
SCALEFREE HARDNESS OF AVERAGE-CASE EUCLIDEAN TSP

APPROXIMATION

ALAN FRIEZE AND WESLEY PEGDEN

Abstract. We show that if P 6= NP, then a wide class of TSP heuristics
fail to approximate the length of the TSP to asymptotic optimality, even for

random Euclidean instances. Previously, this result was not even known for

any heuristics (greedy, etc) used in practice. As an application, we show that
when using a heuristic from this class, a natural class of branch-and-bound

algorithms takes exponential time to find an optimal tour (again, even on a

random point-set), regardless of the particular branching strategy or lower-
bound algorithm used.

1. Introduction

In this manuscript, we prove that if P 6= NP, then scalefree heuristics cannot
find asymptotically optimal approximate solutions even to random instances of the
Euclidean TSP. Roughly speaking, scalefree heuristics are those which do not work
especially hard at small scales. This has two important consequences.

First, it shows rigorously for the first time that several simple heuristics used for
the TSP (Nearest Neighbor, Nearest-Insertion, etc.) cannot approximate the TSP
to asymptotic optimality (even in average-case analysis), since these heuristics are
all scalefree. In particular, our result can be seen as a defense of the intricacy of the
celebrated polynomial-time approximation schemes of Arora [1] and Mitchell [15]
for the Euclidean TSP, as we can show that the simpler algorithms cannot match
their peformance on sufficiently large random instances.

The second consequence is a new view on the complexity of the Euclidean TSP
versus other “actually easy” problems on Euclidean point-sets. Recall that for
problems such as determining whether a Minimum Spanning Tree of cost ≤ 1 exists,
or finding the shortest path between 2 points from a restricted set of allowable edges,
the complexity status in the Euclidean case is unknown, as no algorithm is known
to efficiently compare sums of radicals. In particular, it is conceivable that these
problems are NP-hard (even if P 6= NP) as is the Euclidean TSP [16, 8]. Just as
there are (sophisticated) efficient approximation algorithms for the Euclidean TSP,
there are (trivial) efficient approximation algorithms for, say, the MST also: simply
carry out Kruskal’s algorithm and calculate the length of the spanning tree to some

Date: July 31, 2019.
Research supported in part by NSF grant DMS-1362785.
Research supported in part by NSF grant DMS-1363136.

1

2 ALAN FRIEZE AND WESLEY PEGDEN

suitable precision, to obtain a good approximation. Our result allows a rigorous
distinction between these types of approximations: Kruskal’s algorithm is scalefree
in the sense of our paper, and we show that no algorithm with this property can
well approximate the Euclidean TSP.

In particular, a surprising message from our result is that it is possible to connect
Turing machine complexity to the practical difficulty of a problem for Euclidean
point-sets, in spite of the unresolved state of the difficulty of comparing sums of
radicals. In particular our result connects traditional worst-case deterministic anal-
ysis to average-case, approximate analysis of the Euclidean TSP, for a certain class
of algorithms.

To motivate our definition of scalefree, we recall a simplification of the dissection
algorithm of Karp, which succeeds at efficiently approximating the length of the
shortest TSP tour in a random point set to asymptotic optimality.

(1) Let s(n) = b n1/d

log1/d(n)
cd and divide the hypercube [0, 1]d into s(n) congruent

subcubes Q1, . . . , Qs(n), letting Xi = X ∩Qi for each i = 1, 2, . . . , s(n).
(2) Using the dynamic programming algorithm of Held and Karp [9], find an

optimal tour Ti for each set Xi.
(3) Patch the tours Ti into a tour through all of X.

This algorithm runs in expected time O(n2 log n) and finds an asymptotically op-
timal tour; i.e., the length of T is (1 + o(1)) times the optimal length, w.h.p. In
some sense, its defining feature is that it works hard (running in exponential time
in small sets of vertices) on a small scale, and is more careless on a large scale. Our
definition of scalefree is intended to capture algorithms which do not exhibit this
kind of behavior.

