(h(d+ h)).

Combining the three expressions proves (10).
Now notice that, if B+(x; r) denotes the portion of B(x; r) to the right of `1:

area([0, 1]2 ∩ (B(y; r) \B(x; r))) ≥ area((A2 ∪A3) \B+(x; r))
= area(A2 ∪A3)− π

2 r
2

= (1 + cosα)dr +O(d2).

On the other hand it is not hard to see that the portion of B(y; r) \B(x; r) that lies between the
y-axis and `1 has area at most h · d, so that

area([0, 1]2 ∩ (B(y; r) \B(x; r))) ≤ area((A2 ∪A3) \B+(x; r)) + h · d
= (1 + cosα)dr +O(d(d+ h)),

proving (11). �

3 The structure of G(n, rn) near the connectivity threshold

This section contains a number of observations of varying technical difficulty that describe the
structure of the random geometric graph G(n, rn) when rn is such that the probability of Maker-
win for one of the games under consideration is nontrivial. Intuitively speaking, we characterize
regions of G(n, rn) as being dense or sparse. Most of the graph is dense. The sparse regions are
of small diameter, and they are well-separated. Equally as important, we show that the dense
region surrounding a sparse region contains enough points to enable Maker to overcome this local
bottleneck. Let us begin.

Let G = (V, r) be a geometric graph, where V = {x1, . . . , xn} ⊂ [0, 1]2. We consider the
structure of G with respect to a partition of [0, 1]2 into small squares. We introduce a vocabulary
for describing the density of vertices in each square. We also categorize the vertices themselves,
depending on whether they are in dense squares or sparse squares. In addition, we will pay special
attention to vertices in dense squares that are also close to vertices in sparse squares.

Let η > 0 be arbitrarily small and let m ∈ N be such that q(m) := 1/m = ηr. Let D = D(m)
denote the dissection of [0, 1]2 into squares of side length q(m). We will call these squares cells.
For K ∈ N, we define a K × K block of cells in the obvious way, see Figure 2. Given T > 0
and V ⊆ [0, 1]2, we call a cell c ∈ D good with respect to T, V if |c ∩ V | ≥ T and bad otherwise.
When the choice of T and V is clear from the context we will just speak of good and bad. Let
Γ = Γ(V,m, T, r) denote the graph whose vertices are the good cells of D(m), with an edge
cc′ ∈ E(Γ) if and only if the lower left corners of c, c′ have distance at most r − q

√
2. (Note that

this way, any x ∈ c and y ∈ c′ have distance ‖x− y‖ ≤ r.) We will usually just write Γ when the
choice of V,m, T, r is clear from the context. Let us denote the components of Γ by Γ1,Γ2, . . .
where Γi has at least as many cells as Γi+1 (ties are broken arbitrarily). For convenience we will
also write Γmax = Γ1. We will often be a bit sloppy and identify Γi with the union of its cells, and
speak of diam(Γi) and the distance between Γi and Γj and so forth.

Let us call a point v ∈ V safe if there is a cell c ∈ Γmax such that |B(v; r)∩V ∩ c| ≥ T . (I.e. in
the geometric graph G(V ; r), the point v has at least T neighbours inside c.) If v is not safe and
there is a good cell c ∈ Γi, i ≥ 2, such that |B(v; r)∩V ∩ c| ≥ T , we say that v is risky. Otherwise,

10



Figure 2: The dissection D(10), with a 4× 4 block of cells highlighted.

if v is neither safe nor risky, we call v dangerous. Every vertex in a cell of Γmax is safe. Every
vertex in a cell of Γi for i ≥ 2 is risky. Vertices in bad cells can be safe, risky or dangerous.

For i ≥ 2 we let Γ+
i denote the set of all points of V in cells of Γi, together with all risky points

v that satisfy |B(v; r) ∩ V ∩ c| ≥ T for at least one c ∈ Γi.
The following is a list of desirable properties that we would like V and Γ(V,m, T, r) to have:

(str-1) Γmax contains more than 0.99 · |D| cells;

(str-2) diam(Γ+
i ) < r/100 for all i ≥ 2;

(str-3) If u, v ∈ V are dangerous then either ‖u− v‖ < r/100 or ‖u− v‖ > r · 1010;

(str-4) For all i 6= j ≥ 2 the distance between Γ+
i and Γ+

j is at least r · 1010;

(str-5) If v ∈ V is dangerous and i ≥ 2 then the distance between v and Γi
+ is at least r · 1010;

(str-6) If c, c′ ∈ Γmax are two cells at Euclidean distance at most 10r, then there is a path in Γmax

between them of (graph-) length at most 105.

See Figure 3 for a schematic of a geometric graph that satisfies (str-1)–(str-6).

3.1 The Dissection Lemma

For n ∈ N and η > 0 a constant, let us define

m = mn :=

⌈√
n

η2 lnn

⌉
. (12)

The goal of this section is to prove that if rn = lnn + o(lnn) then (str-1)–(str-6) hold for
Γ(Xn,mn, T, rn) whp. This is stated formally in the Dissection Lemma 3.3 below. First, we prove
two intermediate lemmas.

Lemma 3.1 Let η, ε, T,K > 0 be arbitrary but fixed, where η, ε are small and T,K are large. Let
m be given by (12) and let Xn be as in (4). The following hold whp for D(mn) with respect to T
and Xn:

(i) Out of every K × K block of cells, the area of the bad cells inside the block is at most
(1 + ε) lnn/n;

(ii) Out of every K ×K block of cells touching the boundary of the unit square, the area of the
bad cells inside the block is at most (1 + ε) lnn/2n.

11



good and safe

bad and safe

good and risky

bad and risky

bad and dangerous

Γmax

Γ1

Γ2

Figure 3: A schematic of part of a geometric graph that satisfies (str-1)–(str-6). Cells are
characterized as good or bad. The smaller components Γ1,Γ2 of Γ are surrounded by bad cells.
Vertices are also characterized as safe, risky or dangerous.

(iii) Every K ×K block of cells touching a corner contains only good cells.

Proof: The number of K ×K blocks of cells is (m −K + 1)2 = Θ(n/ lnn). The number of sets

of cells of area > (1 + ε) lnn/n inside a given K ×K block is at most 2K
2

= O(1). If A is a union
of cells inside some K ×K block then the probability that all its cells are bad is at most

P(Po(n · area(A))< TK2) ≤ exp

[
−n · area(A) ·H

(
TK2

n · area(A)

)]
,

using Lemma 2.5, where H(x) = x lnx − x + 1. If area(A) ≥ (1 + ε) lnn/n then TK2

n·area(A) ≤
TK2

(1+ε) lnn = o(1) so that H
(

TK2

n·area(A)

)
= 1 + o(1) and hence

P(Po(n · area(A))< TK2) ≤ exp[−(1 + ε) lnn · (1 + o(1))]
= n−(1+ε)+o(1).

Thus, the probability that there is a K ×K block such that the area of the bad cells inside it is
at least (1 + ε) lnn/n is bounded above by:

m2 · 2K
2

· n−(1+ε)+o(1) = n−ε+o(1) = o(1).

This proves part (i).
The number of K ×K blocks touching a side of the unit square is at most 4m = Θ(

√
n/ lnn),

and if A is a union of cells with area(A) ≥ (1 + ε) lnn/2n, consisting of no more than K2 cells,
then the probability that all its cells are bad is at most

P(Po(n · area(A))< TK2) ≤ exp[−(1 + ε) 1
2 lnn · (1 + o(1))]

= n−(1+ε)/2+o(1).

Hence, the probability that there is a K ×K block of cells touching a side of the unit square such
that the union of the bad cells inside the block has area at least (1 + ε) lnn/2n is at most:

4m · 2K
2

· n−(1+ε)/2+o(1) = n−ε/2+o(1) = o(1).

This proves part (ii).
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Finally, there are only four K ×K blocks that touch a corner. The probability that a cell c is
bad is at most

P(Po(n · area(c))< T )) ≤ exp[−Ω(lnn) · (1 + o(1))] = o(1).

Hence, the probability that there is a bad cell inside one of the K ×K blocks of cells touching a
corner of the unit square is at most:

4 ·K2 · o(1) = o(1).

This proves part (iii). �

Recall that a halfplane is one of the two connected components of R2 \ ` with ` a line. A
halfdisk is the intersection of a disk B(x, r) with a halfplane whose defining line goes through
the center x. Also recall that a set A ⊆ R2 is a Boolean combination of the sets A1, . . . , An ⊆
R2 if A can be constructed from A1, . . . , An by means of any number of compositions of the
operations intersection, union and complement. Our next lemma shows that the area of A is
well-approximated by the area of the cells that are entirely contained in A.

Lemma 3.2 There exists a universal constant C > 0 such that the following holds for every
constant η > 0 and all sufficiently large n ∈ N. Let mn be given by (12), let A ⊆ [0, 1]2 be a
Boolean combination of at most 1000 halfdisks with radii at most 1000 ·

√
lnn/n, and let

A′ :=
⋃
{c ∈ D(mn) : c ⊆ A},

denote the union of all cells of D(mn) that are contained in A. Then

area(A′) ≥ area(A)− C · η ·
(

lnn

n

)
,

for n sufficiently large.

Proof: Let A,A′ be as in the statement of the lemma. We use ∂A to denote the boundary of A.
Let us define q := 1/m and

A′′ := {z ∈ R2 : B(z; q
√

2) ⊆ A} = A \
(
B(0; q

√
2) + ∂A

)
.

Then clearly A′′ ⊆ A′ ⊆ A. If A is a boolean combination of the halfdisks A1, . . . , Ak then clearly
∂A ⊆ ∂A1 ∪ · · · ∪ ∂Ak. If Ai is a halfdisk of radius r ≤ 1000 ·

√
lnn/n, then it is easily seen that

area
(
∂Ai +B(0; q

√
2)
)
≤ 1

2

(
π(r + q

√
2)2 − π(r − q

√
2)2
)

+ 2r · 2q
√

2

= r · q(̇2π
√

2 + 4
√

2)
≤ 105 · η ·

(
lnn
n

)
.

This gives

area(A′) ≥ area(A′′)

≥ area(A)−
∑k
i=1 area(∂Ai +B(0, q

√
2)

≥ area(A)− 1000 · 105 · η ·
(

lnn
n

)
,

which proves the lemma with C := 108. �

We can now prove the Dissection Lemma: our random geometric graph satisfies (str-1)–(str-
6) with high probability. It will be convenient in the proof to introduce two slightly weaker
properties that will be proved before their original counterpart:

(str0-2) diam(Γi) < r/100 for all i ≥ 2;

(str0-4) For all i 6= j ≥ 2 the distance between Γi and Γj is at least r · 1010;

13



Lemma 3.3 (Dissection Lemma) Let T > 0 be arbitrary but fixed. For η > 0 sufficiently
small, the following holds. Let mn be given by (12), let Xn be as in (4), and let rn be such that
πnr2

n = lnn+ o(lnn). Then (str-1)–(str-6) hold for Γ(Xn,mn, T, rn) whp.

Proof: We can assume that the conclusion of Lemma 3.1 holds with ε := 10−5 and K :=
d(1 + ε) · 10100/η2e.
Proof of (str-1): Consider a K ×K block of cells B. By Lemma 3.1, it contains at most

N :=
(1 + ε) lnn

q2n
=

1 + ε+ o(1)

η2

bad cells, since q = (1 + o(1))
√
η2 lnn/n.

Thus, at least K−N > 0.99K rows of the block do not contain any bad cell. The cells of such
a bad-cell-free row clearly belong to the same component of Γ (provided q < r − q

√
2 which is

certainly true for η sufficiently small). Since there is also at least one bad-cell-free column, we see
that all the bad-cell-free rows of the block belong to the same component of Γ, and this component
contains at least 99 percent of the cells in the block. Let C(B) denote the component of Γ that
contains more than 0.99K2 cells of the block B.

Let us now consider two K ×K blocks B1,B2, where B2 is obtained by shifting B1 to the left
by one cell. Then there are at least K − 2N > 0 rows where both blocks don’t have any bad cells.
This shows that the component C(B1) = C(B2). Clearly the same thing is true if B2 is obtained
by shifting B1 right, down or up by one cell.

Now let B1,B2 be two arbitrary K×K blocks. Since we can move from B1 to B2 by repeatedly
shifting left, right, down or up, we see that in fact C(B1) = C(B2) for any two blocks B1,B2. This
proves that there is indeed a component of Γ that contains more than 0.99 · |D| cells.

Proof of (str0-2): Let c be a cell that contains at least one point of Γi with i ≥ 2. Let us
first assume that c is at least K/2 cells away from the boundary of [0, 1]2. In this case we can
center a K ×K block of cells B on c (If K is odd we place B so that c is the middle cell, and if K
is even we place B so that a corner of c is the center of B). Reasoning as in the proof of (str-1),
at least one row below, one row above, at least one column to the left and at least one column to
the right of c are bad-cell-free. The cells in these bad-cell-free rows and columns must belong to
Γmax (by the proof of (str-1)). Therefore Γi +B(0, r− q

√
2) is completely contained in the block

B. (Here A + B := {a + b : a ∈ A, b ∈ B} denotes the Minkowski sum.) Let pL be a leftmost
point of Γi, let pR be a rightmost point, let pB be a lowest point and let pT be a highest point of
Γi. (These points need not be unique, but this does not pose a problem for the remainder of the
proof.) Let DL denote the halfdisk

DL := B(pL; r − 2q
√

2) ∩ {z ∈ R2 : zx < (pL)x}.

Then DL cannot contain any good cell, because that would contradict that pL is the leftmost
point of Γi. Similarly we define the halfdisks DR, DB , DT and observe that each of them cannot
contain any good cell. (see Figure 4).

Now let us set A := DL ∪ DR ∪ DB ∪ DT . Assuming that diam(Γi) ≥ r/100 we have either
‖pL − pR‖ ≥ r/100

√
2 or ‖pT − pB‖ ≥ r/100

√
2. We can assume without loss of generality

‖pL − pR‖ ≥ r/100
√

2. Observe that, since (pL)x ≤ (pT )x ≤ (pR)x, we have

area(DT \ (DL ∪DR)) ≥

(
r/100

√
2

2(r − 2s
√

2)

)
· area(DT ),

and similarly for area(DB \ (DL ∪DR)). It follows that

area(A) ≥ π(r − 2q
√

2)2(1 +
1

200
√

2
).
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DL
DR

DT

DB

Figure 4: Dropping halfdisks onto a non-giant component of Γ.

Thus, if A′ denotes the union of all cells that are contained in A then, using Lemma 3.2, we have

area(A′) ≥ area(A)− Cη
(

lnn
n

)
≥ πr2(1− 6η)2(1 + 1

200
√

2
)− Cη

(
lnn
n

)
≥ (1 + 10−5)

(
lnn
n

)
,

for n large enough, provided η was chosen sufficiently small. Since A ⊆ B this contradicts Lemma
3.1(i). Hence diam(Γi) < r/100.

