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Abstract

We consider the following game, played on a k-uniform hypergraph H. There are
q colors available and two players take it in turns to color vertices. A partial coloring
is proper if no edge is mono-chromatic. One player, A, wishes to color all the vertices
and the other player, B, wishes to prevent this. The game chromatic number χg(H) is
the minimum number of colors for which A has a winning strategy. We consider this
in the context of a random k-uniform hypergraph and prove upper and lower bounds
that hold w.h.p.

1 Introduction

Let G = (V,E) be a graph and let q be a positive integer. Consider the following game in
which two players A(lice) and B(ob) take turns in coloring the vertices of G with q colors.
Each move consists of choosing an uncolored vertex of the graph and assigning to it a color
from {1, . . . , k} so that the resulting coloring is proper, i.e., adjacent vertices get different
colors. A wins if all the vertices of G are eventually colored. B wins if at some point in the
game the current partial coloring cannot be extended to a complete coloring of G, i.e., there is
an uncolored vertex such that each of the q colors appears at least once in its neighborhood.
We assume that A goes first (our results will not be sensitive to this choice). The game
chromatic number χg(G) is the least integer q for which A has a winning strategy.

This parameter is well defined, since it is easy to see that A always wins if the number
of colors is larger than the maximum degree of G. Clearly, χg(G) is at least as large as
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the ordinary chromatic number χ(G), but it can be considerably more. The game was
first considered by Brams about 25 years ago in the context of coloring planar graphs and
was described in Martin Gardner’s column [13] in Scientific American in 1981. The game
remained unnoticed by the graph-theoretic community until Bodlaender [5] re-invented it.
For a survey see Bartnicki, Grytczuk, Kierstead and Zhu [4].

The papers by Bohman, Frieze and Sudakov [6], Frieze, Haber and Lavrov [11] and by
Keusch and Steger [16] discuss the game chromatic number of random graphs. In this
paper we discuss the game chromatic number of random hypergraphs. Given a hypergraph
H = (V,E) we can consider basically the same game. Here A, B color the vertices of H
consecutively and a coloring is proper if there is no e ∈ E such that all vertices in e have
the same color. This problem has hardly been studied, even in a deterministic setting, but
we feel it is of interest to extend the results of [6], [11] and [16] to this setting.

In this paper we will restrict our attention to the random k-uniform hypergraph Hn,p;k

where each of the
(
n
k

)
edges appear independently with probability p = d

nk−1 where d is a
large constant. Now Krivelevich and Sudakov [18] have shown that

χ(Hn,p;k) ≈
(

d

k(k − 2)! log d

)1/(k−1)

(1)

Here we use the notation An ≈ Bn for sequences An, Bn, n ≥ 1 to mean that An = (1 +
o(1))Bn as n→∞.

Our first theorem shows that w.h.p. the game chromatic number χg is significantly larger
than the chromatic number.

Theorem 1.1. There exists a constant ε > 0 such that w.h.p.,

χg(Hn,p;k) ≥ (1 + ε)

(
d

k(k − 2)! log d

)1/(k−1)

, if d is sufficiently large.

We also prove an upper bound in the case k = 3 that is somewhat far from that implied by
(1).

Theorem 1.2. Let δ > 0 be arbitrary. Then w.h.p.,

χg(Hn,p;3) ≤ d2/3+δ, if d is sufficiently large.

It is natural to state the following:

Conjecture: W.h.p. χg(Hn,p;k) = O
(

d
k! log d

)1/(k−1)

.

We often refer to the following Chernoff-type bounds for the tails of binomial distributions
(see, e.g., [3] or [14]). Let X =

∑n
i=1 Xi be a sum of independent indicator random variables

such that Pr(Xi = 1) = pi and let p = (p1 + · · ·+ pn)/n. Then

Pr(X ≤ (1− ε)np) ≤ e−ε
2np/2, (2)
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Pr(X ≥ (1 + ε)np) ≤ e−ε
2np/3, ε ≤ 1, (3)

Pr(X ≥ µnp) ≤ (e/µ)µnp. (4)

2 Lower Bound

Let

D =

(
d

k! log d

)1/(k−1)

and suppose that there are q = αD colors available.

Bob’s strategy is to choose the same color as Alice, i say, but assign it randomly to one of
the set of available vertices for color i.

Notation: Let Ci = Ci(t) be the set of vertices that have been colored i after t rounds. Let
Si = Si(t) be the set of vertices that were colored by B. Let C = C(t) = ∪qi=0Ci denote the
partial coloring of the vertex set.

Lemma 2.1. Suppose we run this process for t = θn, θ < 1/2 many rounds and that |Ci(t)| =
2βn/D. We show that if d is sufficiently large and

2(2β + γ)k − (2β)k >
2(β + γ)

k − 1
(5)

then with probability 1− o(1/n) there exists no set T such that (i) Ci ∩ T = ∅, (ii) Ci ∪ T is
independent and |T | = γn/D.

The reader can easily check that (5) is satisfied for k ≥ 3 and

β =
1− 2ε

2(k − 1)1/(k−1)
, γ =

ε

(k − 1)1/(k−1)

when ε > 0 is sufficnetly small. The proof of the lemma is deferred to Section 2.1.

If the event {∃i : Ci, T} does not occur then because no color class has size greater than
(2β + γ)n/D the number ` of colors i for which |Si| ≥ βn/D by this time satisfies

`(2β + γ)

D
+

2(q − `)β
D

≥ 2θ or
`γ + 2qβ

D
≥ 2θ.

We choose α = (1 + ε)(k − 1)1/(k−1) and θ = α(2β + γ)/2 < 1/2. Since q ≥ `, this implies
that

q

D
≥ 2θ

2β + γ
= α.