We will define a heuristic H to be a function which takes as input the distance
matrix for a point-set X, and outputs a structure (in this paper, either a TSP of
X or a list of paths through X) which depends only on comparisons of sums of
distances in X.

Formally, given the matrix of distances d1, . . . , d(n
2)

among points in X, for each

choice of coefficients ξi ∈ {0, 1,−1} (1 ≤ i ≤
(
n
2

)
), the sum

∑
ξidi is either negative,

zero, or positive. If all 3(n
2) − 1 nontrivial sums are nonzero, we say the points

of X are in general position. Now, H is a heuristic if for any points in general

position, these 3(n
2) − 1 sums determine the output of H. We call the heuristic

H polynomial-time if it is always possible to determine the output of the function
with only polynomially-many comparisons.

Our definition of scalefree requires that the small-scale behavior of a heuristic can
be efficiently simulated (usually, by simply running the heuristic on the local data).
Care must be taken when making this precise, and our precise definitions of scale-
free, together with proofs that commonly used heuristics satisfy the definition, are
given in Section 2. Our main theorem is as follows:

SCALEFREE HARDNESS OF AVERAGE-CASE EUCLIDEAN TSP APPROXIMATION 3

Theorem 1.1. If H(X) is a scalefree polynomial-time TSP heuristic and P 6= NP,
then there is an εH > 0 so that w.h.p, H(X̄n) has length greater than (1+εH) times
optimal, where X̄n is a discretization of the random set Xn ⊆ [0, 1]d.

Note that it is possible that a polynomial-time heuristic as we have defined it may
not actually be implementable in polynomial time on a Turing machine, since the
calls to the comparison blackbox may not be efficiently implementable, depending
on the hardness of comparing sums of radicals. But our theorem applies even just
if the number of comparisons is polynomially bounded.

We will also consider the effectiveness of a scalefree heuristic in the context of a
Breadth-First Branch and Bound algorithm. Defined precisely in Section 5, this is a
branch-and-bound algorithm which branches as a binary tree, which is explored in
a breadth-first manner. Branch-and-bound algorithms used in practice do typically
satsify this definition, as they make use of an LP-based lower bound on the TSP,
and branch on the binary {0, 1}-possibilities for fractional variables.

Theorem 1.2. Any Breadth-First Branch and Bound algorithm that employs a
scalefree heuristic to generate upper bounds w.h.p. requires eΩ(n) time to complete.

We close this section by noting that our proof of Theorem 1.1 provides a recipe
to attempt to eliminate the P 6= NP assumption for any specific, fixed scalefree
heuristic H as follows. Let L be any decision problem in NP.

Theorem 1.3. For any scalefree polynomial-time TSP heuristic H(X), there is a
polynomial-time algorithm AH such that for any L ∈ L, we have:

(a) If L /∈ L, then AH(L) returns false.
(b) If L ∈ L, then AH(L) returns either true, or exhibits an εH > 0 and a

proof that H(X̄n) has length greater than (1 + εH) times optimal w.h.p.

2. Scalefreeness of heuristics

In this section, we will in fact give two definitions of scalefree, the first simpler but
more restrictive, and the second more general, but significantly more complicated.

For simplicity of notation, we will let t = n
1
d and work with Yn ⊆ [0, t]d, defined as

the rescaling t · Xn. Observe that with this choice of rescaling, a typical vertex in
Yn is at distance Θ(1) away from its nearest neighbor.

Our notion of scalefreeness captures a common property of many simple TSP heuris-
tics: namely, the small-scale behavior of the algorithm can be efficiently simulated
(because it is essentially governed by the same rules as the large-scale behavior).
To give a precise definition of scalefree, we will use the notion of a polynomial-time
path-finding heuristic AH for the Heuristic H:

Definition 2.1. A polynomial-time path-finding heuristic is an algorithm which
has access to a blackbox for making comparisons of sums of distances among the
input points, and outputs a list of Hamilton paths through a set of points in general

4 ALAN FRIEZE AND WESLEY PEGDEN

position in time polynomial in the number of points, given the distance matrix
through the point set.