Let us now consider the case when some cell c that is within K/2 cells of a side of [0, 1]2

contains a point of Γi with i ≥ 2. If c is within K/2 cells of two sides of [0, 1]2 then it is in fact in
a K ×K block touching a corner. Since there are no bad cells in such a block, we have from the
proof of (str-1) that c ∈ Γmax and hence Γmax ∩ Γ 6 = ∅, a contradiction.

Hence we can assume c is within K/2 cells of one of the sides, but more more than K/2 cells
away from all other sides. By symmetry considerations, we can assume the closest side is the y-
axis. Let pL, pR, pT , pB and DL, DR, DT , DB and A := DL ∪DR ∪DB ∪DT be defined as before.
Observe that DR ⊆ [0, 1]2 and that at least half the area of DT , DB falls inside [0, 1]2. Thus

area(A ∩ [0, 1]2) ≥ 1

2
area(A).

Hence, if A′ ⊆ A again denotes the union of the cells contained in A:

area(A′) ≥ area(A ∩ [0, 1]2)− Cη
(

lnn
n

)
≥ 1

2 area(A)− Cη
(

lnn
n

)
≥ (1 + 10−5)

(
lnn
n

)
/2,

for η sufficiently small (using Lemma 3.2 to get the first line, and previous computations to get
the last line). But this contradicts part (ii) of Lemma 3.1.

It follows that diam(Γi) < r/100, as required.
Proof of (str-3): The proof is analogous to the proof of (str0-2). If u, v are two dangerous
points with ‖u − v‖ < r · 1010 then we let pL, pR, pT , pB be the leftmost, rightmost, top and
bottom points of A = {u, v} and continue as before to find a contradiction to Lemma 3.1.
Proof of (str0-4): Again the proof is analogous to the proof of (str0-2). If Γi,Γj with 2 ≤
i < j are two components of Γ and the distance between them is at most r · 1010, then we take
pL, pR, pT , pB to be the leftmost, rightmost, top and bottom points of A = Γi ∪ Γj and continue
as before.
Proofs of (str-2),(str-4): We run through the proofs replacing Γi by Γ+

i . It will still be possible
to claim that DL contains no good cells. Before, it would seem possible that such a cell was in
Γj , j 6= i, disallowing our contradiction. Now we know that the components of Γ are too far apart
for this to happen.
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R5

c

c′

Figure 5: The squares Sx,y and R5.

Proof of (str-5): Once again the proof is analogous to the proof of (str0-2). If v is dangerous
and Γi with i ≥ 2 is a component of Γ and the distance from v to Γ+

i is at most r · 1010, then
we take pL, pR, pT , pB to be the leftmost, rightmost, top and bottom points of A = {v} ∪Γi

+ and
continue as before.
Proof of (str-6): We assume first that c is at least 100r′ away from the boundary, where
r′ = r − q

√
2. Let p be the lower left corner of c, and for x, y ∈ Z let us define the square

Sx,y := p+

[
(x− 1

2 )r′
√

5
,

(x+ 1
2 )r′
√

5

]
×
[

(y − 1
2 )r′
√

5
,

(y + 1
2 )r′
√

5

]
,

and for k ∈ N let us set Rk := {Sx,y : max(|x|, |y|) = k}, see Figure 5.
Observe that c′ is contained in some Sx,y with |x|, |y| ≤ 11 as c, c′ have distance at most

10r. On the other hand, it cannot be that each of R12, . . . , R27 contains a square that does not
contain any good cell. This is because otherwise, if Qi ∈ Ri is a square that does not contain any
good cell, and we set A :=

⋃27
i=12Qi then A satisfies the conditions of Lemma 3.2. Hence setting

A′ :=
⋃
{c ∈ D(mn) : c ⊆ A}, we have that

area(A′) ≥ area(A)− C · η ·
(

lnn
n

)
= 16

5 (r′)2 − C · η ·
(

lnn
n

)
≥ (1 + 10−5)πr2 − C · η ·

(
lnn
n

)
≥ (1 + 10−10)

(
lnn
n

)
,

for η > 0 sufficiently small (here C is the absolute constant from Lemma 3.2). But this contradicts
Lemma 3.1.

Hence, there is 12 ≤ k ≤ 27 such that all squares in Rk contain at least one good cell. This
implies that there is a cycle C in Γmax that is completely contained in

⋃27
k=12Rk (note that if

a ∈ Sx,y and b ∈ Sx+1,y then ‖a− b‖ ≤ r′; and similarly if a ∈ Sx,y and b ∈ Sx,y+1.) Let us pick
a c′′ ∈ Γmax that has distance at least 100r′ from both c and c′ (Such a c′′ exists by (str-1) if n
is sufficiently large since R0, . . . , R27 ⊆ B(p, 100r)). Consider a cc′′-path in Γmax. It must cross
C somewhere. Hence, by Lemma 2.13, we can find a path from c to a cell of C that stays inside
squares of R := R0 ∪ · · · ∪ R27. Similarly there is a path from c′ to a cell of C that stays inside
squares of R0 ∪ · · · ∪R27. Hence, there is a cc′-path that stays entirely inside squares of R.

Now let c = c0, c1, . . . , cN = c′ be a cc′-path that stays inside squares of R. Let pi denote
the lower left corner of the cell ci. By leaving out vertices if necessary, we can assume that
cici+2 6∈ E(Γ) for all i = 0, . . . , N − 2. It follows that the balls {B(pi, r

′/2) : i even} are disjoint,
as are the balls {B(pi, r

′/2) : i odd}. On the other hand we have that
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B(pi, r
′) ⊆ B

(
p, r′ ·

(
1 +

( 1
2 + 27)

√
2

√
5

))
⊆ B(p, 100r′),

for all i. Thus
⌈
N
2

⌉
π( r

′

2 )2 ≤ π(100r′)2. This gives that N ≤ 8 · 104 ≤ 105, as required.
The case when c is closer than 100r′ to the boundary of the unit square is analogous and we

leave it to the reader. �

3.2 The Obstruction Lemma

We introduce some terminology for sets of dangerous and risky points. Suppose that V ⊆ [0, 1]2

and m,T, r are such that (str-1)–(str-6) above hold. Dangerous points come in groups of points
of diameter < r/100 that are far apart. We formally define a dangerous cluster (with respect to
V,m, T, r) to be an inclusion-wise maximal subset of V with the property that diam(A) < r · 1010

and all elements of A are dangerous.
A set A ⊆ V is an obstruction (with respect to V,m, T, r) if it is either a dangerous cluster

or Γ+
i for some i ≥ 2. We call A an s-obstruction if |A| = s, and we call it an (≥ s)-obstruction

if |A| ≥ s. By (str-3)-(str-5), obstructions are pairwise separated by distance r · 1010. (One
consequence: a vertex in a good cell is adjacent in G to at most one obstruction.) A point v ∈ V
is crucial for A if

(cruc-1) A ⊆ B(v; r), and;

(cruc-2) The vertex v is safe: there is some cell c ∈ Γmax such that |B(v; r) ∩ c ∩ V | ≥ T .

We shall call the T vertices in (cruc-2) important for the crucial vertex v and important for the
obstruction A. Note that this crucial vertex could be in the obstruction, or it could be a nearby
safe point.

In this section, we prove an important, technical lemma concerning the neighborhood of an
obstruction. In particular, we show that whp every obstruction has a reasonable number of crucial
vertices, along with their corresponding important vertices. This condition is essential for Maker:
the obstructions are bottlenecks that require judicious play. These crucial and important vertices
provide Maker with the flexibility he needs to overcome the local sparsity of the obstruction. The
following is the main result of this section.

Lemma 3.4 (Obstruction Lemma) For η sufficiently small and T sufficiently large, the fol-
lowing holds. Let (mn)n be given by (12) and let Vn := Xn with Xn as in (4), let (rn)n be a
sequence of positive numbers such that

πnr2
n = lnn+ (2k − 3) ln lnn+O(1),

with k ≥ 2 fixed. Then the following hold whp with respect to Vn,mn, T, rn:

(i) For every 2 ≤ s < T , every s-obstruction has at least k + s− 2 crucial vertices;

(ii) Every (≥ T )-obstruction has at least k + T − 2 crucial vertices.

We prove the Obstruction Lemma via a series of intermediate, technical results. First, we prove
a general lemma about obstructions that are either near the boundary or have large diameter. The
next lemma may seem like a bit of overkill at first. Let us therefore point out that it will be used
in several places in the paper.

Lemma 3.5 Let k ≥ 2 and 0 < δ ≤ 1
100 and C,D ≥ 100 be arbitrary but fixed, and let rn be such

that

πnr2
n = (1 + o(1)) lnn.

Let Z denote the number of k-tuples (Xi1 , . . . , Xik) ∈ Pkn such that
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(i) |(B(Xij ; rn) \B(Xij ; δrn)) ∩ Pn| ≤ D for all 1 ≤ j ≤ k, and;

(ii) ‖Xij −Xij′‖ ≤ Crn for all 1 ≤ j < j′ ≤ k, and;

(iii) One of the following holds:

(a) There is a 1 ≤ j ≤ k such that Xij is within Cr of a corner of the unit square, or;

(b) There is a 1 ≤ j ≤ k such that Xij is within Cr but no closer than δr to the boundary
of the unit square, or;

(c) There are 1 ≤ j < j′ ≤ k such that ‖Xij −Xij′‖ ≥ δrn.

Then EZ = O (n−c) for some c = c(δ).

Proof: Let us set C ′ := 2kC. Let Zcnr denote the number k-tuples (u1, . . . , uk) ∈ Pn satisfying
the demands from the lemma and u1 is within C ′rn of a corner of the unit square; this includes
all k-tuples that satisfy condition (a). Let Zsde denote the number of such k-tuples satisfying
the demands from the lemma, and u1 is within C ′rn of the boundary of the unit square, but not
within C ′rn of a corner; this includes all k-tuples satisfying condition (b) but not condition (a).
Let Zmdl denote the number of such k-tuples with u1 more than C ′rn away from the boundary of
the unit square and satisfying condition (c) but not counted by Zcnr or Zsde.

Using Theorem 2.7 above, we find that

EZcnr = nk · Eh(Y1, . . . , Yk; {Y1, . . . , Yk} ∪ Pn),

where h is the indicator function of the event that Y1 is within C ′rn of a corner and (Y1, . . . , Yk)
satisfy the demands from the lemma; and Y1, . . . , Yk are chosen uniformly at random from the
unit square and are independent of each other and of Pn.

Observe that, for every u ∈ [0, 1]2 we have:

n · area((B(u; r) \B(u; δr)) ∩ [0, 1]2) ≥ µcnr := n · 1

4
π(1− δ2)r2

Let A ⊆ [0, 1]2 be the set of points of the unit square that are within C ′r of a corner, and denote
A(u) := B(u;Cr) ∩ [0, 1]2:

EZcnr ≤ nk
∫
A

∫
A(u1)

. . .

∫
A(u1)

P
(

Po
(
(B(u1; r) \B(u1; δr) ∩ [0, 1]2

)
≤ D

)
duk . . . du1

≤ nk · 4π(C ′r)2 ·
(
πC2r2

)k−1 · P(Po(µcnr) ≤ D)

= O
(

lnk n · exp[−µcnr ·H(D/µcnr)]
)

= O

(
lnk n · exp

[
−(

1

4
(1− δ2) + o(1)) · lnn

])
= O

(
n−

1
4 (1−δ2)+o(1)

)
.

(13)

Here we used Lemma 2.5 and that D/µcnr → 0 so that H(D/µcnr)→ 1.
Let us now consider Zmdl. For u, v ∈ R2, let us write

A(u, v) := ((B(u; r) \B(u; δr)) ∪ (B(v; r) \B(v; δr))).

If u, v ∈ [0, 1]2 are such that ‖u− v‖ ≥ δr then (6) gives

n · area(A(u, v)) ≥ µmdl := (π + δ − 2πδ2)nr2.

Using Theorem 2.7 again, we get

EZmdl ≤ nk ·
(
πC2r2

)k · P(Po(µmdl) ≤ D)

= O
(

lnk n · exp[−µmdl ·H(D/µmdl)]
)

= O
(
n−1−δ/π+2δ2+o(1)

)
.

(14)
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We now consider Zsde. Observe that if u, v ∈ [0, 1]2 are such that v is more than δr away from
one side of the unit square, and more than r from all other sides, then (8) gives that

n · area(A(u, v) ∩ [0, 1]2) ≥ n · area
(
[0, 1]2

⋂
B(v; r) \ (B(v; δr) ∪B(u; δr))

)
≥ (π2 + δ − 2πδ2)nr2.

Similarly, if u, v ∈ [0, 1]2 are such that both u, v are more than r away from all but one side of the
unit square and ‖u− v‖ ≥ δr then (6) gives

n · area([0, 1]2 ∩A(u, v)) ≥ n · 1
2 area(A(u, v))

≥ µsde :=
(
π+δ−2πδ2

2

)
nr2.

We see that
EZsde ≤ nk · 4 · C ′rn ·

(
πCr2

n

)k−1 · P(Po(µsde) ≤ D)

= O
(
n

1
2 ln

2k−1
2 n · exp[−µsde ·H (D/µsde)]

)
= O

(
n−δ/2π+δ2+o(1)

)
.

(15)

Since δ ≤ 1/100, we have δ/2π > δ2. Together with (13) and (14) this proves the bound on EZ
with c(δ) = δ/100π. �

Next, we prove a series of three technical lemmas about nearby pairs of points with restrictions
on their common neighbours. This argument culminates in Corollary 3.7 below, which illuminates
the structure of the shared neighborhood of such pairs. We start with two definitions, shown
visually in Figure 6. Given V ⊆ R2 and r > 0, we will say that the pair (u, v) ∈ V 2 is an
(a, b, c)-pair (with respect to r) if:

(pr-1) ‖u− v‖ < r/100;

(pr-2) B(u, r − ‖u− v‖) \B(u, ‖u− v‖) contains exactly a points of V \ {u, v};

(pr-3) (B(u, r) ∪B(v, r)) \B(u, r − ‖u− v‖) contains exactly b points of V \ {u, v} .

(pr-4) B(u, ‖u− v‖) contains exactly c points of V \ {u, v}.

We say that (u, v) is an (a, b,≥ c)-pair if it is an (a, b, c′)-pair for some c′ ≥ c.

u
v

a

b

c

Figure 6: Vertices u, v with ‖u − v‖ < r/100 form an (a, b, c)-pair when the vertex counts in the
three regions shown are a, b, and c, respectively.