This completes the proof of Theorem 1.1, after replacing (1+ε) by (1+ε)1/(k−1) for aesthetic
purposes.
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2.1 Proof of Lemma 2.1

For expressions X, Y we sometimes use the notation X ≤O Y in place of X = O(Y ) when
the bracketing is “ugly”.

Now, (explanations for (6), (7), (8) and (9) below), if d is sufficiently large then

Pr(∃i, Ci, T )

≤O q
(
n
βn
D

)(
n
γn
D

) ∑
|S|=βn/D

P (Si = S)(1− p)
(2β+γ)knk

k!Dk (6)

≤ q

(
n
βn
D

)(
n
γn
D

) ∑
|S|=βn/D

(
βn

D

)
!(1− p)

(2β+γ)knk

k!Dk

βn/D∏
j=1

7

(1− 2θ)n(1− p)(
βn
D
−j+1) 2(2j−1)k−2

(k−2)!

(7)

≤O q
(
n
βn
D

)2(
n
γn
D

)(
βn

D

)
!

7
βn
D (1− p)

(2β+γ)knk

k!Dk

((1− 2θ)n)βn/D(1− p)
∑βn/D
j=1 (βnD −j+1) 2(2j−1)k−2

(k−2)!

≤O q
(
n
βn
D

)2(
n
γn
D

)(
βn

D

)
!

7
βn
D (1− p)

(2β+γ)knk

k!Dk

((1− 2θ)n)βn/D(1− p)
(2βn)k

2k!Dk

(8)

≤O q
(
n
βn
D

)2(
n
γn
D

)(
βn

D

)
!(1− p)

(
2nk((2β+γ)k)−(2β)k

2k!Dk

)
7
βn
D

((1− 2θ)n)
βn
D

≤O qn1/2

(
(eD)2β+γ

β2βγγ

(
7β

De(1− 2θ)

)β
exp

{
− d

Dk−1

(
2(2β + γ)k − (2β)k

2k!

)}) n
D

≤
(
cDβ+γ exp

{
−
(

2(2β + γ)k − (2β)k

2
log d

)}) n
D

, (9)

(where c = c(θ, β, γ) = O(1))

= o(1/n),

assuming (5).

Justifying (8):

βn/D∑
j=1

(
βn

D
− j + 1

)
2(2j − 1)k−2

(k − 2)!

≈
∫ βn/D

x=1

(
βn

D
− x+ 1

)
2(2x− 1)k−2

(k − 2)!
dx

=
1

(k − 2)!

∫ βn/D

x=1

((
2βn

D
+ 1

)
(2x− 1)k−2 − (2x− 1)k−1

)
dx
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=

(
2βn

D
+ 1

)(
(2βn/D − 1)k−1 − 1

2(k − 1)!

)
− (2βn/D − 1)k − 1

2k(k − 2)!

≤ (2βn/D)k

2k!
.

Justifying (9): We used the asymptotic formula for summation of k-th power of first n

natural numbers, i.e.
∑n

i=1 i
k ≈ nk+1

k+1

Justifying (6): There are q choices for color i. Then we take the union bound over all(
n

βn/D

)(
n

γn/D

)
possible choices of Ci \ Si and T . In some sense we are allowing Alice to

simultaneously choose all possible sets of size βn/D for Ci \ Si. The union bound shows
that w.h.p. all choices fail. We do not sum over orderings of Ci \ Si. We instead compute
an upper bound on Pr(Si = S) that holds regardless of the order in which Alice plays. We
consider the situation after θn rounds. That is, we think of the following random process:
pick a k-uniform hypergraph H ∼ H(n, p; k), let Alice play the coloring game on H with q
colors against a player who randomly chooses an available vertex to be colored by the same
color as Alice. Stop after θn moves. At this point Alice played with color i and there are
βn/D vertices that were colored i by Alice and the same number that were colored i by
Bob. We bound the probability that at this point there are γn/D vertices that form an
independent set with the color class Ci. We take a union bound over all the possible sets for
Alice’s vertices and for the vertices in T . The probability of Bob choosing a certain set is
computed next.

Justifying (7): Consider a sequence of random variables X1 = N = (1 − 2θ)n,Xj =

Bin(Xj−1, pj) where pj = (1− p)
2(2j−1)k−2

(k−2)! , 2 ≤ j ≤ t. Xj is a lower bound for the number of
vertices that Bob can color i and pj is a lower bound on the probability that a vertex v that
was i-available at step j−1 is also i-available after step j. The probability that a vertex v was

i-available at time j− 1 and is still i-available now is at least (1− p)(
2j−2
k−3 )(1− p)2(2j−2

k−2 ) ≥ pj.
Our estimate for pj arises as follows: there are at most 2(j − 1) vertices x1, . . . , x2(j−1) of
color i and each of the vertices z = y, y′ colored i in round j yield possible edges {v, z, xi, . . .}
that could remove v from Ci. There are also the edges {v, y, y′, xi, . . .} to account for.

We need to estimate E(Yt) where Yt = 1/(X1X2...Xt). 1/Xj is an upper bound for the prob-
ability that Bob chooses a particular vertex at step j and then Yβn/D is an upper bound on
the probability that Bob’s sequence of choices is x1, x2, ....xβn/D where S = {x1, x2, ...xβn/D}.
The following lemma is proven in [11]:

Lemma 2.2. If B = Bin(v, ρ), then E(
∏q

i=1
1

B+i−1
) ≤ 7

ρq

∏q
i=1

1
v+i

.

Using Lemma 2.2 we see that

Pr(Si = S) ≤ E

(
1

X1X2...Xt

)
≤ E

(
7

X1 · · ·Xt−1(Xt−1 + 1)pt

)
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≤ E

(
72

X1 · · ·Xt−2(Xt−2 + 1)(Xt−2 + 2)p2
t−1pt

)
...

≤
t∏

j=1

7

(N + j − 1)(1− p)(t−j+1)
2(2j−1)k−2

(k−2)!