Now we are ready for the simpler of our two definitions of scalefree:

Definition 2.2. Call H scalefree if there exists a constant R and a polynomial-
time path-finding Heuristic AH , such that given an input set X for H, the following
implication holds for all sets Sp = B(p, 1) ∩X:

If:

(a) The annulus B(p,R) \B(p, 1) around Sp contains no points of X,
(b) The points of Sp are in general position,

Then: H traverses S in a path, which belongs to the list produced produced by
AH when a congruent copy of S is used as the input to AH .

(Here, B(p, r) is the Euclidean ball of radius r centered at p.)

Perhaps the best motivation for this definition is simply the proofs that it is satisfied
on some important examples. We begin with the Greedy heuristic, which produces
a tour by adding, at each step, the shortest edge which would not create a non-
Hamilton cycle or a vertex of degree 3. (Note that if there is a tie, the points are
not in general position, and we allow Greedy to have undefined behavior).

Fact 2.3. The Greedy Heuristic Greedy(X) Heuristic is scalefree.

Proof. For Greedy(X), we let R = 3, say. AGreedy is defined simply to be the
Greedy heuristic for choosing a Hamilton path, which adds at each stage the shortest
edge which would not create a cycle or a vertex of degree 3; as usual, when the input
points are not in general position, the behavior of the AGreedy can be arbitrary.

Given a set Sp = B(p, 1)∩X, the distance between any two points in Sp is smaller
than the distance across the annulus B(p, 3) \ B(p, 1), and so at some stage of
Greedy on X, Sp will be covered by a path, while no edges cross the annulus.
Assuming the points of Sp are in general position, this is the same as the path that
will be returned by AH . �

This case was particularly simple. For example, AGreedy actually always outputs
just a single path, instead of a list. For the Nearest Neighbor algorithm, things are
just slightly more complicated:

Fact 2.4. The Nearest Neighbor heuristic NN(X) is scalefree.

Proof. Recall that the Nearest Neighbor heurstic NN(X) begins from a distin-
guished point x0 ∈ X, and then grows a path by choosing, at each step, the nearest
vertex to the current one not already on the path. (In the last step, the endpoints
of the Hamilton path are joined to create a tour.) To show that NN(X) is scalefree,

SCALEFREE HARDNESS OF AVERAGE-CASE EUCLIDEAN TSP APPROXIMATION 5

we again let R = 3; we then consider a set Sp = B(p, 1) ∩X such that the annulus
B(p, 3) \B(p, 1) contains no points of X.

Observe that as NN(X) progresses, there will be some first step when the heuristic
chooses a point from Sp. Thereafter, since all points in Sp are closer to each other
than to points in X \ Sp, it will exhaust the points in Sp before revisiting X \ Sp.

Thus, we let ANN(S) be the algorithm which uses the Nearest Neighbor heuristic to
choose a path through S for each choice of the initial vertex x in S. In particular,
ANN(S) will output up to |S| distinct paths through S. (Again, if any ties would be
encountered, the points of S are not in general position and so ANN(S) is allowed to
have undefined behavior.) With this choice of ANN(S), the path taken by NN(X)
through S will be among the list produced by ANN(S), assuming the points of S
are in general position. �

These examples show the essential character of the notion of a scalefree heuristic.
But if we restrict ourselves to Definition 2.2, it would seem we cannot hope to
show that some other common heuristics are scalefree. Consider, for example,
the Nearest-Insertion heuristic Near-Insert(X), which begins with a triangle on
vertices x1, x2, x3 ∈ X, and then, at each step, grows the existing cycle by finding
the vertex nearest to the vertex set of the existing cycle, and inserts the vertex
into the existing cycle at minimum cost. If we consider an isolated collection of
vertices Sp, predicting the local behavior of Near-Insert(X) at Sp seems difficult.
Consider for example the first step at which the insertion of a vertex s ∈ Sp occurs,
joined to vertices x and y already on the cycle. The next vertex in Sp to be joined
to the cycle depends not only on Sp and the vertex s but also potentially on the
positions of the vertices x and y, which are outside the “local configuration”.