Lemma 3.6 For k ≥ 2, let rn be such that

πnr2
n = lnn+ (2k − 3) ln lnn+O(1),

and let Pn as in (3). Let a, b, c ∈ N be arbitrary but fixed, and let R denote the number of

(a, b,≥ c)-pairs in Pn with respect to rn. Then ER = O
(

lna−(k+c) n
)

.
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Proof: We start by considering ER. Let Rcnr denote the number of (a, b,≥ c)-pairs (Xi, Xj) in
Pn for which Xi is within 100r of a corner of [0, 1]2; let Rsde denote the number of (a, b,≥ c)-pairs
(Xi, Xj) in P for which Xi is within 100r of the boundary of [0, 1]2, but not within 100r of a
corner, and let Rmdl denote the number of (a, b,≥ c)-pairs (Xi, Xj) for which Xi is more than
100r away from the boundary of [0, 1]2.

By Lemma 3.5 (with k = 2, δ = 1/100, D = max(a+ b, 100), C = 100) we have

ERcnr = O
(
n−Ω(1)

)
. (16)

For 0 < z < r/100 let us write:

µ1(z) := n · area(B(u; r − z) \B(u; z)),
µ2(z) := n · area((B(u; r) ∪B(v; r)) \B(u; r − z)),
µ3(z) := n · area(B(u; z)),

where u, v ∈ R2 are two points with ‖u− v‖ = z. Observe that

µ1(z) + µ2(z) + µ3(z) = n · area(B(u, r) ∪B(v, r)) ≥ n · (πr2 + rz),

using Lemma 2.14. If z ≤ r/100 then we also have

µ1(z) + µ2(z) ≥ n · (πr2 + rz − πz2) ≥ n · (πr2 +
1

2
rz). (17)

Let us now consider Rmdl. Using Theorem 2.7 and Lemma 2.6 we find

ERmdl =
n2

2

∫
[100r,1−100r]2

∫
B(v;r/100)

µ1(‖u− v‖)ae−µ1(‖u−v‖)

a!
· µ2(‖u− v‖)be−µ2(‖u−v‖)

b!
·

µ3(‖u− v‖)cdudv

=
n2

2
(1− 200r)2

∫ r/100

0

µ1(z)ae−µ1(z)

a!
· µ2(z)be−µ2(z)

b!
· µ3(z)c · 2πzdz

≤ n2

∫ r/100

0

(
πnr2

)a
(4πnrz)

b (
πnz2

)c
e−πnr

2−nrz2πzdz

= O

(
n2+c · lna n · (nr)b

∫ r/100

0

e− lnn−(2k−3) ln lnn−nrzzb+2c+1dz

)

= O

(
n1+c · (lnn)

a−(2k−3) · (nr)b
∫ r/100

0

e−nrzzb+2c+1dz

)
= O

(
n1+c · (lnn)

a−(2k−3) · (nr)−(2+2c)
)

= O
(

(lnn)
a−(2k−3) · (nr2)−(1+c)

)
= O

(
(lnn)

a+2−2k−c
)

= O
(

(lnn)a−(k+c)
)
.

(18)
Here we have used a switch to polar coordinates to get the second line; we used (17) to get the
third line; the change of variables y = nrz to get the sixth line; and in the last line we use k ≥ 2.

Now we turn attention to Rsde. Let R′sde denote the number of (a, b, c)-pairs (u, v) with u at
distance at least r/100 and at most 100r from the boundary. Then, again by Lemma 3.5:

ER′sde = O
(
n−O(1)

)
. (19)
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On the other hand, by Theorem 2.7 and a switch to polar coordinates (and where z = ||u − v||
and w is the distance of the nearest of u, v to the boundary):

E (Rsde −R′sde) ≤ 8n2

∫ r/100

0

∫ r/100

0

(
πnr2

)a
(4πnrz)

b (
πnz2

)c
e−

π
2 nr

2− 1
2nrz−nrw+πz2πzdzdw

≤ 8n2

∫ r/100

0

∫ r/100

0

(
πnr2

)a
(4πnrz)

b (
πnz2

)c
e−

π
2 nr

2− 1
4nrz−nrwπzdzdw

= O

(
n2+c · lna n · (nr)b

∫ r/100

0

∫ r/100

0

zb+2c+1e−
π
2 nr

2− 1
2nrz−nrwdzdw

)

= O

(
n

3
2 +c · (lnn)

a−(2k−3)/2 · (nr)b
∫ r/100

0

∫ r/100

0

zb+2c+1e−
1
2nrz−nrwdzdw

)
= O

(
n

3
2 +c · (lnn)

a−(2k−3)/2 · (nr)b−(b+2c+3)
)

= O
(

(lnn)
a−(2k−3)/2 · (nr2)−( 3

2 +c)
)

= O
(

(lnn)
a−(2k−3)/2− 3

2−c
)

= O
(

(lnn)
a−(k+c)

)
.

Combining this with (16), (18) and (19) proves the lemma. �

Clearly the definition of (a, b,≥ c)-pairs can reformulated in terms of a function hn as in
Lemma 2.8. As an immediate corollary of Lemmas 3.6 and 2.8 we now find:

Corollary 3.7 For k ≥ 2, let (rn)n be such that

πnr2
n = lnn+ (2k − 3) ln lnn+O(1),

and let Xn be as in (4). Let a, b, c ∈ N be fixed such that a ≤ c + k − 1. W.h.p., there are no
(a, b,≥ c)-pairs for Xn, rn.

Finally, we are ready to prove the Obstruction Lemma.

Proof of Lemma 3.4: Let η > 0 be small and T > 0 be large, to be determined in the proof. All
the probability theory needed for the current proof is essentially done. For the remainder of the
proof we can assume that Xn = {X1, . . . , Xn} is an arbitrary set of points in the unit square for
which the conclusions of Lemma 3.1 with ε := 1/1010 and K = 1010 hold, (str-1)–(str-5) hold
and the conclusions of Corollary 3.7 hold for all a, b, c ≤ 1000 ·D, where

D := (T − 1) ·

π(r +

√
2

m

)2

/

(
1

m

)2
 . (20)

(There are at most
⌊
π(r +

√
2/m)2/(1/m)2

⌋
cells that intersect a disk of radius r, so D is an

upper bound on the degree of a dangerous vertex.) That is, there are no (a, b,≥ c)-pairs with
b, c ≤ 1000 ·D and a ≤ k + c− 1. (Observe that D is bounded because r = O(

√
lnn/n) and m is

defined as in (12).)
Let A be an arbitrary obstruction with 2 ≤ s := |A| < T . Then A is necessarily a dangerous

cluster. Pick u, v ∈ A with diam(A) = ‖u− v‖ =: z. Observe that (B(u, r)∪B(v, r)) \B(u, r− z)
cannot contain more than 2D points, since this would imply either d(u) ≥ D or d(v) ≥ D and
this would in turn imply that one of u, v would be safe. Thus B(u, r − z) \ B(u, z) contains at
least m := k + s − 2 points Xi1 , . . . , Xim . (Otherwise (u, v) would be a (a, b, c)-pair for some
s− 2 ≤ c ≤ D, a ≤ c+ k − 1 and b ≤ 2D, contradicting our assumptions.) Let us emphasize that
b is big and c is small.

Observe that Xi1 , . . . , Xim are within r of every element of A. Also observe that Xi1 , . . . , Xim

must be either safe or risky, because, by definition of a dangerous cluster, A is an inclusion-
wise maximal subset of Xn with the property that diam(A) < r · 1010 and all elements of A are
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dangerous. Thus each Xij has at least T neighbours in some good cell cj . By (str-5) we must
have c1, . . . , cm ∈ Γmax so that Xi1 , . . . , Xim are indeed crucial.

Now suppose that |A| ≥ T . If A is a dangerous cluster then we proceed as before. Let us thus
suppose that A = Γ+

i for some i ≥ 2. Let

dV \A(v) := |N(v) \A|,

and let W denote the set of those Xi that are crucial for A. If |W | ≥ k then we are done. Let us
thus assume that |W | < k. Let us observe:

Any v ∈ A \W has dV \A(v) ≤ D. (21)

(This is because if dV \A(v) > D then v is adjacent to at least T vertices in some cell c that does
not belong to Γi. This cell c is therefore certainly good. By (str-4), any good cell that is within
r · 1010 of A, but not part of Γi, must belong to Γmax.)

In that case |A \W | > T − k ≥ k (T being sufficiently large). Pick an arbitrary u ∈ A \W and
set

A′ := B(u, r/100) ∩ V .

Let v be a point of A′ \W of maximum distance to u, and write z := ‖u − v‖. Observe that
(B(u, r) ∪ B(v, r)) \ B(u, r − z) cannot contain more than 3D points, since this would imply
either dV \A(u)>D or dV \A(v)>D and this in turn would imply that one of u, v would be crucial.
Thus B(u, r − z) \ B(u, z) contains at least k points Xi1 , . . . , Xik . (Otherwise (u, v) would be an
(a, b,≥ 0)-pair for some a ≤ k − 1, b ≤ 1000 ·D, contradicting our assumptions.) We claim these
points must be crucial. Aiming for a contradiction, suppose Xij 6∈ W for 1 ≤ j ≤ k. What is
more, by choice of A′ and v, we must have ‖Xij − u‖ > r/100. Let us first suppose that u is at
least 2r away from the boundary of the unit square. Using the bound (6) and Lemma 3.2, we see
that the total area of the cells that fall inside O := (B(Xij ; r) ∪B(u; r)) \B(u; r/100) is at least

r2
(
π + 1

100

)
− πr2( 1

100 )2 − Cη
(

lnn
n

)
≥ (1 + 1

1000 )πr2 − Cη
(

lnn
n

)
≥ (1 + 10−5) lnn

n ,

provided we have chosen η small enough. Similarly, if u is within 2r of one of the sides of the
unit square and at least 2r from all other sides then the total area of the cells inside O is at least
1
2 area(O) − Cη

(
lnn
n

)
≥ (1 + 10−5) lnn/2n; and if u is within 2r of two of the sides of the unit

square then the total area of the cells inside O is at least 1
4 area(O)−Cη

(
lnn
n

)
≥ (1 + 10−5) lnn/4n.

(Provided η was chosen small enough in both cases). Hence, by the conclusion of Lemma 3.1, at
least one of these cells in O must be good. Since such a good cell is not part of the component of
Γ that generates A, and is closer than r · 1010 to A, it must belong to Γmax. Hence either Xij or
u is crucial. Since we chose u ∈ A \W we must have Xij ∈W , a contradiction.

This proves that all of Xi1 , . . . , Xik are crucial, completing the proof. �

4 The connectivity game

To improve the presentation, we separate the proof into a deterministic part and a probabilistic
part. The deterministic part is the following lemma:

Lemma 4.1 Suppose that V ⊆ [0, 1]2,m ∈ N, T > 100, r > 0 and r ≤ ρ ≤ 2r are such that

(i) (str-1)–(str-5) hold with respect to r, and;

(ii) Every obstruction with respect to ρ has at least 2 crucial vertices.

Then Maker wins the connectivity game on G(V ; ρ).
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Proof: Observe that Γ = Γ(V ;m,T, ρ) also satisfies (str-1)–(str-5) if we modify them very
slightly by replacing the number r · 1010 in (str-3)–(str-5) by r · 1010/2. All mentions of safe,
dangerous, obstructions etc. will be with respect to ρ in the rest of the proof.

From Theorem 2.1, we know that Maker can win the game if G(V ; ρ) contains two edge disjoint
spanning trees.

In every cell c ∈ Γmax there are at least T vertices and they form a clique, so we can find two
edge disjoint trees on them. Since Γmax is connected, there is a pair of edges between every two
adjacent cells, and they complete two edge disjoint trees on all vertices in cells of Γmax. Every
vertex that is safe but not in any obstruction has more than T neighbours among the vertices in
cells of Γmax, so we can extend our pair of trees to such vertices as well. Finally, any obstruction
has at least two crucial vertices, so the vertices in the obstruction can be connected to one of the
trees via one crucial vertex, and to the other one via another crucial vertex. This way, we obtain
a pair of edge disjoint spanning trees in our graph. �

Proof of Theorem 1.1: Observe that if there is a vertex of degree at most one then Breaker can
isolate this vertex and win the connectivity game (recall that Breaker has the first move). This
implies:

P (ρn(Maker wins the connectivity game) ≥ ρn(min. deg. ≥ 2)) = 1. (22)

It remains to see that ρn(Maker wins the connectivity game) ≤ ρn(min. deg. ≥ 2) also holds whp.
Let K > 0 be a (large) constant, and define:

rL(n) :=

(
lnn+ ln lnn−K

πn

) 1
2

, rU (n) :=

(
lnn+ ln lnn+K

πn

) 1
2

. (23)

By Theorem 2.10, there is a K = K(ε) such that

P
(
δ(G(n, rL)) < 2, δ(G(n, rU )) ≥ 2

)
≥ P

(
δ(G(n, rL)) < 2

)
− P

(
δ(G(n, rU )) < 2

)
= 1− e−(eK+

√
πeK) − (1− e−(e−K+

√
πe−K)) + o(1)

= e−(e−K+
√
πe−K) − e−(eK+

√
πeK) + o(1).

Hence, for arbitrary ε > 0, we can choose K such that

P
(
δ(G(n, rL)) < 2, δ(G(n, rU )) ≥ 2

)
≥ 1− ε+ o(1).

This shows that

P
(
rL(n) ≤ ρn(min. deg. ≥ 2) ≤ rU (n)

)
≥ 1− ε+ o(1). (24)

Now notice that, by Lemma 3.3 the properties (str-1)–(str-5) are satisfied with probability
1− o(1) by V = Xn,m = mn, T = 10, r = rL(n) with Xn as given by (4), mn as given by (12) and
rL as above. By Lemma 3.4, with probability 1 − o(1), V = Xn,m = mn, T = 10, r = rL(n) are
such that every (≥ 2)-obstruction with respect to rL has at least two crucial vertices. This is then
clearly also true with respect to any ρ ≥ rL. Since a 1-obstruction is just a vertex of low degree,
by definition every 1-obstruction has at least two crucial vertices for every ρ ≥ ρn(min. deg. ≥ 2).
Also observe that rL(n) ≤ 2rU (n). Hence, by Lemma 4.1 and (22):

P (ρn(Maker wins the connectivity game) = ρn(min. deg. ≥ 2)) ≥ 1− ε− o(1).

Sending ε ↓ 0 gives the theorem. �
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5 The Hamilton cycle game

In this section, we prove Theorem 1.5. First, we prove that Maker can win two different path-
making games. These games will be useful in constructing local paths that will be stitched together
to create the Hamilton cycle. Next, we introduce blob cycles and prove some results about them.
In particular, we give some conditions under which blob cycles can be merged into larger blob
cycles. With these intermediate results in hand, we then characterize the hitting radius for the
Hamilton cycle game.