≤
t∏

j=1

7

N(1− p)(t−j+1)
2(2j−1)k−2

(k−2)!

.

This completes the justification of (7).

3 Upper Bound

3.1 Simple density properties

For S ⊆ [n] and k = 2, 3 we let e3(S) = | {f ∈ E : f ⊆ S} and

e2(S) = {{x, y} ⊆ S : ∃y /∈ S such that {x, y, z} ∈ E} .

Lemma 3.1. If θ > 1 and (
σed

2θ

)θ
≤ σ

2e

then w.h.p there does not exist S ⊂ [n], |S| ≤ σn such that e2(S) ≥ θ|S|.

Proof.

Pr(∃S, |S| ≤ σn, e2(S) ≥ θ|S|) ≤
σn∑
s=2θ

(
n

s

)((s
2

)
θs

)(
1−

(
1− d

n2

)n−2)θs
≤

σn∑
s=2θ

(ne
s

)s (es
2θ

)θs(
1−

(
1− d

n

))θs
≤

σn∑
s=2θ

((ne
s

)(es
2θ

d

n

)θ)s

=
σn∑
s=2θ

(
e
( s
n

)θ−1
(
ed

2θ

)θ)s

= O

(
dθ

nθ−1

)
= o(1)
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Lemma 3.2. If θ > 1/2 and (
σ2ed

6θ

)θ
≤ σ

2e

then w.h.p. there does not exists S ⊆ [n], |S| ≤ σn such that e3(S) ≥ θ|S|.

Proof.

Pr(∃S, |S| ≤ σn, e3(S) ≥ θ|S|) ≤
σn∑

s=
√
θ

(
n

s

)((s
3

)
θs

)(
d

n2

)θs

≤
σn∑

s=
√
θ

(
ne

s
·
(
es2d

6θn2

)θ)s

=
σn∑

s=
√
θ

(
e
( s
n

)2θ−1

·
(
ed

6θ

)θ)s

= O

(
dθ

n2θ−1

)
= o(1)

For S ⊆ [n] and k = 1, 2 and vertex v, we let dS,k(v) denote the number of edges {v, x, y}
such that | {x, y} ∩ S| = k.

Lemma 3.3. Let σ and θ be as in Lemma 3.1. If (∆− 2θ)τ > 1 and(
σed

(∆− 2θ) τ

)(∆−2θ)τ

≤ σ

4e

then w.h.p there do not exist S ⊇ T such that |S| = s ≤ σn, |T | ≥ τs and dS,1(v) ≥ ∆, ∀v ∈
T .

Proof. In the light of Lemma 3.1, the assumptions imply that w.h.p. |e1(T : S \ T )| ≥
(∆− 2θ)τs. In which case,

Pr(∃S ⊇ T, |S| ≤ σn, |T | ≥ τs : |e1(T : S \ T )| ≥ (∆− 2θ)τs)

≤
σn∑
s=2θ

s∑
t=τs

(
n

s

)(
s

t

)(
st

(∆− 2θ)τs

)(
1−

(
1− d

n2

)n−2)(∆−2θ)τs

(10)

≤
σn∑
s=2θ

s∑
t=τs

(ne
s

)s
· 2s ·

(
eds

(∆− 2θ)τn

)(∆−2θ)τs

=
σn∑
s=2θ

s∑
t=τs

(
2ne

s
·
(

eds

(∆− 2θ)τn

)(∆−2θ)τ
)s
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=
σn∑
s=2θ

s∑
t=τs

(
2e
( s
n

)(∆−2θ)τ−1

·
(

ed

(∆− 2θ)τ

)(∆−2θ)τ
)s

(11)

= O

(
d(∆−2θ)τ

n(∆−2θ)τ−1

)
= o(1).

Lemma 3.4. Let σ and θ be as in Lemma 3.2 and (∆− 3θ)τ > 1 and(
σ2ed

2(∆− 3θ)τ

)(∆−3θ)τ

≤ σ

4e

then w.h.p there do not exist S ⊇ T such that |S| = s ≤ σn, |T | ≥ τs and dS,2(v) ≥ ∆,∀v ∈ T

Proof. In the light of Lemma 3.2, the assumptions imply that w.h.p. |e2(T : S \ T )| ≥
(∆− 3θ)τs. In which case,

Pr(∃S ⊇ T, |S| ≤ σn, |T | ≥ τs : |e1(T : S \ T )| ≥ (∆− 3θ)τs)

≤
σn∑
s=2θ

s∑
t=τs

(
n

s

)(
s

t

)(
s2t/2

(∆− 3θ)τs

)(
d

n2

)(∆−3θ)τs

≤
σn∑
s=2θ

s∑
t=τs

(ne
s

)s
· 2s ·

(
eds2

2(∆− 3θ)τn2

)(∆−3θ)τs

=
σn∑
s=2θ

s∑
t=τs

(
2ne

s
·
(

eds2

2(∆− 3θ)τn2

)(∆−3θ)τ
)s

=
σn∑
s=2θ

s∑
t=τs

(
2e
( s
n

)2(∆−3θ)τ−1

·
(

ed

2(∆− 3θ)τ

)(∆−3θ)τ
)s

= O

(
d(∆−3θ)τ

n(∆−3θ)τ−1

)
= o(1).

Now let

q = d2/3+δ and β =
q

3
and γ =

14 log d

q
,

for some small absolute constant δ > 0.

We will now argue that w.h.p. A can win the game if q colors are available.

A’s initial strategy will be the same as that described in [6]. Let C = (C1, C2, . . . , Cq) be a
collection of pairwise disjoint subsets of [n], i.e. a (partial) coloring. Let

⋃
C denote

⋃q
i=1Ci.

For a vertex v let

A(v, C) = {i ∈ [q] : v is not in an edge {v, x, y} such that x, y ∈ Ci} ,
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and set
a(v, C) = |A(v, C)|.