But it will turn out that this is not really a problem. The theorems we prove essen-
tially will work with any definition of scalefreeness where the implication Definition
2.2 is only required to hold for some reasonable fraction of sets Sp. Since X is
itself a random set in our Theorems, this means that we can impose any number of
reasonable restrictions on the set Sp in the implication, and still have the resulting
notion of scalefree be strong enough for our techniques to give Theorem 1.1.

One way we will do this is by restricting the implication to sets Sp surrounded
by special configurations of points. To this end, given X ⊆ [0, t]d and Y =
{y1, y2, . . . , yK} ⊆ [0, 2R]d, we say X is (R, ε)-protected by Y at p if

X ∩ (B(p,R) \B(p, 1)) = Y ′ ≈ε (Y + p) and Y ′ ⊆ B(p,
√
R).

Here, A ≈ε B means that there is a bijection f from A to B such that for all a ∈ A,
dist(a, f(a)) < ε.

Thus, roughly speaking, a set is (R, ε)-protected by Y at p if it is surrounded by a
nearly-congruent copy of Y in an annulus containing no other points of X. Notice
that requirement (a) on Sp in Definition 2.2 is simply the requirement that Sp is
(R, ε)-protected by Y = ∅. One way we will generalize Definition 2.2 is simply
by allowing the restriction of the implication to subsets Sp of X which are (R, ε)-
protected by a fixed set YH other than ∅.

6 ALAN FRIEZE AND WESLEY PEGDEN

In particular, the following generalization of scalefreeness adds several restrictions
to the sets Sp required to satisfy the implication (thus generalizing the definition)
in a way which is tailor-made to be sufficient to easily include common insertion
heuristics.

Definition 2.5. H is scalefree if there exists R, ε, some gadget

Y = {y1, y2, . . . , ys} ⊆ B(0,
√
R) \B(0, 1),

and a polynomial path-finding heuristic AH , such that given an input set X for H,
there is a bounded-size exceptional set X0 such that the following implication holds

If: We have:

(a) X is (R, ε)-protected by Y at p.
(b) The points of B(p,R) ∩X are in general position.
(c) B(p,R) ∩X contains no points of the exceptional set X0.
(d) The tour TH found by H traverses Sp ∪ Y in a single path PH , whose

length is within ε of the length of the shortest path through Sp with the
same endpoints.

(e) The vertices x, y ∈ X \ PH adjacent in TH to the endpoints of PH satisfy
∠xpq,∠ypq < ε, where q = p+ (1, 0).

Then: The path PH by which H traverses Sp belongs to the list produced by AH
when a congruent copy of Sp is used as the input to AH .

Again we motivate the applicability of this definition by example. Recall that the
Nearest Insertion heuristic Near-Insert(X) begins, say, with T as the triangle
on distinguished vertices x1, x2, x3 ∈ X. (For Definition 2.5, we will choose this
triple of vertices as the exceptional set X0.) At each step of the algorithm until
T is a tour, the Nearest Insertion algorithm finds the vertex z in X \ T which is
closest to V (T), finds the edge {x, y} ∈ T for which C = d(x, z) + d(y, z)− d(x, y)
is minimized, and patches the vertex z in between x and y in the tour, at cost C.

Fact 2.6. Near-Insert(X) is scalefree.

Proof. We let X0 be the set of distinguished vertices x1, x2, x3 ∈ X which are
the vertex-set of the initial tour for Near-Insert(X). We will assume R is a
large constant and ε is a small constant, without determining the weakest possible
requirements on their magnitudes.