5.1 Two helpful path games

We begin by considering two auxiliary path games. Maker will use these local path games to
create parts of his Hamilton cycle. Both games are played on a clique in which Maker tries to
make a long path. In the first game, Maker tries to make a path through all but one vertex.

Lemma 5.1 Let s ≥ 3 be arbitrary. Maker can make a path of length s− 2 in Ks.

Proof: The cases s = 3, 4 are straight-forward and left to the reader. Assume that s ≥ 5 and
the statement is true for s − 1. Our strategy for Maker is as follows. He chooses an arbitrary
vertex u. If Breaker picks an edge incident with u then Maker responds by taking another edge
incident with u. (If there is no such free edge, he claims an arbitrary free edge and forgets about
it in the remainder of the game.) If Breaker claims an edge between two vertices of Ks \ u then
Maker responds by picking another edge between two vertices of Ks \ u according to the winning
strategy on Ks−1.

We now argue that this is a winning strategy. Let M denote Maker’s graph at the end of
the game. If M contains a path spanning Ks \ u we are done. Otherwise, M contains a path
P = v1, . . . , vs−2 that contains all but one vertex w of Ks \ u. Observe that u is adjacent to at
least b s−1

2 c vertices of Ks \u. If u is adjacent to v1 or to vs−2 then we are done, so we can assume
this is not the case.

If u is not adjacent to w, then it has at least b s−1
2 c > d

s−4
2 e neighbours amongst the s − 4

interior vertices of P . But then u is adjacent to two consecutive vertices vi, vi+1 of P and hence
P ′ := v1, . . . , vi, u, vi+1, . . . , vs−2 is a path of the required type. Hence we can assume that u is
adjacent to w. If u is also adjacent to vs−3 then P ′ := v1, . . . , vs−3, u, w is path of the required
type. Hence we can assume this is not the case. Similarly we can assume u is not adjacent to v2.
If s = 5 or s = 6 then this in fact implies that u is not adjacent to any vertex of P , so that w is
the only neighbour of u. But this contradicts the fact that u has at least b s−1

2 c ≥ 2 neighbours.
Considering s > 6, vertex u has at least b s−1

2 c − 1 > d s−6
2 e neighbours amongst v3, . . . , vs−4.

Again it follows that u is adjacent to two consecutive vertices of P , so that we once again find a
path of the required type. This concludes the proof. �

Our second auxiliary game is the (a, b) path game. It is played on the graph Ga,b which has a
vertex set of size a + b, partitioned into two sets A,B with |A| = a, |B| = b, where B induces a
stable set and all edges not between two vertices of B are present. (So in particular, A is a clique
and uv ∈ E(Ga,b) for all u ∈ A, v ∈ B.)

Maker’s objective is to create either a single path between two vertices of B that contains all
vertices of A (and possibly some other vertices from B), or two vertex disjoint paths between
vertices of B that cover all vertices of A.

Lemma 5.2 The (a, b) path game is a win for Maker if one of the following conditions is met

(i) b ≥ 6, or;

(ii) a = 3 and b ≥ 5, or;

(iii) a ∈ {1, 2} and b ≥ 4.
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Proof: We prove each of these three winning conditions in turn.

Proof of part (i): We can assume that a ≥ 4, because otherwise one of the other cases will
apply. If b ≥ 6, a ≥ 4 then Maker can play as follows.

• Whenever Breaker plays an edge between two vertices of A then Maker responds by claiming
another edge inside A according to the strategy from Lemma 5.1, guaranteeing a path in A
that contains all but one vertex of A.

• If Breaker claims an edge between u ∈ A and v ∈ B then Maker claims an arbitrary
unclaimed edge connecting u to a vertex in B.

If this is not possible then Maker claims an arbitrary edge.
Consider the graph at the game’s end. Every vertex of A will have at least three neighbours in

B. Maker has also claimed a path P in A that contains |A|−1 vertices. Let a1, a2 be the endpoints
of P , and let a3 be the sole vertex not on P . Since a1, a2 both have at least three neighbours in B,
we can extend P to a path P ′ between two vertices b1, b2 ∈ B. If a3 has two neighbours distinct
from b1, b2 then we have our two vertex disjoint paths between vertices of B covering A.

Otherwise a3 is adjacent to b1, b2 and a third vertex b3 ∈ B. But then we can extend P ′ by
going to a3 and then to b3 to get a single path between two B-vertices that covers A.

Proof of part (ii): We now consider the case when a = 3, b ≥ 5. Say A = {a1, a2, a3}, B =
{b1, . . . , b`} with ` ≥ 5. The strategy for Maker is as follows. For each i = 1, 2, 3 he pairs the
edges aib1, aib2 (meaning that if Breaker claims one of them, then Maker responds by claiming
the other) and he pairs the edges aib3, aib4. This will make sure every vertex of A has at least
two neighbours in B. He also pairs a1b5, a2b5. This will make sure that one of a1, a2 has at least
three neighbours in B. Furthermore, he pairs a1a2, a1a3 and a2a3, a3b5. This ensures Maker will
either claim two edges in A, or he will have one edge in A and a3 will have three neighbours in B.
This concludes the description of Maker’s strategy.

To see that it is a winning strategy for Maker, let us assume first that Maker’s graph has two
edges in A. That is, he has claimed a path P through all three vertices of A. Since both endpoints
of P have two neighbours in B, it extends to a path P ′ between two points of B.

Suppose then that Maker has claimed only a single edge of A, but every vertex of A is adjacent
to three vertices of B. In this case we can reason as in the proof of part (i) to see that Maker has
either a single, or two vertex disjoint paths between vertices of B that cover all vertices of A.

Proof of part (iii): If a = 1 and b ≥ 4 then it is easy to see that Maker can claim at least two
edges incident with the unique vertex of A, which gives a path of the required type.

Let us thus assume that A = {a1, a2} and B = {b1, . . . , b`} with ` ≥ 4. The winning strategy
for Maker depends on Breaker’s first move.

Case 1: Breaker did not claim a1a2 in his first move. Without loss of generality, Breaker
claimed a1b1. Maker responds by claiming a1a2, and for the remainder of the game he pairs
a1b3, a1b4 and a2b1, a2b2. This way, he will clearly end up with a single path between two vertices
of B that covers A.

Case 2: Breaker claimed the edge a1a2 in his first move. In response, Maker claims a1b1. For
the rest of the game, Maker plays as follows. Let eB be the first edge incident with A that Breaker
claims after this point. We distinguish three subcases.

(2-a) If eB = a1bi for some i ≥ 1, then Maker responds by claiming a2bi. Without loss of
generality i = 2. For the rest of the game, Maker now pairs a1b3, a1b4 and a2b3, a2b4. This way,
both a1 and a2 will have at least two neighbours in B, and a2 has at least one neighbour not
adjacent to a1. But then there is either a single path between B-vertices covering a1, a2 or there
are two vertex disjoint paths between B vertices, one which covers a1 and one which covers a2..

(2-b) If eB = a2b1, then Maker claims a2b2 in response and for the remainder of the game he
pairs a1b3, a1b4 and a2b3, a2b4. Again a1 and a2 will have at least two neighbours in B, and a2

will have at least one neighbour not adjacent to a1. As in case (2-a), we then have the required
path(s).
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(2-c) If eB = a2bi for i ≥ 2, then without loss of generality we can assume i = 2. Maker
responds by claiming a2b3; and for the remainder of the game he pairs a1b2, a1b4 and a2b1, a2b4.
Again a1 and a2 will have at least two neighbours in B, and a2 will have at least one neighbour
not adjacent to a1. Again we can find the required path(s). �

5.2 Blob Cycles

In this section, we prove some results about blob cycles. An s-blob cycle C is the union of a cycle
with a clique on s consecutive vertices of it; this s-clique is called the blob of C. See Figure 7 for a
depiction. When C is an s-blob cycle with |V (C)| = m, we typically write V (C) = {u0, . . . , um−1}
where uiui+1 is an edge for all i, modulo m, and u0, . . . , us−1 are the blob vertices. An s-blob
Hamilton cycle is the union of a Hamilton cycle with a clique on s consecutive vertices of it.

Blob cycles will be the building blocks of our Hamilton cycle in G(n, rn). In the next section,
we will construct our Hamilton cycle by gluing together many blob cycles in a good cell. Most of
these blob cycles are used to connect to a sparser part of the graph. We then use a much larger
blob cycle to conglomerate the blob cycles in a good cell into one blob cycle. The lemmas below
concern adding vertices and/or edges to a blob cycle, and then finally combining many blob cycles
into one.

Figure 7: An 8-blob cycle on 18 vertices.

Lemma 5.3 For k ≥ 4, there is an N = N(k) such that Maker can make a k-blob Hamilton cycle
in an s-clique for s > N .

Proof: By Theorem 2.3 there is an s0 = s0(k) such that Maker can make a k-clique on Ks for all
s ≥ s0. Now let s1 = s1(k) be such that Maker can win the biased (1 : b)-Hamilton cycle game on
Ks for all s ≥ s1, where b :=

(
s0
2

)
. (Such an s1 exists by Theorem 2.4.)

We set N := max
(
2
(
s0
2

)
+ 1, s1

)
+ k.

For s ≥ N Maker can now play as follows. First he makes a k-clique on the first s0 vertices
of Ks by playing according to the strategy given by Theorem 2.3. (If Breaker plays an edge not
between two vertices among the first s0 then Maker pretends Breaker played an arbitrary free
edge between two of the first s0 vertices and responds to that.)

Once Maker has succeeded in making a k-clique C, no more than
(
s0
2

)
edges have been played

so far. He now continues playing as follows:

• If Breaker claims an edge between two vertices of V \ C then Maker responds according to
the strategy given by Theorem 2.4 that will ensure him a spanning cycle on V \ C;

• If Breaker claims an edge between u ∈ V \ C and v ∈ C then Maker claims an unclaimed
edge between u and another vertex of C.

At the end of the game Maker’s graph will contain a spanning cycle C̃ on V \ C. Note that if
a vertex u ∈ V \ C was not incident with any edge claimed by Breaker at the time when Maker
finished claiming C then, by the end of the game, u will be incident in Maker’s graph with at
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least bk/2c ≥ 2 vertices of C. By choice of N , more than half of all the vertices of V \ C were
not incident with any of Breaker’s edges just after Maker finished building his k-clique C. Hence
there will be two vertices u, v that are consecutive on C̃ and two vertices x 6= y ∈ C such that
Maker claimed the edges ux, vy. This gives the required k-blob Hamilton cycle. �

Lemma 5.4 For every s ≥ 4 the following holds. Let G be a graph, C ⊆ G an s-blob cycle, and
u, v 6∈ V (C) with uv ∈ E(G) such that u, v each have at least d|V (C)|/2e neighbours on C. Then
there is an s′-blob cycle C ′ with s′ ≥ s− 2 and V (C ′) = {u, v} ∪ V (C) where uv ∈ E(C ′) and the
blob of C ′ is contained in the blob of C.

Proof: In this proof (and the ones that follow), we continue to use the convention that V (C) =
{u0, . . . , um−1} where uiui+1 is an edge for all i, modulo m, and u0, . . . , us−1 are the blob vertices.

Let us first assume that m is odd. In this case, since u, v each have at least d|V (C)|/2e =
dm/2e neighbours on C, there are two consecutive vertices ui, ui+1 such that uui, vui+1 ∈ E(G).
If s − 1 ≤ i ≤ m − 1, then u0, . . . , ui, u, v, ui+1, . . . , um−1 is an s-blob cycle. If i = 0 then
u0, u, v, u1, . . . , um−1 is an (s − 1)-blob cycle; the case i = s − 2 is similar. If 1 ≤ i ≤ s − 3, we
can relabel the blob vertices u1, u2, . . . , us−3 so that i = 1. Then u0, u1, u, v, u2, . . . , um−1 is an
(s− 2)-blob cycle. In all cases, the new blob is a subset of the old blob.

Let us then assume that m is even. If there are two consecutive vertices ui, ui+1 such that
uui, vui+1 ∈ E(G), then we can proceed as before. If there no two such consecutive vertices
then either u, v are both adjacent to each of u0, u2, . . . , um−2 or both are adjacent to each of
u1, u3, . . . , um−1. In both cases we can easily relabel the vertices u1, . . . , us−2 of the blob in such
a way that uui, vui+1 ∈ E(G) for some i, and we are again done by a previous argument. �

Lemma 5.5 For every ` there is an s = s(`) such that the following holds. If G is a graph, C ⊆ G
is an s-blob cycle, and v 6∈ V (C) has at least |V (C)|/2 − ` neighbours on C, then there exists an
s′-blob cycle C ′ with s′ ≥ s − 2 and V (C ′) = {v} ∪ V (C) and the blob of C ′ is contained in the
blob of C.

Proof: Let us set s := 100 · (` + 1), and write V (C) = {u0, . . . , um−1} and u0, . . . , us−1 are the
vertices of an s-clique. First, suppose that v is adjacent to at least two vertices of u1, . . . , us−2.
By reordering these vertices, vu1, vu2 ∈ E(G). Set C ′ = u0, u1, v, u2, . . . , um−1. Then C ′ is clearly
an (s− 2)-blob cycle whose blob is inside the blob of C.

Next, suppose then that v has at most one neighbour among u1, . . . , us−2. Then v must have
bm/2c − (`+ 1) neighbours on the path P = us−1, . . . , um−1, u0. Observe that the biggest subset
of V (P ) that does not contain two consecutive vertices has cardinality

d|V (P )|/2e = d(m− s+ 2)/2e ≤ m/2− 50(`+ 1) + 2 < bm/2c − (`+ 1).

Therefore v is adjacent to two consecutive vertices on the path P , say vui, vui+1 ∈ E(G). This
time C ′ = u0, . . . , ui, v, ui+1, . . . , um−1 is clearly an s-blob cycle whose blob is identical to the blob
of C. �

Lemma 5.6 For every ` there is an s = s(`) such that the following holds. Suppose that G is a
graph, C1, C2 ⊆ G are vertex disjoint, C1 is an s-blob cycle, C2 is a 5-blob cycle, and every vertex
of the blob of C2 has at least b|V (C1)|/2c− ` neighbours on C1. Then there exists an s′-blob cycle
C where s′ ≥ s− 2 with V (C) = V (C1) ∪ V (C2) and the blob of C is contained in the blob of C1.