Note that A(v, C) is the set of colors that are available at vertex v when the partial coloring
is given by the sets in C and v 6∈

⋃
C. A’s initial strategy can now be easily defined. Given

the current color classes C, A chooses an uncolored vertex v with the smallest value of a(v, C)
and colors it by any available color.

As the game evolves, we let u denote the number of uncolored vertices in the graph. So, we
think of u as running “backward” from n to 0.

We show next that w.h.p. every q-coloring (proper or improper) of the full vertex set has
the property that there are at most γn vertices with less than β/2 available colors. For this
we need the following lemma.

Lemma 3.5. p = d/n2 and let x0 = (2/(− log(1− p)))1/2 ≈ (2/d)1/2n and

f(C) =

q∑
i=1

(1− p)c2i /2 where

q∑
i=1

ci = n.

Then we have that for n sufficiently large,

f(C) ≥

{
q(1− p)n2/2q2 qx0 ≤ n

q(1− p)x20/2 qx0 > n
.

Proof. We have that the function φ(x) = (1 − p)x
2/2 is convex in the interval [x0,∞]. It

follows from convexity that if I = {i : ci ≤ x0} then

f(C) ≥ |I|(1− p)x20/2 + (q − |I|)(1− p)(n−|I|x0)2/2(q−|I|)2 . (12)

Suppose now that x0 ≤ n/q. Then n−|I|x0
q−|I| ≥

n
q
. And then convexity and (12) implies

f(C) ≥ q

(
|I|
q
φ(x0) +

q − |I|
q

φ

(
n− |I|x0

q − |I|

))
≥ qφ

(
n

q

)
. (13)

If x0 > n/q then n−|I|x0
q−|I| < n

q
and then (12) implies that

f(C) ≥ q(1− p)x20/2.

Let
B(C) = {v : a(v, C) < β/2} .

Lemma 3.6. W.h.p., for all collections C,

|B(C)| ≤ γn.
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Proof. We first note that if |S| = γn then w.h.p. e2(S) ≤ 4γ2dn. This follows from Lemma
3.1 with σ = γ and θ = 4γd. It follows that for any ε > 0 that there is a set S ′1 ⊆ S of size
at least (1− ε)γn such that if v ∈ S ′1 then dS,1(v) ≤ 8ε−1γd. Furthermore, Lemma 3.2 with
σ = γ and θ = 3 implies that w.h.p. e3(S) ≤ 3γn. Therefore there is a set S ′′1 ⊆ S of size at
least (1− ε)γn such that if v ∈ S ′′1 then dS,2(v) ≤ ε−1. Let S1 = S ′1 ∪ S ′′1 .

Fix C and suppose that |B(C)| ≥ γn. Choose S ⊆ B(C) and let S1 be as defined above. For
v ∈ S1 let

b(v, C) = |{i ∈ [q] : v is not in an edge {v, x, y} such that x, y ∈ Ci \ S}| .

Thus a(v, C) ≥ b(v, C)− 8ε−1γd− ε−1. b(v, C) is the sum of independent indicator variables
Xi, where Xi = 1 if v is not in a hyperedge (v, x, y) such that x, y ∈ Ci \ S in Gn,p. Then

Pr(Xi = 1) ≥ (1− p)(
|Ci|
2 ) and since (1− p)t is a convex function of t and using the Lemma

3.5 we get

E(b(v, C)) ≥
q∑
i=1

(1− p)(
|Ci|
2 ) ≥ β.

It follows from the Chernoff bound (2) that

Pr(b(v, C) ≤ 0.51β) ≤ e−β/9.

Now, when C is fixed, the events {b(v, C) ≤ 0.51β} , v ∈ S1 are independent. Thus, because
a(v, C) ≤ β/2 implies that b(v, C) ≤ 0.51β we have

Pr(∃C : |B(C)| ≥ γn)

≤ qn
(

n

(1− ε)γn

)
e−(1−ε)γβn/9

≤ qn
(

e

(1− ε)γ
exp

{
−β

9

})(1−ε)γn

(14)

= exp

{
n

(
log q +

14(1− ε) log d

q

(
log

(
e

1− ε

)
− q

27

))}
= o(1),

for large d and small enough ε.

Let u0 to be the last time for which A colors a vertex with at least β/2 available colors, i.e.,

u0 = min
{
u : a(v, Cu) ≥ β/2, for all v 6∈

⋃
Cu
}
,

where Cu denotes the collection of color classes when u vertices remain uncolored.

If u0 does not exist then A will win. It follows from Lemma 3.6 that w.h.p. u0 ≤ 2γn and
that at time u0, every vertex still has at least β/2 available colors. Indeed, consider the final
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coloring C∗ in the game that would be achieved if A follows her current strategy, even if she
has to improperly color an edge. Let U = {v /∈ Cu0 : a(v, C∗) < β/2}. Now we can assume
that |U | ≤ γn. Because the number of colors available to a vertex decreases as vertices get
colored, from u0 onward, every vertex colored by A is in U . Therefore u0 ≤ 2γn. Next let
GU = (U, F ) be the graph with vertex set U and edges F where {x, y} ∈ F if there exists z
such that {x, y, z} ∈ E.

Now let u1 be the first time that there are at most 2γn uncolored vertices and a(v, Cu) ≥
β/2, for all v 6∈

⋃
Cu. By the above, w.h.p. u1 ≤ u0, so in particular w.h.p. u1 exists. A can

determine u1 but not u0, as u0 depends on the future.

A will follow a more sophisticated strategy from u1 onward. A will however play the remain-
der of the game on the graph GU . By this we mean that she will ensure that if {x, y} is a
GU -edge and x has color i at some stage, then she will not color y with color i even though
this is strictly admissible.