To prove scalefreeness, we first observe that given an Sp which is (R, ε)-protected
by the gadget Y , we need only show the implication of Definition 2.5 holds for Sp
assuming that there is only ever one insertion of a vertex from Y ∪ S at an edge
whose endpoints both lie outside of Y ∪ S; if more than one such insertion occurs
in the running of Near-Insert, then the final tour chosen by the Heuristic will
not intersect Y ∪ S at a path, violating condition (d) in the definition.

We use the gadget Y shown in Figure 1. This consists of, say, 18 equally spaced
points at angles (2k − 1)π/18 to the horizontal (k = 1, . . . , 18), on the circle of

radius
√
R with center p+ (0,

√
R
2).

SCALEFREE HARDNESS OF AVERAGE-CASE EUCLIDEAN TSP APPROXIMATION 7

b

b

b

b
b

b

b

b

b

b

b

b

b
b

b

b

b

b

x1
x9

x10
x18

b

b

y

x

Figure 1. (Proving that the Nearest Insertion heuristic is scale-
free.) The gadget Y (consisting of the 18 points xi) prevents the
optimal tour from entering directly to a vertex in S ⊆ B(p, 1).
The boundary of B(p, 1), which contains all points in the set Sp,
is drawn as the tiny circle.

Hypothesis (e) from the implication in Definition 2.5 ensures that the two vertices
in TH adjacent to vertices in B(R, p) are significantly closer to the points x1, x18

than to any other points of B(R, p). Now the path drawn in Figure 1 transits
S ∪ Y optimally given that it uses these endpoints (assuming the route through S
is optimal), and in particular, it follows that for a sufficiently small choice of ε, if
the hypothesis (d) and (e) are satisfied in Definition 2.5, then the tour TNear-Insert

traverses X ∩B(p,R) as shown in Figure 1 (and transits S within ε of optimally).

Assuming this is the case, we aim to predict the precise path taken by the heuristic
(in particular, in S). Our choice of Y ensures that the subtour constructed by
Near-Insert(X) will contain all of Y before it contains any vertex from S; thus,
we are guaranteed that the two edges leaving B(p,R) are never used for insertions
of points in Sp (as there is always a cheaper insertion using closer edges). Since
no edges with both endpoints outside of B(p,R) are used for insertions after the
first insertion, all insertions of points in S have both endpoints in B(p,R) ∩ X.
In particular, we can use the nearest insertion algorithm locally to determine the
resulting path: our path finding Heuristic ANear-Insert for this case simply begins
with a path from x1 to x18 through Y , and uses Nearest Inserstion to extend this
to a path through all of B(p,R). (Recall that in the case of any ties, the input set
is not in general position and so we require nothing of the behavior of ANear-Insert.)

We note that with small modifications, it is not hard to extend the scalefreeness
proof to the Farthest Insertion heuristic, which inserts at minimum cost the farthest
vertex from the vertex-set of the current subtour. The main problem is just that the
heuristic will visit S before exhausting Y . However, it will only visit one vertex of
S before exhausting Y , which means that we can (at polynomial cost) simply guess
the first vertex of S visited by the heuristic, and so AH will output a polynomially-
long list of candidate paths. �

8 ALAN FRIEZE AND WESLEY PEGDEN

3. Proof outline

We begin by giving a broad outline of the proof of Theorem 1.1, so that the reader
can have a preview of the overall structure of the argument. We begin by dis-
cussing the task of proving that a Heuristic satisifes the simpler and more powerful
Definition 2.2 definition of scalefree.

The proof begins by leveraging Papadimitriou’s reduction [16] of the NP-complete
Set Partition problem to the Hamilton path problem. Given any instance of the Set
Partition problem, Papadimitrou constructs a set of points and a threshold such
that a tour shorter than the threshold exists if and only if the Set-Partition problem
is feasible.

Next, we surround this point set with a suitable arrangement of two points to create
a configuration Q, which has the property that if the optimal tour through a set
X ⊃ Q transits Q in a single pass, then in doing so, it transits the Papadimitriou
set optimally (thus solving the corresponding Set Partition problem).