Proof: Let us set s := 100 · (` + 1), and write V (C1) = {u0, . . . , um−1} where u0, . . . , us−1 are
the blob vertices. Similarly V (C2) = {v0, . . . , vn−1} where v0, . . . , v4 form a clique and v0, . . . , v4

each have at least bm/2c − ` neighbours on C1.
First suppose that v1u0, v2u1 ∈ E(G). The graph C ′ = u0, v1, v0, vn−1, . . . , v2, u1, . . . , um−1 is

an (s− 1)-blob cycle of the required type. Next, when v1u1, v2u2 ∈ E(G) the graph C ′ = u0, u1,
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v1, v0, vn−1, . . . , v2, u2, . . . , um−1 is an (s − 2)-blob cycle. More generally, if any two among
v1, . . . , v3 have distinct neighbours among u0, . . . , us−1 then we can just re-order the vertices of
C1 and C2 and apply the above argument to get an (s− 1)-blob cycle or an (s− 2)-blob cycle.

If any two of v1, v2, v3 both have at least two neighbours among u1, . . . , us−2 then we are done
by the previous argument. So assume this is not the case. Relabeling C2 if necessary, v1, v2 each
have at most one neighbour among u1, . . . , us−2. Then v1, v2 each have bm/2c − `− 1 neighbours
on P = us−1, . . . , um−1, u0. In turn, there are at least bm/2c − ` − 1 points of P adjacent to a
neighbour of v1. Since (bm/2c − ` − 1) + (bm/2c − ` − 1) > m − s + 1 = |V (P )| there exists an
s − 1 ≤ i ≤ m − 1 such that v1ui, v2ui+1 ∈ E(G). Clearly C ′ = u0, . . . , ui, v1, v0, vn−1, . . . , v2,
ui+1, . . . , un−1 is an s-blob cycle of the required type. �

Our final conglomeration lemma is the crucial tool for merging an ensemble of blob cycles,
along with some additional edges and vertices, into a single spanning cycle. Ultimately, we will
use this lemma to handle every good cell in our dissection. The additional vertices and edges will
be chosen so that they allow us (1) to combine spanning cycles in neighboring cells and (2) to add
vertices in bad cells to our spanning cycle. See Section 5.3 for details.

Lemma 5.7 For every `1, `2 there exists an s = s(`1, `2) such that the following holds. Suppose
G is a graph and C,C1, . . . , C`1 ⊆ G and u1, . . . , u`1 , v1, . . . , v`1 , w1, . . . , w`2 ∈ V (G) are such that:

• The vertices u1, . . . , u`1 , v1, . . . , v`1 , w1, . . . , w`2 are distinct;

• uivi ∈ E(G) for i = 1, . . . , `1;

• C1, . . . , C`1 are 10-blob cycles and C is an s-blob cycle;

• C,C1, . . . , C`1 are vertex disjoint and do not contain any of the ui’s, vi’s or wi’s;

• ui, vi both have at least b|V (Ci)|/2c neighbours on Ci for i = 1, . . . , `1;

• Every vertex of {w1, . . . , w`2} has at least b|V (C)|/2c neighbours on C;

• For every 1 ≤ i ≤ `1, every vertex of the blob of Ci has at least b|V (C)|/2c neighbours on
C.

Then there is an (s− 2`1 − 2`2)-blob cycle C ′ such that

• V (C ′) = V (C) ∪ V (C1) ∪ · · · ∪ V (C`1) ∪ {u1, . . . , u`1 , v1, . . . , v`1 , w1, . . . , w`2}, and;

• u1v1, . . . , u`1v`1 ∈ E(C ′), and;

• The blob of C ′ is contained in the blob of C.

Proof: We prove the statement for s := max{s1(`1), s2(`2)}+2`1 +2`2 where s1(·) is the function
provided by Lemma 5.5 and s2(·) is as provided by Lemma 5.6.

First, we apply Lemma 5.4 to each triple ui, vi, Ci. For 1 ≤ i ≤ `1, this yields an 8-blob cycle
C ′i containing the edge uivi and such that each vertex of the blob of C ′i has at least b|V (C)|/2c
neighbours on C. Also, the edge uivi will not be part of the assumed 8-blob of C ′i.

Next, we join all of the wi’s with the s-blob cycle C. We apply Lemma 5.5 repeatedly, with
` = 2`2. This value of ` lets us pick distinct uj , uj+1 for each wi, one after another. We then add
all the wi to C in one fell swoop to get the (s− 2`1)-blob cycle C ′ that contains all of the wi’s.

Finally, we merge C ′ with the C ′1, . . . , C
′
`1

in a similar manner. We apply Lemma 5.6 repeatedly,
with ` = 2`1 + 3`2. This choice of ` allows us to pick distinct uj , uj+1 for each C ′i. We then merge
C ′1, . . . , C`1 with C in one fell swoop to get the desired (s− 2`1 − 2`2)-blob cycle C ′′. �
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5.3 Proof of the Hamilton cycle game

We again divide the remainder of the proof of Theorem 1.5 into a deterministic and a probabilistic
part. The following lemma is the deterministic part:

Lemma 5.8 There exists a value of T such that the following holds. If V ⊆ [0, 1]2,m ∈ N, r > 0
and r ≤ ρ ≤ 2r are such that

(i) (str-1)–(str-6) hold with respect to r, and;

(ii) For all 2 ≤ s ≤ T , every s-obstruction with respect to r has at least s + 2 crucial vertices,
and;

(iii) Every (≥ T )-obstruction with respect to r has at least six crucial vertices, and;

(iv) G(V, ρ) has minimum degree at least four.

Then Maker wins the Hamilton cycle game on G(V ; ρ).

Before launching into the proof, we give a high-level overview of the argument. We use the
spanning tree T of Γmax from Lemma 2.12 as the skeleton of the Hamilton cycle. Maker plays
many local mini-games, and then stitches together the local structures to create the Hamilton
cycle. Figure 8 shows a simplified version of the mini-games in a good cell. We mark a large,
but finite, number of vertices in good cells. The majority of the marked vertices are important
vertices in good cells that are associated to critical vertices for bad cells. Some marked vertices
are reserved for joining the blob cycles in good cells that are adjacent in T . Maker plays the
game so that (1) in each cell, he can create a family of blob cycles spanning the unmarked vertices
(Lemma 5.3, multiple times), (2) there are two independent edges between good cells that are
adjacent in T , and (3) he can construct a family of paths through the bad cells. In particular,
every vertex in a bad cell will be on exactly one path between a pair of marked vertices that are
in the same good cell. At this point, we place the marked vertices into two categories. Pairs of
marked vertices that are endpoints of a special path are temporarily considered marked edges uivi.
Note that the path games create one or two paths through each obstruction. The unused marked
vertices wj are considered as marked singletons.

obstruction safe clusterobstruction safe clusterobstruction safe cluster obstruction safe clusterobstruction safe clusterobstruction safe cluster

(a) (b)

Figure 8: A schematic for the mini-games for Maker’s Hamilton strategy in a good cell. (a) The
marked vertices (top row) are designated to make paths through nearby obstructions and safe
clusters, and to connect to good cells that are adjacent in the tree T . The unmarked vertices
(bottom two rows) are partitioned into subsets for blob cycle creations. Maker claims half the
edges from each vertex to each lower level. (b) After all edges have been claimed, Maker has paths
through obstructions and two independent edges to nearby good cells, and some unused marked
vertices, and a soup of blob cycles. The blob cycles absorb the paths and unused vertices (using
the many edges down to the lower levels in the good cell), culminating in the Hamilton cycle.
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We construct our Hamilton cycle as follows. For each good cell, we conglomerate its vertices via
Lemma 5.7 using the family of blob cycles and the marked edges uivi and marked singletons wj .
This creates a cycle that spans all unmarked vertices, all marked edges and all marked singletons.
Finally, we replace each marked edge with the graph structure it represents. This adds all of the
bad vertices to our cycle, and connects every cell in Γmax. The result is the desired Hamilton
cycle. With this outline in mind, we proceed with the proof.

Proof: Let T be a (large but finite) number, to be made explicit later on in the proof. For each
good cell of our dissection, we will identify at most T vertices to help us with nearby vertices in bad
cells. Collectively, we will refer these vertices as marked. The remaining vertices are unmarked,
and these unmarked vertices will be used to create blob cycles within the good cell.

As in the proof of Lemma 4.1, observe that Γ(V ;m,T, ρ) satisfies (str-1)–(str-6) if we mod-
ify (str-3)–(str-5) very slightly by replacing the number r · 1010 by r · 1010/2. Also observe that
items (ii) and (iii) clearly also hold with respect to ρ. Again all mention of safe, dangerous,
obstructions and so on will be with respect to ρ from now on.

Before the game starts, Maker identifies many local games that he will play. These games fall
into four categories, according to the types of vertices involved. We have games between good
vertices in neighboring good cells; games for bad vertices and nearby marked good vertices; games
for unmarked vertices within a good cell; and games between marked and unmarked vertices within
a good cell. We now describe these games in detail.

Lemma 2.12 implies that Γmax has a spanning tree T of maximum degree at most five. Before
the game, we fix such a spanning tree. Maker will use this spanning tree as the skeleton for the
Hamilton cycle. For each edge cc′ in the spanning tree, we identify four vertices in each cell that
are important for the edge cc′ and are considered marked. Since T has maximum degree 5, we
mark at most 20 vertices in each good cell. With T being large, we can and do take all these
marked vertices distinct.

Maker keeps track of each obstruction. By Lemma 3.4 (with k = 4), every s-obstruction has
at least 2 + s ≥ 4 crucial vertices for when 2 ≤ s < T , or at least 4 crucial vertices when s ≥ T .
Note that a 2-obstruction must have at least 4 crucial vertices. This for instance means we cannot
have two vertices of degree four that are joined by an edge (which would have given Breaker a
winning strategy).

To each obstruction, we assign either all of its crucial vertices if there are fewer than six, or
six of its crucial vertices, if there are more. (No vertex can be crucial for multiple obstructions:
obstructions are well-separated by (str-3) – (str-5), so a cell contains crucial vertices for at most
one obstruction.) Each of these crucial vertices has at least T important vertices inside some cell
of Γmax. We assign four important vertices (all in the same cell) to each crucial vertex. (As above,
we choose all important vertices to be distinct.) Every important vertex and every crucial vertex
in a good cell is considered marked. In G, vertices in a good cell are adjacent to at most one
obstruction, so this adds at most 6 + 24 = 30 marked vertices to each cell.

We must also consider pairs of important vertices assigned to the obstruction. Let c, c′ ∈ Γmax

be the cells that the two quadruples of important vertices lie in (these important vertices belong
to different crucial vertices, so we might have c 6= c′), as shown in Figure 9. This gives an upper
bound on their distance, so by (str-6) there is a (short) path Π between them. We orient all
edges of the path towards one of the endpoints, say c. Inside each cell of the path we assign two
vertices to Π. These vertices are considered marked. A given good cell c′′ is near at most one
obstruction and the path is short, so there are at most

(
6
2

)
such paths through c′′. Thus, we mark

no more than 2
(

6
2

)
= 30 additional vertices in c′′ (choosing distinct vertices every time because T

is large). This completes our marking of vertices for obstructions.
Next, we deal with safe vertices that are not in a cell of Γmax. Each such vertex v has at least

T neighbours inside some cell c ∈ Γmax. We assign v arbitrarily to one such c. Next, for each cell
c, we consider the set of safe points assigned to it. We partition these safe vertices into at most 36
cliques by centering a 3r× 3r square on the center of c, and dividing it into (r/2)× (r/2) squares.
We will refer to each of these cliques as a safe cluster. For each safe cluster we do the following.
If it has more than six members, we declare six of them “crucial”. For each such crucial vertex
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v′

c′

v

c

A

good cell in Γmax

bad cell

Figure 9: An obstruction A with crucial vertices v, v′. These vertices have important vertices in
distinct cells c and c′. There is a short path between c and c′ in Γmax, and we mark two vertices
in each cell of this path.

w, we pick four of its neighbours in c (different from all marked vertices in c, since T is large).
We declare these vertices to be important for w. If a safe cluster has at most six members, then
we consider these vertices to be singleton safe clusters. We assign four important vertices in c to
each of these vertices. These important vertices are considered marked. In the worst case (where
every safe cluster size is at most six), we mark 36 · 6 · 4 = 864 vertices in c.

We have accounted for all vertices outside of Γmax, and marked fewer than 1000 vertices in
each good cell. The path games associate one or two paths to each obstruction or safe cluster, so
we end up with at most 200 marked edges. Finally, we address all unmarked vertices in cells of
Γmax. Inside each cell c ∈ Γmax, we partition the unmarked points into sets C0(c), C1(c), . . . , C`(c)
where |Ci(c)| = N(10) for i = 1, . . . , `, and |C0(c)| > N(s), with N(10) and N(q) as in Lemma 5.3,
where ` = 1000 and s = s(200, 1000) from Lemma 5.7 are both constants. We can now specify
our constant T , which must allow us to mark our distinct vertices, and to make the blob cycles.
Choosing T = 1000 + `N(10) +N(s) is sufficient.

This completes Maker’s organization of the graph. During the game, Maker plays as follows:

(i) Every edge cc′ of T has important vertices x1, x2, x3, x4 ∈ c and y1, y2, y3, y4 ∈ c′. We pair
the edges x1y1 and x2y2. When Breaker claims one of them, Maker responds by claiming the
other one. Likewise, we pair edge x3y3 and x4y4. Therefore Maker claims two independent
edges between c and c′.

(ii) For every crucial vertex, we pair the edges to the four important vertices assigned to it.
When Breaker claims one of them, Maker responds by claiming the other one. Therefore,
Maker claims at least two of these edges.

(iii) If Breaker claims an edge inside an obstruction O together with the crucial vertices C
assigned to that obstruction, then Maker responds according to his winning strategy for the
corresponding (a, b)-path game (Lemma 5.2), where A = O and B = C.

(iv) If Breaker claims an edge inside a safe cluster S together with its important vertices I, Maker
again responds according to his winning strategy for the (a, b)-path game, this time with
A = S and B = I.

(v) Suppose c1c2 is a directed edge of a path Π between two cells c, c′ containing important
vertices for an obstruction. Let u1, u2 ∈ c1 and v1, v2 ∈ c2 be the vertices assigned to Π.
Maker pairs u1v1, u1v2 and pairs u2v1, u2v2.

(vi) Similarly if u1, u2, u3, u4 ∈ c are important for an obstruction, and v1, v2 ∈ c are assigned to
a path Π in Γmax then Maker pairs uiv1, uiv2 for i = 1, . . . , 4.
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(vii) If Breaker claims an edge between two vertices of Ci(c) for some 1 ≤ i ≤ ` and c ∈ Γmax

then Maker claims another edge in Ci(c) according to his winning strategy for the 10-blob
game (Lemma 5.3).

(viii) Likewise, if Breaker claims an edge inside C0(c) for some c ∈ Γmax then Maker responds
according to his winning strategy for the s-blob game (Lemma 5.3).

(ix) If Breaker claims an edge uv with u ∈ c\(C0(c)∪· · ·∪C`(c)) for some c ∈ Γmax and v ∈ Ci(c)
then Maker claims another edge between u and a vertex of Ci(c).