This weakens A and explains why our upper bound does not match our lower bound. On the
other hand, if she can properly color GU , then she will have succeeded in properly coloring
H = Hn,p;3. B of course, does not play by these rules. We will show next that we can
find a sequence U = U0 ⊇ U1 ⊇ · · · ⊇ U` with the following properties: The GU -edges of
Ui : (Ui−1 \ Ui) between Ui and Ui−1 \ Ui will be divided into two classes, heavy and light.
Vertex w is a heavy (resp. light) GU -neighbor of vertex v if the edge (v, w) is GU -heavy
(resp. GU -light).

(P1) Each vertex of Ui \ Ui+1 has at most one light GU -neighbor in Ui+1, for 0 ≤ i < `.

(P2) All Ui : (Ui−1 \ Ui) GU -edges are light for i ≥ 3.

(P3) Each vertex of Ui has at most 3β/50 GU -heavy neighbors in Ui−1 \ Ui for i = 1, 2.

(P4) Each vertex of Ui \ Ui+1 has at most β/3 GU -neighbors in Ui, for 0 ≤ i < `.

(P5) U` contains at most one GU -cycle.

From this, we can deduce that the GU -edges of U0 can be divided up into the GU -heavy
edges EH , GU -light edges FL, the GU -edges inside U` and the rest of the GU -edges. Assume
first that U` does not contain a GU -cycle. Φ = (U, FL) is a forest and the strategy in [10]
can be applied. When attempting to color a vertex v of Φ, there are never more than three
Φ-neighbors of v that have been colored. Since there are at most β/3 + 2 · 3β/50 non-Φ
neighbors, A will succeed since she has an initial list of size β/2.

If U` contains a GU -cycle C then A can begin by coloring a vertex of C. This puts A one move
behind in the tree coloring strategy, in which case we can bound the number of Φ-neighbors
by four.

It only remains to prove that the construction P1–P5 exists w.h.p. Remember that d is
sufficiently large here.
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We can assume without loss of generality that |U0| = 2γn. This will not decrease the sizes
of the sets a(v, U0).

3.2 The verification of P1–P4: Constructing U1

The general strategy will be as follows : We will consider two separate types of edge listed
below. To tackle each type, we will formulate corresponding lemmas that will be presented
subsequently.

Type 1: The edges {x, y} in GU such that {x, y, z} 6∈ E for all z ∈ U .

Type 2: The remaining edges where for {x, y} in GU , there is z ∈ U such that {x, y, z} ∈ E.

Note that dU(v) ≤ dU,1(v) + 2dU,2(v). Recall their definition just before Lemma 3.3.

Let L = 100. Applying Lemmas 3.3 and 3.4 separately with

σ = 2γ and θ =
ed

1
3
−δ log2 d

14
and ∆ = 3θ +

β

L
and τ =

θ

β
,

we see that w.h.p.

S1 = {v ∈ U0 : dU0,1(v) ≥ 3θ + β/L} satisfies |S1| ≤ 2τγn =
6e log3 d

d1+3δ
n.

S2 = {v ∈ U0 : dU0,2(v) ≥ 3θ + β/L} satisfies |S2| ≤ 2τγn =
6e log3 d

d1+3δ
n.

U ′1,a = {v ∈ U0 : dU0(v) ≥ 3∆} satisfies |U ′1,a| ≤ 4τγn =
12e log3 d

d1+3δ
n.

We then let U1,a ⊇ U ′1,a be the subset of U0 consisting of the vertices with the 4τγn largest
values of dU0 .

Let A0 = U0 \ U1,a and B0 =
{
v ∈ U1,a : |dA0(v)| ≥ 3β

L

}
. Iteratively we define

Ai :=
{
v ∈ Ai−1 : |dBi−1

(v)| ≥ 2
}

(15)

Bi :=

{
v ∈ Bi−1 : |dAi(v)| ≥ 3β

L

}
(16)

Lemma 3.7. W.h.p., 6 ∃ disjoint sets S, T ⊆ V (G), G = GU such that

t = |T | ≤ t0 =
100 log d

d
2
3

+δ
n and |S| ≥ s0 =

8L|T |
β

and dT,1(v) ≥ β

L
for all v ∈ S.

Proof. We observe that if S, T exist then one of the following two cases must occur:

12



C1: f(v) = | {u ∈ T : ∃w ∈ V (G) \ (S ∪ T ), {u,w, v} ∈ E(G)} | ≥ β
2L

for at least s0
2

vertices
v ∈ S.

C2: There are at least t = βs0
8L

hyperedges {u, v, w} such that u, v ∈ S and w ∈ T .

P(∃S, T satisfying C1) ≤
t0∑
t= β

L

(
n

t

)(
n

8Lt
β

) ((
t
β

2L

)(
d

n

) β
2L

) 8Lt
β

≤
t0∑
t= β

L

(ne
t

)t(neβ
8Lt

) 8Lt
β
(

2Lted

βn

)4t

=

t0∑
t= β

L

((
t

n

)3− 8L
β 16e5+8l/ββ8L/β−4d4

L8l/β−4

)t

≤ n

((
t0
n

)3− 8L
β 16e5+8l/ββ8L/β−4d4

L8l/β−4

)β/L

= o(1).

P(∃S, T satisfying C2) ≤
t0∑
t= β

L

(
n

t

)(
n

8Lt
β

)(( 8Lt
β

2

)
t

t

)(
d

n2

)t

≤
t0∑
t= β

L

(ne
t

)t(neβ
8Lt

) 8Lt
β
(

32L2t2ed

βn2

)t

≤
t0∑
t= β

L

((
t

n

)1−8L/β
32e1+8L/ββ8L/β−1d

L8L/β−2

)t

≤
log2 n∑
t= β

L

((
log2 n

n

)1−8L/β

d1/3

)t

+

t0∑
t=log2 n

((
t0
n

)1−8L/β

d1/3

)log2 n

= o(1).