Next we use the path-finding Heuristic AH guaranteed to exist by Definition 2.2 to
define an algorithm to solve the Set Partition problem as follows:

• Generate the set Q as above corresponding to the given Set Partition in-
stance through Papadimitriou’s reduction,
• Use AH to produce a list of paths through Q,
• If any path is below the threshold given by Papadimitrou’s reduction, return

TRUE; otherwise, return FALSE.

We will show the this algorithm can be suitably adapted to the Turing machine
setting with polynomial running time, despite the the obvious questions about how
to deal with precision issues.

Now, if P 6= NP, if must be the case that on some instance of the Set Partition
problem, this algorithm gives the wrong answer. Note that when it answers in-
correctly, it necessarily answers FALSE. (It can fail to find a short tour, but not
incorrectly report the existence of a short tour.)

But for this instance of the Set Partition problem, the corresponding set Q has the
property that any time Q ⊂ X, and the Heuristic H finds a tour through X, it will
transit Q suboptimally.

Finally, we will apply a Lemma we proved in [7], which shows that if X consists
of n independent uniformly random points in the unit square, than X contains
linearly many approximate copies of the set Q. These approximate copies will be
close enough to Q that the tour will still transit them suboptimally, gaining some
excess length for each copy, and linearly many such copies are sufficient to ensure
a multiplicative (1 + ε) error in the final tour length.

SCALEFREE HARDNESS OF AVERAGE-CASE EUCLIDEAN TSP APPROXIMATION 9

The proofs below are written for the weaker, more complicated Definition 2.5. The
only important modifications to the above outline are surrounding Q with more
configuations of points, so that:

• the set Y required by Definition 2.5 is present,
• it is necessarily the case that Q is transited in a single pass,
• the angle of entry/exit from Y is controlled, as required by Definition 2.5.

4. Asymptotic length of scalefree heuristics

Our proof involves a multi-layered geometric construction of a configuration, which,
when it exists, will ensure that it contains a special set S satisfying hypotheses (a),
(b), (c), (d), (e) of the implication in definition of scalefreeness. We consider the
layers one at a time.

4.1. Papadimitrou’s set P. Our proof begins with Papadimitriou’s reduction
[16] to the TSP path problem from the NP-complete Set Partition problem. This
will form the basis for the sets S we wish to apply the definition of scalefreeness to.

Recall that an instance of the Set Partition problem is a family of subsets Ai, i =
1, 2, . . . ,M of [N] = {1, 2, . . . , N}; the decision problem is to determine whether
there is a subfamily which covers [N] and consists of pairwise disjoint sets.

In particular, Papadimitriou shows that for any instance (A, N) of the set cover
problem, there is a k (polynomial in the size of the Set Partition problem), and a

set of k points P = P(A, N) in [0,
√
k]2 with distinguished vertices p and q which

can be produced in polynomial time, such that for some absolute constant ε0 we
have that for any approximator fε0 : P → [0,

√
k]2 with dist(f(x), x) < ε0 for all

x ∈ P that

P1 The shortest TSP path on P begins at fε0(p) and ends at fε0(q).
P2 There is a real number L such that the length of the shortest TSP path on

fε0(P) is either less than L or greater than L+ε0, according to whether the
Set Partition instance problem should be answered Yes or No, respectively.

Papadimitriou’s discussion does not reference an approximating function like fε0 ;
the role of this function here is to capture the imprecision which can be tolerated
by the construction, which is discussed on page 241 of his paper (where one finds,

for example, that we can take, e.g., ε0 =
√
a2+1−a

100(4a2+2a) for a = 20).

4.2. The set Q. Papadimitriou’s construction in [16] does not have the following
property, but it is easy to ensure by simple modification of his construction (using
“1-chains” to relocate the original p and q to suitable locations):

P3 There is a rhombus R with vertices p, q so that all points in fε0(P \ {p, q})
lie inside R and at least ε0 from the boundary of R.