(x) If Breaker claims an edge between u ∈ C0(c) and v ∈ Ci(c) with c ∈ Γmax and 1 ≤ i ≤ `,
then Maker claims another edge wv with w ∈ C0(c).

(xi) For any other Breaker move, Maker responds arbitrarily.

We now prove that this is a winning strategy for Maker. We must show that after the game
ends, Maker’s graph contains a Hamilton cycle.

P1 First, by (iv), Maker will have won the (a, b)-game for each safe cluster S. There will be
either two important vertices (in the same good cell c) connected by a path that spans the
safe cluster, or two pairs of such vertices connected by vertex disjoint paths that span the
cluster.

P2 Similarly, by (iii), Maker will have won the (a, b)-game for every obstruction. In other words,
there will be one or two paths between pairs of crucial vertices that span the obstruction. By
(ii), each of these path extends to a path between important vertices in two possibly different
cells c, c′ ∈ Γmax. By (v) and (vi), these paths also extend to a path between two marked
vertices in the same cell c ∈ Γmax. Also, every vertex that got marked crucial but is not part
of such a path, will be part of a path of length two between two of its important vertices.

P3 Let u, v be a pair of important vertices in the same good cell c that are the endpoints of a
path through an obstruction or safe cluster. We treat uv as a marked edge. We also have a
pair of vertices marked to connect to each adjacent cell in T . The total number of marked
edges is at most 200. Meanwhile any marked vertex w that is not part of one of these paths
(as either an endpoint or an interior point) is treated as a marked singleton.

P4 Next, we consider the unmarked vertices in a good cell c. Strategies (vii) and (viii) ensure
that Maker will have created the blob cycles C0(c), C1(c), . . . , C`(c). These cycles span all
unmarked vertices in c. By (ix) and (x), the family of blob cycles and the marked edges and
the marked singletons satisfy the conditions of Lemma 5.7. Therefore, we can construct one
cycle that spans all of the vertices in c, and includes every marked edge. At this point, we
have a spanning cycle in every good cell, where this cycle used marked edges.

P5 Let uv be a marked edge in c. Recall that this marked edge uv is a placeholder for another
structure in Maker’s graph (in fact, Breaker may have claimed the actual edge between these
vertices). First, if the vertices u, v were important for the spanning tree T of Γmax, then there
is a corresponding marked edge u′v′ in the spanning cycle of c′. We replace these two marked
edges by edges uu′ and vv′, which merges the spanning cycles in c and c′. Second, if the
vertices u, v were important for an obstruction O, then we replace the marked edge uv with
the spanning path through O whose endpoints are u and v. Third, we replace any marked
edge associated with a safe cluster with the analogous path through that cluster. Once we
have replaced all the marked edges, we have our Hamilton cycle.

�

Proof of Theorem 1.5: The proof is very similar to that of Theorem 1.1. It is clear that Breaker
wins if there is a vertex of degree at most three (Breaker starts). Hence
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P (ρn(Maker wins the Hamilton cycle game) ≥ ρn(min. deg. ≥ 4)) = 1. (25)

We now define:

rL(n) :=

(
lnn+ 5 ln lnn−K

πn

) 1
2

, rU (n) :=

(
lnn+ 5 ln lnn+K

πn

) 1
2

,

for K a (large) constant. By Theorem 2.10, we can choose K = K(ε) such that

P
(
rL(n) ≤ ρn(min. deg. ≥ 4) ≤ rU (n)

)
≥ 1− ε+ o(1). (26)

By Lemma 3.3 the properties (str-1)–(str-6) are satisfied with probability 1 − o(1) by V =
Xn,m = mn, T = O(1), r = rL(n) with Xn as given by (4), mn as given by (12) and rL as above.
By Lemma 3.4, with probability 1− o(1), the remaining conditions of Lemma 5.8 are met for any
r ≤ ρ ≤ 2r with δ(G(V ; ρ)) ≥ 4. Hence:

P (ρn(Maker wins the Hamilton cycle game) = ρn(min. deg. ≥ 4)) ≥ 1− ε− o(1).

Sending ε ↓ 0 gives the theorem. �

6 The perfect matching game

We start by considering the obvious obstructions preventing Maker-win: vertices v with degree
d(v) ≤ 1, and edges uv with edge-degree d(uv) = |(N(v)∪N(u))\{u, v}| ≤ 2. Indeed, with Breaker
first to move, he can isolate a vertex of degree one. For an edge with at most two neighbouring
vertices, Breaker can ensure that one vertex remains unmatched by Maker.

Lemma 6.1 Let (rn)n be such that

πnr2
n = lnn+ ln lnn+ x+ o(1),

for some x ∈ R. Let Zn denote the number of vertices of degree exactly one plus the number of
edges of edge-degree exactly two in GP(n, rn). Then

EZn→(1 + π2/8)e−x +
√
π(1 + π)e−x/2

as n→∞.

Proof: Let Yn denote the number of vertices of degree exactly one and let Wn denote the number
of edges of edge-degree exactly two. From Theorem 2.10 and Lemma 2.11, we have

EYn = e−x +
√
πe−x + o(1). (27)

It thus remains to compute EWn. Let Wcnr denote the number of edge-degree two edges {Xi, Xj}
with both vertices Xi, Xj within 100r of two of the sides of [0, 1]2. By Lemma 3.5 using k = 2
and condition (iii) (a), we have

EWcnr = O
(
n−O(1)

)
. (28)

Let Wmdl denote the number of edge-degree two edges {Xi, Xj} for which both Xi and Xj are at
least r removed from the boundary of the unit square. For 0 ≤ z ≤ r, let us write

µ(z) = n · area(B(u; r) ∪B(v; r)),
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where u, v ∈ R2 are such that ‖u−v‖ = z. Let ε > 0 be arbitrary. By equation (7) of Corollary 2.15,
there is a δ = δ(ε) such that

πnr2 + (2− ε)nrz ≤ µ(z) ≤ πnr2 + (2 + ε)nrz,
and

(1− ε)πnr2 ≤ µ(z) ≤ (1 + ε)πnr2,
(29)

for all 0 ≤ z ≤ δr. Let W δ
mdl denote the number of edge-degree two edges {Xi, Xj} for which both

Xi, Xj are at least r removed from the boundary of the unit square, and ‖Xi − Xj‖ ≤ δr. By
Lemma 3.5 using k = 2 and condition (iii) (c), we have

E
(
Wmdl −W δ

mdl

)
= O

(
n−O(1)

)
. (30)

Let us now compute W δ
mdl. We have

EW δ
mdl ≤

1

2
· n2

∫
[0,1]2

∫
B(v;δr)

µ(‖u− v‖)2e−µ(‖u−v‖)

2
dudv

=
1

2
· n2

∫ δr

0

µ(z)2e−µ(z)

2
2πzdz

≤ 1

2
n2

∫ δr

0

(
(1 + ε)πnr2

)2
e−πnr

2−(2−ε)nrz

2
2πzdz

= (1 + o(1)) · (1 + ε)2π

2
· n2 · ln2 n · e−πnr

2

∫ δr

0

e−(2−ε)nrzzdz

= (1 + o(1)) · (1 + ε)2πe−x

2
· n · lnn

∫ δr

0

e−(2−ε)nrzzdz

= (1 + o(1)) · (1 + ε)2πe−x

2
· n · lnn ·

(
1

(2− ε)nr

)2 ∫ (2−ε)δnr2

0

e−yydy

= (1 + o(1)) · (1 + ε)2πe−x

2(2− ε)2
· lnn

nr2
·
∫ ∞

0

e−yydy

= (1 + o(1)) · (1 + ε)2π2e−x

2(2− ε)2
.

(31)

Here the factor 1
2 in the first line comes from the fact that Theorem 2.7 applies to ordered pairs;

to get the second line we switched to polar coordinates; to get the third line we applied the
bounds (29); to get the fourth line we used that πnr2 = (1+o(1)) lnn; to get the fifth line we used

that πnr2 = lnn + ln lnn + x + o(1) so that e−πnr
2

= (1 + o(1))e−x/n lnn; to get the sixth line
we used the change of variables y = (2 − ε)nrz; and in the last two lines we used that nr2 → ∞
so that

∫ (2−ε)δnr2

0
e−yydy →

∫∞
0
e−yydy = 1.

By analogous computations we get

EWmdl ≥ EW δ
mdl

≥ 1

2
· n2

∫
[100r,1−100r]2

∫
B(v;δr)

µ(‖u− v‖)2e−µ(‖u−v‖)

2
dudv

= (1− o(1)) · n
2

2

∫ δr

0

µ(z)2e−µ(z)

2
2πzdz

≥ (1− o(1)) · n
2

2

∫ δr

0

(
(1− ε)πnr2

)2
e−πnr

2−(2+ε)nrz

2
2πzdz

= (1− o(1)) · (1− ε)2π2e−x

2(2 + ε)2
.

(32)

Combining (30), (31) and (32) and sending ε ↓ 0, we find

EWmdl = (1 + o(1)) · π
2e−x

8
. (33)
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Finally, we must consider the remaining four rectangles of width r that are adjacent to exactly
one border. Let Wsde denote the number of edges {Xi, Xj} with edge-degree two such that at
least one of Xi, Xj is no more than r away from some side of the unit square, and both are at
least 100r away from all other sides; and let W δ

sde denote all such pairs for which in addition at
least one of Xi, Xj is no more than δr away from a side of the unit square, and ‖Xi −Xj‖ ≤ δr.
By Lemma 3.5 using k = 2 with the union of conditions (iii)(b) and (iii)(c), we have

E
(
Wsde −W δ

sde

)
= O

(
n−O(1)

)
. (34)

For 0 ≤ w, z ≤ r and −π/2 ≤ α ≤ π/2, let us write:

µ(w, z, α) := n · area([0, 1]2 ∩ (B(u; r) ∪B(v; r))),

where u, v ∈ [0, 1]2 are such that ux = w < vx, ‖u− v‖ = z and the angle between v − u and the
positive x-axis is α (see Figure 1). Fix ε > 0. By Lemma 2.18 there is a δ = δ(ε) such that for all
0 ≤ w, z ≤ δr and all −π/2 ≤ α ≤ π/2:

π
2nr

2 + (1 + cosα− ε)nrz + (2− ε)nwr
≤

µ(w, z, α)
≤

π
2nr

2 + (1 + cosα+ ε)nrz + (2 + ε)nwr,

(35)

and
(1− ε)π

2
nr2 ≤ µ(w, z, α) ≤ (1 + ε)

π

2
nr2. (36)

Let B+(v; r) denote the set of all p ∈ B(v; r) with px ≥ vx. We can write

EW δ
sde ≤ 4 · n2

∫
[0,δr]×[100r,1−100r]

∫
B+(v;r)

P
(
Po([0, 1]2 ∩ (B(u; r) ∪B(v; r))) = 2

)
dudv

= (1 + o(1)) · 4n2 ·
∫ π/2

−π/2

∫ δr

0

∫ δr

0

(µ(w, z, α))
2

2
e−µ(w,z,α)z dwdzdα

≤ (1 + o(1)) · 4n2 ·
∫ π/2

−π/2

∫ δr

0

∫ δr

0

(
(1 + ε)π2nr

2
)2

2
e−

π
2 nr

2−(1+cosα−ε)nrz−(2−ε)nrwz dwdzdα

= (1 + o(1)) · (1 + ε)2

2
· n2 · ln2 n · e−π2 nr

2

·
∫ π/2

−π/2

∫ δr

0

∫ δr

0

e−(1+cosα−ε)nrz−(2−ε)nrwz dwdzdα

= (1 + o(1)) · (1 + ε)2

2
· n 3

2 · ln
3
2 n · e−x/2 ·

∫ π/2

−π/2

∫ δr

0

∫ δr

0

e−(1+cosα−ε)nrz−(2−ε)nrwz dwdzdα

= (1 + o(1)) · (1 + ε)2e−x/2

2
· n 3

2 · ln
3
2 n ·

(
1

(2− ε)nr

)
·
[
1− e−(2−ε)δnr2

]
·∫ π/2

−π/2

∫ δr

0

e−(1+cosα−ε)nrzz dzdα

= (1 + o(1)) · (1 + ε)2e−x/2

2(2− ε)
· n 3

2 · ln
3
2 n · (nr)−1·∫ π/2

−π/2

(
1

(1 + cosα− ε)nr

)2 ∫ (1+cosα−ε)δnr2

0

y e−ydydα

= (1 + o(1)) · (1 + ε)2e−x/2

2(2− ε)
· n 3

2 · ln
3
2 n · (nr)−3 ·

∫ π/2

−π/2

(
1

1 + cosα− ε

)2

dα

Here we have once again used Theorem 2.7 in the first line, together with symmetry consid-
erations. The first line gives an upper bound on W δ

sde since a vertex in B(u; r) ∩ B(v; r) would
increase the edge degree by 2 instead of 1. In the second line we switched to polar coordinates; in
the third line we used the bounds (35) and (36); in the fourth line we used πnr2 = (1 + o(1)) lnn;
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in the fifth line we used πnr2 = lnn+ln lnn+x+o(1); in the sixth line we integrated with respect
to w; in the seventh line we applied the substitution y = (1 + cosα − ε)nrz; in the eight line we

used that
∫ (1+cosα−ε)δnr2

0
y e−ydy →

∫∞
0
y e−yydy = 1. We get:

EW δ
sde ≤ (1 + o(1)) · (1 + ε)2e−x/2

2(2− ε)
· ln

3
2 n · (nr2)−

3
2 ·
∫ π/2

−π/2

(
1

1 + cosα− ε

)2

dα

= (1 + o(1)) · (1 + ε)2e−x/2π
3
2

2(2− ε)
·
∫ π/2

−π/2

(
1

1 + cosα− ε

)2

dα

(37)

Reversing the use of the upper and lower bounds from (35) and (36), and repeating the computa-
tions giving (37) we find

EWsde ≥ EW δ
sde

≥ (1 + o(1)) · 4n2 ·
∫ π/2

−π/2

∫ δr

0

∫ δr

0

(
(1− ε)π2nr

2
)2

2
e−

π
2 nr

2−(1+cosα+ε)nrz−(2+ε)nrwdwdzdα

= (1 + o(1)) · (1− ε)2e−x/2π
3
2

2(2 + ε)
·
∫ π/2

−π/2

(
1

1 + cosα+ ε

)2

dα

Combining this with (34) and (37) and sending ε ↓ 0, we find (employing the dominated conver-
gence theorem to justify switching limit and integral):

EWsde = (1 + o(1)) · e
−x/2π

3
2

4
·
∫ π/2

−π/2

(
1

1 + cosα

)2

dα.

We compute ∫ π/2

−π/2

(
1

1 + cosα

)2

dα =

[
sin(x)

2(cos(x) + 1)
+

sin3(x)

6(cos(x) + 1)3

]π/2
−π/2

=
4

3
.