Thus if B′ =
{
v ∈ U1,a : dA0,1(v) ≥ β

L

}
then w.h.p.

|B′| ≤ 8L

β
|U0| =

16Lγ

β
n =

2016L log d

d
4
3

+2δ
n.

13



Lemma 3.8. W.h.p 6 ∃ disjoint S, T s.t

t = |T | ≤ t0 =
30n log d

d
2
3

+δ
and |S| ≥ 2L|T |

β
and dT,2(v) ≥ β

L
for all v ∈ S. (17)

Proof.

P(∃S, T satisfying (17)) ≤
t0∑
t= β

L

(
n

t

)(
n

2Lt
β

)(((t
2

)
β
L

)(
d

n2

) β
L

) 2Lt
β

≤
t0∑
t= β

L

(ne
t

)t(neβ
2Lt

) 2Lt
β

((
t2dLe

2βn2

)β/L) 2Lt
β

=

t0∑
t= β

L

(ne
t

)t(neβ
2Lt

) 2Lt
β
(
t2dLe

2βn2

)2t

=

t0∑
t= β

L

((
t

n

)3−2L/β
e3+2L/ββ2L/β−2d2

4L2L/β−2

)t

≤
log2 n∑
t= β

L

((
t

n

)3−2L/β

d2/3

)β/L

+

t0∑
t=log2 n

((
t0
n

)3−2L/β

d2/3

)log2 n

= o(1)

Thus if B′′ =
{
v ∈ U1,a : dA0,2(v) ≥ β

L

}
then w.h.p.

|B′′| ≤ 2

β
L|U0| =

4Lγ

β
n =

504L log d

d
4
3

+2δ
n.

Clearly, B0 ⊆ B′ ∪B′′. Hence,

|B0| ≤ |B′ ∪B′′| ≤
10L

β
|U0| ≤

3000L log d

d
4
3

+2δ
n.

Let D2(S) = {v : dS,1(v) ≥ 2} for S ⊆ V (G).

Lemma 3.9. W.h.p., |D2(S)| < 3K|S|, ∀ |S| ≤ s0 = 3000L log d

d
4
3+2δ

n where K = d
2
3
−2δ log2 d.

Proof. Suppose that there exist S and T with |S| ≤ s0 and |T | = 3·K|S| such that ds,1(v) ≥ 2
for all v ∈ T . Then for v ∈ T , one of the following can occur.

D1: There are x, y ∈ S and a, b ∈ T such that {v, x, a}, {v, y, b} ∈ E(G).
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D2: There are x, y ∈ S and a ∈ T , b ∈ V (G) \ (S ∪ T ) such that {v, x, a}, {v, y, b} ∈ E(G).

D3: There are x, y ∈ S and a, b ∈ V (G) \ (S ∪ T ) such that {v, x, a}, {v, y, b} ∈ E(G).

Now we construct T ′ ⊆ T with |T ′| ≥ K|S| such that if v ∈ T then there exist x, y ∈ S and
a, b ∈ V (G) \ (S ∪ T ′) such that D1 holds. First, for every vertex of type D1, put v in T ′

and remove a, b from further consideration. Second, for every vertex of type D2, put v in T ′

and remove a from further consideration. Finally, for every vertex of type D3, put v in T ′.
We observe that for every v ∈ T ′ we have thrown away at most 2 vertices of T and hence
|T ′| ≥ K|S|. We will now estimate the probability of the existence of S, T ′.

P(∃ |S| ≤ s0, |D2(S)| ≥ 3K|S|) ≤
s0∑
s=2

(
n

s

)(
n

Ks

)((
s

2

)
n2

(
d

n2

)2
)Ks

≤
s0∑
s=2

(ne
s

)s ( ne
Ks

)Ks(s2d2

2n2

)Ks
=

s0∑
s=2

(( s
n

)K−1 eK+1d2K

KK2K

)s
= o(1)

Thus if A′ = {v ∈ A0 : v ∈ D2(B0)} then w.h.p.

|A′| ≤ 9000 log3 d

d
2
3

+4δ
n.

Let D′2(S) = {v : dS,2(v) ≥ 1} for S ⊆ V (G).

Lemma 3.10. W.h.p. |D′2(S)| ≤ K|S|, ∀ |S| ≤ 3000L log d

d
4
3+2δ

n where K = d
2
3
−2δ log2 d.

Proof.

P(∃ S ≤ s0, |D2(S) ≥ K|S|) ≤
s0∑
s=2

(
n

s

)(
n

Ks

)((
s

2

)
d

n2

)Ks
≤

s0∑
s=2

(ne
s

)s ( ne
Ks

)Ks( s2d

2n2

)Ks
=

s0∑
s=2

(( s
n

)K−1 eK+1dK

2KKK

)s
= o(1).
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So w.h.p. |A1| = |A′ ∪ A′′| ≤ 12000 log3 d

d
2
3+4δ

n. From (15), (16), Lemma 3.7 and Lemma 3.8 we

see that

|B1| ≤
10L

β
|A1|.

|A2| ≤ 4K|B1|.

|Bi| ≤
10L

β
|Ai| ≤

40KL

β
|Bi−1| ≤

(
40KL

β

)i
|B0|.

Using Lemmas 3.9 and Lemma 3.10,

|Ai+1| ≤ 4K|Bi| ≤ 4K

(
40KL

β

)i
|B0| ≤ 4K

(
40KL

β

)i
· 3000L log d

d
4
3

+2δ
n,

where KL
β

= 150d−3δ log2 d.

Let ζ =
⌈

2
δ

⌉
and let Y = N(Bζ) ∩ Aζ . Then,

|Y | ≤ |Aζ | ≤ 4K

(
40KL

β

)ζ−1

· 3000 log d

d4/3+2δ
n

= 12000(120L)ζ−1 · (log d)1+2ζ

d2/3+δ+δζ
n

≤ n

dζδ
≤ τγn.