Hence

EWsde = (1 + o(1)) · e
−x/2π

3
2

3
. (38)

Combining (28), (33) and (38) shows

EW =
π2e−x

8
+
e−x/2π

3
2

3
+ o(1)

Together with (27) this proves the Lemma. �

The following lemma can be proved via a straightforward adaptation of the proof of Theorem
6.6 in [21]. For completeness we provide a proof in the appendix.

Lemma 6.2 Let n ∈ N and r > 0 be arbitrary. Let Z denote the number of vertices of degree
exactly one in GP (n, r) plus the number of edges of edge-degree exactly two in GP (n, r). Then

dTV(Z,Po(EZ)) ≤ 6 · (I1 + I2 + I3 + I4 + I5 + I6)
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where

I1 := n2

∫
[0,1]2

∫
B(x;100r)

P(Ex)P(Ey)dydx,

I2 := n2

∫
[0,1]2

∫
B(x;100r)

P(Eyx , E
x
y )dydx,

I3 := n4

∫
A3

P(Fx1,y1)P(Fx2,y2)dy2dx2dy1dx1,

I4 := n4

∫
A3

P(F x2,y2
x1,y1 , F

x1,y1
x2,y2 )dy2dx2dy1dx1,

I5 := n3

∫
A5

P(Fx1,y1)P(Ex2)dx2dy1dx1,

I6 := n3

∫
A5

P(F x2
x1,y1 , E

x1,y1
x2

)dx2dy1dx1.

Here

A3 := {(x1, y1, x2, y2) ∈
(
[0, 1]2

)4
: y1 ∈ B(x1, r), y2 ∈ B(x2; r),
x2, y2 ∈ B(x1; 100r) ∩B(y1; 100r)},

A5 := {(x1, y1, x2) ∈
(
[0, 1]2

)3
: y1 ∈ B(x1, r), x2 ∈ B(x1; 100r) ∩B(y1; 100r)},

and Ex denotes the event that one point of P falls inside B(x; r), and Eyx the event that one
point of {y} ∪ P falls inside B(x; r) and Ey,zx denotes the event that one point of {y, z} ∪ P
falls inside B(x; r); Fx,y denotes the event that two points of P fall inside B(x; r) ∪ B(y; r), and
Fwx,y, F

w,z
x,y are defined similarly as Eyx , E

y,z
x

Lemma 6.3 Let (rn)n be such that

πnr2
n = lnn+ ln lnn+ x+ o(1),

for some x ∈ R. Let Zn denote the number of vertices of degree exactly one, plus the number of
edges of edge-degree exactly two in GP(n, rn). Then

P(Zn = 0)→ exp
[
−(1 + π2/8)e−x +

√
π(1 + π)e−x/2

]
,

as n→∞.

Proof: It suffices to show that if I1, . . . , I6 is as in Lemma 6.2, then I1, . . . , I6 → 0 as n → ∞.
Observe that I1, I5 is most

I1, I5 ≤ EZn · πn(100rn)2 · P(Po(πnr2
n/4) ≤ 1)

= O
(
lnn · exp[−( 1

4 + o(1)) lnn ·H(4/πnr2
n)]
)

= O
(
n−

1
4 +o(1)

)
,

where we used Lemma 2.5 and the fact that for r sufficiently small at least one quarter of B(v; r)
is contained in the unit square for all v ∈ [0, 1]2.

Similarly

I3 ≤ EZn ·
(
πn(100rn)2

)2 · P(Po(πnr2
n/4) ≤ 1)

= O
(
n−

1
4 +o(1)

)
.

Notice that I2 is the expected number of (ordered) pairs of points (u, v) with ‖u−v‖ ≤ 100rn and
d(u) = d(v) = 1. Observe that if moreover ‖u− v‖ ≤ r/100, then (u, v) are in fact an (0, 0)-pair.
Thus, using Lemma 3.6 and Lemma 3.5:

I2 ≤ O
(
ln−1 n

)
+O

(
n−c

)
= o(1).
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Similarly, I4 equals the expected number of 4-tuples of points (u1, . . . , u4) with all distances
‖ui − uj‖ ≤ 100r and ‖u1 − u2‖, ‖u3 − u4‖ ≤ r, and u1u2, u3u4 each having edge-degree equal
to two. Observe if in such 4-tuple that ‖ui − uj‖ ≤ r/100 for all 1 ≤ i, j ≤ 4, then one of the
pairs (ui, uj) will in fact be a (0, 0, 2)-pair. Also observe that for each (0, 0, 2)-pair contributes at
most six 4-tuples to the number of our 4-tuples with all distances ≤ r/100. Thus, using again
Lemma 3.6 and Lemma 3.5:

I4 ≤ 6 ·O
(
ln−4 n

)
+O

(
n−c

)
= o(1).

Finally, I6 equals the expected number of 3-tuples (u1, u2, u3) with all distances at most 100r,
‖u1 − u2‖ ≤ r, the degree of u3 equal to two, and the edge-degree of u1u2 equal to two. Observe
that, if all distances in such a 3-tuple are ≤ r/100 then one of (u1, u2), (u1, u3), (u2, u3) will be a
(0, 1, 1)-pair. Also, for every (0, 1, 1)-pair, there are at most three of our 3-tuples with all distances
≤ r/100. Hence, using Lemma 3.6 and Lemma 3.5 again:

I6 ≤ 3 ·O
(
ln−3 n

)
+O

(
n−c

)
= o(1).

This shows that

dTV(Z,Po(EZ)) = o(1).

So in particular

P(Z = 0) = e−EZ + o(1) = e−(1+π2

8 )e−x+
√
π(1+π)e−x/2 + o(1),

using Lemma 6.1. �

Corollary 6.4 Let (rn)n be such that

πnr2
n = lnn+ ln lnn+ x+ o(1),

for some x ∈ R. Let Zn denote the number of vertices of degree at most one, plus the number of
edges of edge-degree at most two in GP(n, rn). Then

P(Zn = 0)→ exp
[
−((1 + π2/8)e−x +

√
π(1 + π)e−x/2)

]
,

as n→∞.

Proof: Let Y denote the number of vertices of degree exactly one; let Y ′ denote the number of
vertices of degree exactly zero; let W denote the number of edges of edge-degree exactly two, let
W ′ denote the number of edges of edge-degree at most one, all in GP(n, rn). The probability that
Y ′ > 0 can be read off from Theorem 2.10. By our choice of rn, we have

P(Y ′ > 0) = o(1). (39)

Suppose that uv is an edge of edge-degree at most one. Then either ‖u− v‖ > r/100, or (u, v)
is either a (1, 0, 0)-pair, a (0, 1, 0)-pair, a (0, 0, 1)-pair, or a (0, 0, 0)-pair. By Lemmas 3.5 and 3.6,
we have

P(W ′ > 0) ≤ EW ′ = O
(
n−c

)
+O

(
ln−1 n

)
= o(1). (40)

Let Zn be as in the statement of the Corollary. By (39), (40) we have

P(Y +W = 0)− P(Y ′ > 0)− P(W ′ > 0) ≤ P(Zn = 0) ≤ P(Y +W = 0),

and hence P(Zn = 0) = P(Y +W = 0)+o(1). The corollary now follows directly from Lemma 6.3.
�

Using Lemma 2.8, this last corollary immediately transfers also to the binomial case. (We can
rephrase Zn in terms of a measurable function hn(u, v, V ) which equals one only if either u 6= v
and the pair forms an edge of edge-degree at most two or u = v and the degree is at most one.)
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Corollary 6.5 Let (rn)n be such that

πnr2
n = lnn+ ln lnn+ x+ o(1),

for some x ∈ R. Let Z̃n denote the number of vertices of degree at most one, plus the number of
edges of edge-degree at most two in G(n, rn). Then

P(Z̃n = 0)→ exp
[
−((1 + π2/8)e−x +

√
π(1 + π)e−x/2)

]
,

as n→∞.

6.1 The proof of Theorem 1.3

We will again introduce an auxiliary game that will be helpful for the analysis of the perfect
matching game on the random geometric graph. As in the (a,b) path game, The (a, b) matching
game is played on the same graph Ga,b as the (a, b) path game in Section 5.1. The vertices of Ga,b
are partitioned into sets A,B with |A| = a, |B| = b, where the only missing edges are the internal
edges of B. Maker’s objective is to create a matching that saturates all vertices in A (he does
not care about the vertices in B). When we use this lemma for the perfect matching game, the a
vertices will belong to an obstruction A and the b vertices will be important for A.

Lemma 6.6 The (a, b) matching game is a win for Maker if one of the following conditions is
met

(i) b ≥ 4, or;

(ii) a ∈ {2, 3} and b ≥ 3, or;

(iii) a = 1 and b ≥ 2.

Proof of part (i): If b ≥ 4 then a winning strategy for Maker is as follows:

• Whenever Breaker plays an edge between two vertices of A then Maker responds claiming
another edge inside A according to the strategy from Lemma 5.1 that will guarantee him
that by the end of the game he will have a path in A that contains all but one vertex of A.

• If Breaker claims an edge between a vertex u ∈ A and a vertex v ∈ B then Maker claims an
arbitrary unclaimed edge connecting u to a vertex in B.

If Maker cannot claim such an edge, then he claims an arbitrary edge (and we forget about it for
the remainder of the game). At the end of the game, Maker’s graph contains a path P through
all but one vertex of A, and every vertex of A will have at least two neighbours in B. Thus, the
path P contains a matching that covers all but at most two points of A, and the remaining (up
to) two points can be covered by (at most two) vertex disjoint edges to vertices in B.
Proof of part (ii): If a = 3 then the strategy just outlined in the proof of part (i) also works.
This time, at the end of the game, Maker’s graph contains an edge between two vertices of A, and
the remaining vertex of A has at least one neighbour in B.

Let us thus consider the case when a = 2. We can write A = {a1, a2} and B = {b1, . . . , b`}
with ` ≥ 3. First suppose that in Breaker’s first move he does not claim a1a2. In that case Maker
can claim a1a2 in his first move and win the game.

Hence we can assume that in his first move, Breaker claims a1a2. Maker now responds by
claiming a1b1 in his first move and for the remainder of the game pairs the edges a2b2, a2b3,
meaning that if Breaker plays one of these two edges then he claims the other (otherwise he plays
arbitrarily). This way, Maker will clearly end up with a matching of the required type in the end.
Proof of part (iii): Maker wins in the obvious way. �

39



Lemma 6.7 There exists a value of T such that the following holds. If V ⊆ [0, 1]2,m ∈ N, r > 0
and r ≤ ρ ≤ 105r are such that

(i) (str-1)–(str-5) hold with respect to r, and;

(ii) For all 3 ≤ s ≤ T , every s-obstruction with respect to r has at least s crucial vertices, and;

(iii) Every (≥ T )-obstruction with respect to r has at least four crucial vertices, and;

(iv) Every edge of G(V, ρ) has edge-degree at least three, and;

(v) G(V, ρ) has minimum degree at least two.

Then Maker wins the perfect matching game on G(V ; ρ).

Proof: The proof is a relatively straightforward adaptation of the proof of Lemma 5.8. In fact
it is slightly simpler. This time, on each obstruction or safe cluster we play the corresponding
(a, b)-matching game (which we win by Lemma 6.6). This will give a matching M0 that saturates
all vertices outside cells of Γmax and some vertices of Γmax. A small change in P4 will show that
we will have a Hamilton cycle H through the remaining vertices R of Γmax. Indeed, we only mark
the edges corresponding to vertices that are important for the spanning tree T of Γmax. Second,
we only mark the singletons corresponding to important vertices that are not matched in the
various (a, b) games. Then when we apply Lemma 5.7 to merge the blob-cycles and the marked
singletons viz. the important vertices not covered by M0.
|R| is even, since the total number of points n is even. Thus the Hamilton cycle H yields a

matching M1 covering all of R. We take M0 ∪M1 as our perfect matching. �

Proof of Theorem 1.3: This is again a straightforward adaptation of the proof of Theorem 1.1.
It is clear that Breaker wins if there is a vertex of degree at most one or an edge of degree at most
two. (Recall that Breaker starts the game.) Hence

P [ρn(Maker wins) ≥ ρn(min.deg. ≥ 2 and min.edge-deg. ≥ 3)] = 1. (41)

We now define:

rL(n) :=

(
lnn+ ln lnn−K

πn

) 1
2

, rU (n) :=

(
lnn+ ln lnn+K

πn

) 1
2

,

for K a (large) constant. By Lemma 6.1, we can choose K = K(ε) such that

P
[
rL(n) ≤ ρn(min.deg. ≥ 2 and min.edge-deg. ≥ 3) ≤ rU (n)

]
≥ 1− ε+ o(1). (42)

By Lemma 3.3 the properties (str-1)–(str-5) are satisfied with probability 1 − o(1) by V =
Xn,m = mn, T = O(1), r = rL(n) with Xn as given by (4), mn as given by (12) and rL as above.
By Lemma 3.4, with probability 1− o(1), the remaining conditions of Lemma 6.7 are met for any
r ≤ ρ ≤ 2r with minimum vertex degree at least two and minimum edge degree at least three.
Hence:

P
[
ρn(Maker wins the perfect matching game) = ρn(min. deg. ≥ 2 and min. edge-deg. ≥ 3)

]
≥

1− ε− o(1).

Sending ε ↓ 0 gives the theorem. �
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7 The H-game

Proof of Theorem 1.7: The proof of Theorem 1.7 is a bit different from the previous proofs.
Let H be a fixed connected graph and let k denote the smallest number for which the H-game
is Maker’s win on a k-clique; let F denote the family of all non-isomorphic graphs on k vertices
for which the game is Maker-win. Let H1, . . . ,Hm ∈ F be those graphs in F that can actually be
realized as a geometric graph. Observe that, since H is connected and Maker cannot win on any
graph on < k vertices, each Hi is connected.

Let ε > 0 be arbitrary and let K > 0 be a large constant, to be chosen later. Let us set

rU := K · n−k/2(k−1).

It follows from Theorem 2.9 that

P(G(n, rU ) contains a subgraph ∈ F) = 1− exp
[
−K2(k−1) ·

∑m
i=1 µ(Hi)

]
+ o(1)

≥ 1− ε+ o(1),

where µ(.) is as defined in (5) and the last inequality holds if we assume (without loss of generality)
that K was chosen sufficiently large.

Observe that if G(n, rU ) contains a component of order > k, then there exist k + 1 points
Xi1 , . . . , Xik+1

such that ‖Xi1 −Xij‖ ≤ (k + 1)rU for all 2 ≤ j ≤ k + 1. This gives

P(G(n, rU ) has a component of order > k) ≤ nk+1 · πk
(
(k + 1)rU

)2k
= O

(
nk+1− k2

k−1

)
= O

(
n−k/(k−1)

)
= o(1).

Let E denote the event that G(n, rU ) contains a subgraph ∈ F but no component on > k vertices.
Then it is clear that

P [ρn(Maker wins the H-game) = ρn(contains a subgraph ∈ F)] ≥ P(E) ≥ 1− ε− o(1),

since, if all components have order ≤ k then Maker wins if and only if there is a component ∈ F .
Sending ε ↓ 0 proves the theorem. �

Proof of Corollary 1.8: This follows immediately from Theorem 2.3 and Theorem 2.9. �

8 Conclusion and further work

In the present paper, we explicitly determined the hitting radius for the games of connectivity,
perfect matching and Hamilton cycle, all played on the edges of the random geometric graph. As it
turns out in all three cases, the hitting radius for G(n, r) to be Maker-win coincides exactly with a
simple, necessary minimum degree condition. For the connectivity game it is the minimum degree
two, in the case of the perfect matching game it is again the minimum degree two accompanied by
the minimum edge degree three, and for the Hamilton cycle game we have the minimum degree
four. Each of these characterizations engenders an extremely precise description of the behavior at
the threshold value for the radius. We also state a general result for the H-game, for a fixed graph
H, where the hitting radius can be determined by finding the smallest k for which the H-game is
Maker-win on the k-clique edge set and finding the list of all connected graphs on k vertices which
are Maker-win.

These results are curiously similar to the hitting time results obtained for the Maker-win in
the same three games played on the Erdős-Rényi random graph process. In that setting, in the
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connectivity game the hitting time for Maker-win is the same as for the minimum degree two [22],
the same holds for the perfect matching game [4], and the condition changes to minimum degree
four for the Hamilton cycle game [4]. As we can see, in the case of the connectivity game and
the Hamilton cycle game the conditions are exactly the same as for the random geometric graph.
The difference in the condition for the perfect matching game is not a surprise, as the existence
of an induced 3-path (which clearly prevents Maker from winning) at the point when the graph
becomes minimum degree two is an unlikely event in the Erdős-Rényi random graph process, but
it does happen with positive probability in the random geometric graph.

With respect to the H-game much less is known on the Erdős-Rényi random graph process.
The only graph for which we have a description of the hitting time is the triangle—Maker wins
exactly when the first K5 with one edge missing appears [17]. On the random geometric graph
we basically have the same witness of Maker’s victory, as the smallest k for which Maker can win
the triangle game on edges of Kk is k = 5. Interestingly, for most other graphs H it is known that
a hitting time result for Maker-win in the Erdős-Rényi random graph process cannot involve the
appearance of a finite graph on which Maker can win—Maker-winning strategy must be of “global
nature” [17, 18]. This is in contrast to the results we obtained in Theorem 1.7, showing that on
the random geometric graph Maker can typically win the H-game by simply spotting a copy of
one of some finite list of graphs and restricting his attention to that subgraph.

Playing a game on a random graph instead of the complete graph can be seen as a help to
Breaker, as the board of the game becomes sparser, there are fewer winning sets and consequently
Maker finds it harder to win. A standard alternative approach is to play the biased (1 : b) game
on the complete graph, where Breaker again gains momentum when b is increased. Naturally, one
can combine the two approaches, playing the biased game on a random graph. This has been
done in [22, 8] for the Erdős-Rényi random graph, where the threshold probability for Maker-win
in the biased (1 : b) game, with b = b(n) fixed, was sought for several standard positional games
on graphs. The same question can be asked in our random geometric graph setting.

Question 8.1 Given a bias b, what can be said for the smallest radius r at which Maker can win
the (1 : b) biased game, for the games of connectivity, perfect matching, Hamilton cycle, and the
H-game?

In this paper we have only considered the random geometric graph constructed on points taken
uniformly at random on the unit square, using the euclidean norm to decide on the edges. So
other obvious directions for further work are:

Question 8.2 What happens for Maker-Breaker games on random geometric graphs in dimen-
sions d ≥ 3? What happens if we use other probability distributions or norms in two dimensions?
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A The proof of Theorem 2.7

Proof of Theorem 2.7: We condition on N = m. For convenience, let us write Xm := {Xi : 1 ≤
i ≤ m}. We have

EZ =

∞∑
m=k

E [Z|N = m] · P(N = m)

=

∞∑
m=k

(m)k · E [h(X1, . . . , Xk;Xm)] · P(N = m)

=

∞∑
m=k

(m)k · E [h(Y1, . . . , Yk; {Y1, . . . , Yk} ∪ Xm−k)] · n
me−n

m!

= nk ·
∞∑
j=0

E [h(Y1, . . . , Yk; {Y1, . . . , Yk} ∪ Xj)] ·
nje−n

j!

= nk · E [h(Y1, . . . , Yk; {Y1, . . . , Yk} ∪ P)] ,

as required. �

B The proof of Lemma 2.8

Proof of Lemma 2.8: Let ε > 0 be arbitrary. By Markov’s inequality and the fact that
EZn = O(1), there exists a constant K > 0 such that

P(Zn > K) ≤ EZn/K ≤ ε.

Let N be the Po(n)-distributed random variable used in the definition of Pn. By Chebyschev’s
inequality we have

P
[
|N − n| > K

√
n
]
≤ Var(N)/(K

√
n)2 = 1/K2 < ε.

(We can assume without loss of generality that 1/K2 < ε.)
Also observe that, since πnr2 = o(

√
n), there exists a sequence f(n) = o(

√
n) such that

P
[
∆(G(n+K

√
n, rn)) > f(n)

]
= o(1),

where ∆(.) denotes the maximum degree. (This can for instance be seen from known results such
as Theorem 2.3 in [14], or by a first moment argument using the Chernoff bound.)

For m ∈ N let us call a tuple (Xi1 , . . . , Xik) ∈ X km a configuration if hn(Xi1 , . . . , Xik ;Xm) = 1
and let Ym denote the number of configurations in Xm. Let pick an arbitrary t ≤ K and an
arbitrary pair n−K

√
n ≤ m < m′ ≤ n+K

√
n.

We have

P(Z̃n 6= Zn) =
∑∞
m=0

∑∞
t=0 P(Z̃ 6= t, Z = t|N = m)P(N = m)

≤
∑n+K

√
n

m=n−K
√
n

∑K
t=0 P(Z̃ 6= t, Z = t|N = m)P(N = m)

+P(|N − n| > K
√
n) + P(Z > K)

≤
∑n+K

√
n

m=n−K
√
n

∑K
t=0 P(Z̃ 6= t, Z = t|N = m)P(N = m) + 2ε

=
∑n+K

√
n

m=n−K
√
n

∑K
t=0 P(Yn 6= t, Ym = t)P(N = m) + 2ε

(43)

Let us now fix some n−K
√
n ≤ m ≤ n and t ≤ K. Note that if Ym = t and Yn < t then we can

fix t configurations in Xm, and at least one of the points Xm+1, . . . , Xn must fall within r of one
of the k · t points of these configurations. This gives:

P(Ym = t, Yn < t) ≤ P(Yn < t|Ym = t) ≤ k · t · r2
n · (n−m) = o(1), (44)
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since rn = o(n−1/2) and n−m = O(
√
n).

Similarly, if Ym = t and Yn > t then we can fix t+ 1 configurations in Xn, and at least one of
the points that is either part of one of these configurations, or within distance r of a point of one
of these configurations must be among Xm+1, . . . , Xn. This gives

P(Ym = t, Yn > t) ≤ P(∆(G(n+K
√
n, rn)) > f(n))

+P(Ym = t, Yn > t,∆(G(n+K
√
n, rn)) ≤ f(n))

≤ o(1) + P(Ym = t|Yn > t,∆(G(n+K
√
n, rn)) ≤ f(n))

≤ o(1) + k · (t+ 1) · (f(n) + 1) · n−mn
= o(1),

(45)

using n − m = O(
√
n) and f(n) =

√
n for the last line. Combining (44) and (45) shows that

P(Ym = t, Yn 6= t) = o(1) for all t ≤ K and n−K
√
n ≤ m ≤ n.

Similarly, we find that P(Ym = t, Yn 6= t) = o(1) for all t ≤ K and n ≤ m ≤ n + K
√
n.

Using (43) we now find that

P(Z̃n 6= Zn) ≤
n+K

√
n∑

m=n−K
√
n

K∑
t=0

P(Yn 6= t, Ym = t)P(N = m) + 2ε = o(1) + 2ε.

Sending ε ↓ 0 completes the proof. �

C The proof of Lemma 2.12

Proof of Lemma 2.12: Consider a spanning tree T of G that minimizes the sum of the edge
lengths. Then T does not have any vertex of degree ≥ 7. This is because, if v were to have degree
≥ 7, then there are two neighbours u,w of v such that the angle between the segments [v, u] and
[v, w] is strictly less than 60 degrees. We can assume without loss of generality that [v, u] is shorter
than [v, w]. Note that if we remove the edge vw and add the edge uw then we obtain another
spanning tree but with strictly smaller total edge-length, a contradiction. Hence T has maximum
degree at most 6.

Similarly, we see that if v has degree 6 in T then the neighbours of v have exactly the same
distance to v and the angle between a pair of consecutive neighbours is exactly 60 degrees.

Let us now pick a spanning tree T ′ which minimizes the total edge-length (and hence has no
degree ≥ 7 vertices) and, subject to this, has as few as possible degree 6 vertices and, subject to
these two demands, the maximum over all degree 6 vertices of their x-coordinate is as large as
possible. Let v be a degree 6 vertex with largest x-coordinate. It has two neighbours u,w with
strictly larger x-coordinates. Observe that, as seen above the segments [v, u], [v, w], [u,w] all have
the same length. Let us remove the edge uv and add uw. This results in another spanning tree,
with the same total edge length. The degree of u has not changed, the degree of v has dropped,
and the degree of w has increased by one. If the degree of w has become 6 then our spanning tree
is not as we assumed (there is a degree 6 vertex with x-coordinate strictly larger than that of v).
Thus the degree of w after this operation is < 6. But then the number of degree 6 vertices has
decreased, contradiction. �

D The proof of Lemma 6.2

If G = (V,E) is a graph and Z = (Zv : v ∈ V ) are random variables, then G is a dependency graph
for Z if, whenever there is no edge between A,B ⊆ V , the random vectors ZA := (Zv : v ∈ A)
and ZB := (Zv : v ∈ B) are independent. The proof of Lemma 6.2 relies on the following result of
Arratia et al. [1]:
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Theorem D.1 (Arratia et al. [1]) Let (Zv : v ∈ V ) be a collection of Bernouilli random vari-
ables with dependency graph G = (V,E). Set pv := EZv = P(Zv = 1) and puv := EZuZv =
P(Zv = Zu = 1). Set W :=

∑
Zv, and λ := EW . Then

dTV(W,Po(λ)) ≤ min(3, 1/λ) ·

 ∑
v∈V (G)

∑
u∈N(v)

puv +
∑

v∈V (G)

∑
u∈N(v)∪{v}

pupv

 .

Proof of Lemma 6.2: We will use Theorem D.1. We consider the dissection D(m) for some
m ∈ N. For convenience, let us order the cells of D(m) in some (arbitrary) way as c1, c2, . . . , cm2 .
For 1 ≤ i ≤ m2, let us denote by xi the lower left-hand corner of ci, and let ξi denote the indicator
variable defined by;

ξi := 1{P(ci)=1,P(B(xi;r)\ci)=1}.

For 1 ≤ i < j ≤ m2 with ‖xi − xj‖ ≤ r, let us write

ξ(i,j) := 1{P(ci)=P(cj)=1,P((B(xi;r)∪B(xj ;r))\(ci∪cj))=2}.

Let us set

Y m :=

m2∑
i=1

ξi, Wm :=
∑

1≤i<j≤m2,
‖xi−xj‖≤r

ξi,j ,

and Zm := Y m +Wm. By construction, we have

lim
m→∞

Y m = Y, , lim
m→∞

Wm = W, lim
m→∞

Zm = Z. (46)

For convenience let us write Im := [m2],Jm :=
(

[m2]
2

)
and Vm := Im ∪ Jm. We now define a

graph Gm with vertex set Vm and edges:

• ij ∈ E(Gm) if i, j ∈ Im, ‖xi − xj‖ ≤ 100r;

• uv ∈ E(Gm) if u = {i1, i2}, v = {i3, i4} ∈ Jm and ‖xia − xib‖ ≤ 100r for all 1 ≤ a, b ≤ 4;

• uv ∈ E(Gm) if u = i1 ∈ Im, v = {i2, i3} ∈ Jm and ‖xia − xib‖ ≤ 100r for all 1 ≤ a, b ≤ 3;

By the spatial independence properties of the Poisson process, this defined a dependency graph
on the random indicator variables (ξv : v ∈ Vm). By Theorem D.1, we therefore have that

dTV(Zm,E(Zm)) ≤ 3 ·

 ∑
v∈Vm

∑
u∈N(v)

Eξvξu +
∑
v∈Vm

∑
u∈N(v)

EξvEξu

 . (47)

Let us write

Sm1 :=
∑
v∈Im

∑
u∈N(v)∩Im

EξvEξu, Sm2 :=
∑
v∈Im

∑
u∈N(v)∩Im

Eξvξu,

Sm3 :=
∑
v∈Jm

∑
u∈N(v)∩Jm

EξvEξu, Sm4 :=
∑
v∈Jm

∑
u∈N(v)∩Jm

Eξvξu,

Sm5 :=
∑
v∈Jm

∑
u∈N(v)∩Im

EξvEξu, Sm6 :=
∑
v∈Jm

∑
u∈N(v)∩Im

Eξvξu,

Then ∑
v∈Vm

∑
u∈N(v) Eξvξu = Sm2 + Sm4 + 2Sm6 ,∑

v∈Vm
∑
u∈N(v) EξvEξu = Sm1 + Sm3 + 2Sm5 .

(48)

46



For x ∈ [0, 1]2, let us define ϕm(x) := m−2Eξi where i ∈ I is such that x ∈ ci. Then

Sm1 =

∫
[0,1]2

∫
B′(x;100r)

ϕm(x)ϕm(y)dydx,

whereB′(x; 100r) is the union of all cells ci with ‖x−ci‖ ≤ 100r. Next we claim that limm→∞ Smj →
Ij for all 1 ≤ j ≤ 6. Now notice that

0 ≤ ϕm(x) ≤ m−2(nm2)e−nm
2

≤ n,

and, for every x ∈ [0, 1]2:
lim
m→∞

ϕm(x) = n · P(Ex).

We can thus apply the dominated convergence theorem to show that limm→∞ Sm1 → I1. Similarly,
we can show that Smj → Ij for all 2 ≤ j ≤ 6. Together with (46), (47) and (48) this proves the
Lemma. �
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