Let U1 = U1,a ∪ Y . Then

|U1| ≤ 5τγn =
15e log3 d

d1+3δ
.

We now define the light and heavy edges in the following fashion,

Q1: The edges between Bi and Ai \ Ai+1 are light

Q2: The edges between Bi \Bi+1 and Ai+1 are heavy

Q3: The edges between U1 \ U1,a and U0 \ U1 are heavy

We now check that P1-P4 hold. First consider the light edges. For every vertex v ∈ U0 \U1

there is at most one light neighbour in U1. Because if v ∈ Ai and v 6∈ Ai+1 and there are
2 light neighbors x,w of v in U1, by Q1, x,w ∈ Bi and that would contradict the fact that
v 6∈ Ai+1. This implies that P1 holds.

We will argue next that for all v ∈ U1, dU0\U1(v) ≤ 3∆ ≤ 3β
50

. For v 6∈ U1,a this is true from
the definition of U1,a. Similarly, for v /∈ B0. Now consider v ∈ Bi \ Bi+1, i ≥ 0. It only has
light neighbors in Ai \Ai+1 and if v has more than 3β

L
heavy neighbors in Ai+1 then v should

be in Bi+1, which is a contradiction. Because it is also in Bj, j ≤ i − 1 it only has light
neighbors in (Ai−1 \ Ai) ∪ (Ai−2 \ Ai−3) ∪ · · · = A0 \ Ai. Clearly P3, P4 hold.
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3.3 The verification of P1–P4: Constructing U2

Applying Lemma 3.3 and 3.4 separately with

σ =
15e log3 d

d1+3δ
and θ =

L

δ
and ∆ = 3θ +

β

L
and τ =

θ

β
,

we see that w.h.p.

S1 = {v ∈ U1 : dU1,1(v) ≥ 3θ + β/L} satisfies |S1| ≤ τσn =
45eL log3 d

δd5/3+4δ
n.

S2 = {v ∈ U1 : dU1,2(v) ≥ 3θ + β/L} satisfies |S2| ≤ τσn =
45eL log3 d

δd5/3+4δ
n.

U ′2,a = {v ∈ U1 : dU1(v) ≥ 3∆} satisfies |U ′2,a| ≤ 2τσn =
90eL log3 d

δd5/3+4δ
n.

We then let U2,a ⊇ U ′2,a be the subset of U1 consisting of the vertices with the 2τσn largest

values of dU1 . As in Section 3.2, define A0 = U1\U2,a and let B0 =
{
v ∈ U2,a : |dA0(v)| ≥ 3β

L

}
.

Iteratively we define
Ai :=

{
v ∈ Ai−1 : |dBi−1

(v)| ≥ 2
}

Bi :=

{
v ∈ Bi−1 : |dAi(v)| ≥ 3β

L

}

Let B′ =
{
v ∈ U2,a : dA0,1(v) ≥ β

L

}
. Using Lemma 3.7, we see that w.h.p., |B′| ≤ 8L|U1|

β
≤

360eL log3 d

d
5
3+4δ

n.

Let B′′ =
{
v ∈ U2,a : dA1,2(v) ≥ β

L

}
. Using Lemma 3.8, we see that w.h.p. |B′′| ≤ 90eL log3 d

d
5
3+4δ

n.

Clearly, B0 ⊆ B′ ∪B′′. Therefore, w.h.p.,

|B0| ≤ |B′ ∪B′′| ≤
450eL log3 d

d
5
3

+4δ
n.

Arguing as in Section 3.2 we see that w.h.p.

Bi| ≤
10L

β
|Ai| ≤

40KL

β
|Bi−1| ≤

(
40KL

β

)i
|B0|.

|Ai+1| ≤ 4K|Bi| ≤ 4K

(
40KL

β

)i
|B0|

Remember that ζ =
⌈

2
δ

⌉
and let Y = N(Bζ) ∩ Aζ . Then,

|Y | ≤ |Aζ | ≤ 4K

(
40KL

β

)ζ−1

· 3000 log d

d4/3+2δ
n ≤ n

d2
.

17



Let U1 = U1,a ∪ Y . Then w.h.p.

|U1| ≤ 5τγn =
15e log3 d

d1+3δ
.

We now define the light and heavy edges in the following fashion,

Q1: The edges between Bi and Ai \ Ai+1 are light

Q2: The edges between Bi \Bi+1 and Ai+1 are heavy

Q3: The edges between U1 \ U1,a and U0 \ U1 are heavy

We now check that P1-P4 hold. First consider the light edges. For every vertex v ∈ U0 \U1

there is at most one light neighbour in U1. Because if v ∈ Ai and v 6∈ Ai+1 and there are
2 light neighbors x,w of v in U1, by Q1, x,w ∈ Bi and that would contradict the fact that
v 6∈ Ai+1. This implies that P1 holds.

We will argue next that for all v ∈ U1, dU0\U1(v) ≤ 3∆ ≤ 3β
50

. For v 6∈ U1,a this is true from
the definition of U1,a. Similarly, for v /∈ B0. Now consider v ∈ Bi \ Bi+1, i ≥ 0. It only has
light neighbors in Ai \Ai+1 and if v has more than 3β

L
heavy neighbors in Ai+1 then v should

be in Bi+1, which is a contradiction. Because it is also in Bj, j ≤ i − 1 it only has light
neighbors in (Ai−1 \ Ai) ∪ (Ai−2 \ Ai−3) ∪ · · · = A0 \ Ai. Clearly P3, P4 hold.

3.4 The verification of P1–P4: Constructing U2

Applying Lemma 3.3 and 3.4 separately with

σ =
15e log3 d

d1+3δ
and θ =

L

δ
and ∆ = 3θ +

β

L
and τ =

θ

β
,

we see that w.h.p.

S1 = {v ∈ U1 : dU1,1(v) ≥ 3θ + β/L} satisfies |S1| ≤ τσn =
45eL log3 d

δd5/3+4δ
n.

S2 = {v ∈ U1 : dU1,2(v) ≥ 3θ + β/L} satisfies |S2| ≤ τσn =
45eL log3 d

δd5/3+4δ
n.

U ′2,a = {v ∈ U1 : dU1(v) ≥ 3∆} satisfies |U ′2,a| ≤ 2τσn =
90eL log3 d

δd5/3+4δ
n.
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We then let U2,a ⊇ U ′2,a be the subset of U1 consisting of the vertices with the 2τσn largest

values of dU1 . As in Section 3.2, define A0 = U1\U2,a and let B0 =
{
v ∈ U2,a : |dA0(v)| ≥ 3β

L

}
.

Iteratively we define
Ai :=

{
v ∈ Ai−1 : |dBi−1

(v)| ≥ 2
}

(18)

Bi :=

{
v ∈ Bi−1 : |dAi(v)| ≥ 3β

L

}
(19)

Let B′ =
{
v ∈ U2,a : dA0,1(v) ≥ β

L

}
. Using Lemma 3.7, we see that w.h.p., |B′| ≤ 8L|U1|

β
≤

360eL log3 d

d
5
3+4δ

n.

Let B′′ =
{
v ∈ U2,a : dA1,2(v) ≥ β

L

}
. Using Lemma 3.8, we see that w.h.p. |B′′| ≤ 90eL log3 d

d
5
3+4δ

n.

Clearly, B0 ⊆ B′ ∪B′′. Therefore, w.h.p.,

|B0| ≤ |B′ ∪B′′| ≤
450eL log3 d

d
5
3

+4δ
n.

Arguing as in Section 3.2 we see that w.h.p.

Bi| ≤
10L

β
|Ai| ≤

40KL

β
|Bi−1| ≤

(
40KL

β

)i
|B0|.

|Ai+1| ≤ 4K|Bi| ≤ 4K

(
40KL

β

)i
|B0|

With ζ =
⌈

2
δ

⌉
and K = d

2
3
−2δ log2 d as before and Y = N(Bζ) ∩ Aζ we get

|Y | ≤ |Aζ | ≤ 4K

(
40KL

β

)ζ−1

· 450eL log3 d

d5/3+4δ
n ≤ n

d2
.

Letting γ2 = 500Le log3 d
δd5/3+4δ and U2 = U2,a ∪ Y we see that w.h.p. |U2| ≤ γ2n.

We can define heavy and light edges as in U1 and P1-P4 follows.

3.5 The verification of P1–P4: Constructing U3

Applying Lemma 3.3 and 3.4 separately with

σ =
500eL log3 d

δd5/3+4δ
and θ =

5

2
and ∆ = 3θ +

β

L
and τ =

Lθ

β
,

we see that w.h.p.

S1 = {v ∈ U2 : dU2,1(v) ≥ 3θ + β/L} satisfies |S1| ≤ τσn =
1250Le log3 d

δd7/3+5δ
n.
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S2 = {v ∈ U2 : dU2,2(v) ≥ 3θ + β/L} satisfies |S2| ≤ τσn =
1250Le log3 d

δd7/3+5δ
n.

U ′3 = {v ∈ U2 : dU2(v) ≥ 3∆} satisfies |U ′3| ≤ 2τσn =
2500Le log3 d

δd7/3+5δ
n.

We now construct U3 ⊇ U ′3 by repeatedly adding vertices y1, y2, ..ys of U2 \U ′3 such that yj is
the lowest numbered vertex not in Yj = U ′3 ∪ {y1, y2....yj−1} that has at least two neighbors
in Yj in G. W.h.p., this process terminates with j = t ≤ 39|U ′3|. We can apply Lemma 3.2
to see that w.h.p. this does not happen. Indeed, let S0 = U ′3. We add vertices to Sj−1 to
create the set Sj iteratively. In this procedure we encounter two cases.

• ∃x,w ∈ Yj such that (yj, x, w) ∈ E(G). Then Sj = Sj−1 ∪ {yj}.

• ∃x,w ∈ Yj and a, b 6∈ Yj such that (x, a, yj), (w, b, yj) ∈ E(G). Then Sj = Sj−1 ∪
{yj, a, b}

Note that we are adding at least 2 hyper-edges for every 3 vertices added to St. If s ≥ 39|U ′3|,
then e3(Ss) ≥ 13

20
|Ss|. Apply Lemma 3.2 with θ = 13

20
and σ = 120 · 2500Le log3 d

δd7/3+5δ to conclude
that t ≤ 39|U ′3|.

Putting U3 = U ′3 ∪ St we see that each vertex in U2 \ U3 has at most one G-neighbor in U3.
We can therefore make the U3 : (U2 \ U3) edges light and satisfy P1, P2 and P4.

3.6 The verification of P1-P5 : Construction of Ui, i ≥ 4

We repeat the argument of Section 3.5 to construct the rest of the sequence U0 ⊇ U1 ⊇ U2 ⊇
... ⊇ Ul. One can check that |Ui| ≤ 200L

β
|Ui−1|. We choose l so that |Ul| ≤ log n. We can then

easily prove that w.h.p. S contains at most |S| edges of G whenever |S| ≤ log n, implying
P5.

4 Final remarks

We have shown lower bounds for the game chromatic number of random k-uniform hyper-
graphs and upper bounds for random 3-uniform hypergraphs. The lower bound is satisfactory
in that it is within a constant factor of the chromatic number. The upper bound is most
likely not tight, but it is still non-trivial in that it is much smaller than d.

We conjecture that the upper bound can be reduced to within a constant factor of the lower
bound. It would also be of interest to consider upper bounds for k-uniform hypergraphs,
k ≥ 4.
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