10 ALAN FRIEZE AND WESLEY PEGDEN

b b
p qb b

x y

Figure 2. Q forces a path through a Papadimitriou path.

When scaled to [0,
√
k]2 as we have done here, the minimum TSP path length

through Papadimitriou’s set will always be less than C0k for some absolute constant
C0 > 1 (indeed, this is true even for a worst-case placement of k points in [0,

√
k]2

[6]). Thus, given the configuration P = P(A, N) with k = k(A, N) points and a
small λ > 0, we rescale P by a factor of say, 1

λC0k, to produce a corresponding set

of points P̄ ⊆ [0, λ
C0

√
k

]2 which necessarily admits a TSP path of at most ≤ λ; note

that P̄ satisfies the same properties P1-P3 above, with ε0 rescaled to λε0
C0k

.

Finally, we modify this configuration (as indicated in Figure 2) by adding two points
x, y to the set. With P̄ centered at the origin (0, 0), we take x = (−1,−β), y =

(1,−β), where β �
√
λ is chosen sufficiently small so that p, q are the closest points

on the rhombus R to x and y, respectively. Thus x and y are λε0
C0k

closer to p and q

than to any other point in P̄. We call the resulting set Q(A, N) ⊆ [−1, 1]× [0, 1].

Essentially, the point set Q ensures that any optimal path passing through it will
transit the Papadimitriou set optimally, by ensuring the optimal paths will only
enter/exit Q where we expect.

Lemma 4.1. Let (A, N) be an instance of the Set Partition problem, and Q =
Q(A, N) with |Q| = k. There is a sufficiently large D0, such that If we have that

(i) Q ≈δ Q ⊆ [0, t]d for δ = λε0
10C0k

(ii) w, z ∈ [0, t]d with dist({w, z}, Q) ≥ D0,

then the shortest TSP path W from w to z in Q ∪ {w, z} has the property that W
transits the approximate Papadimitriou set P ≈δ P̄ in Q optimally, from p to q.

Sets Q ≈δ Q will serve as the sets S to which we apply the definition of scalefreeness.
Very roughly speaking, we will eventually be aiming to contradict P 6= NP, since
a polynomial-time algorithm to predict optimal paths through Q’s would seem to
solve the Set Partition problem in polynomial time.

Proof. Recall that Q is constructed by adding two points x, y to the set P̄. By
construction, the shortest path covering Q has endpoints x, y, and is of length
< 2 + λ + 2β. Moreover, it is apparent that any path covering Q which does not
have the endpoint pair {x, y} has length at least 3. Finally, our choice of δ ensures
that the accumulated error in path-lengths when comparing paths in Q vs Q is less
than 2(k + 1)δ < λ. Now we suppose that in the shortest path W , w is adjacent
to a and z is adjacent to b, where {a, b} 6= {x′, y′} ⊆ Q, where x′, y′ correspond to
x, y ∈ Q. Since W is shortest, we must have that

dist(w, a) + dist(z, b) + 3 ≤ dist(w, x′) + dist(z, y′) + 2 + 2λ+ 2β,

SCALEFREE HARDNESS OF AVERAGE-CASE EUCLIDEAN TSP APPROXIMATION 11

and so

(1) dist(w, a) + dist(z, b) ≤ dist(w, x′) + dist(z, y′)− 1 + 2λ+ 2β.

Similarly, we have

(2) dist(w, a) + dist(z, b) ≤ dist(w, y′) + dist(z, x′)− 1 + 2λ+ 2β.

So we suppose now that (1) and (2) hold simultaneously. Moreover, let us assume
without loss of generality that we have one of the following three cases:
Case 1: dist(w, x′) < dist(w, y′) and dist(z, y′) < dist(z, x′), or
Case 2: dist(w, x′) < dist(w, y′) and min{∠wx′y′,∠wy′x′} is at least γ > 0, for
some γ depending on β, or
Case 3: wx′ and zp is the shortest pair of independent edges joining {w, z} to Q.

Before finishing the proof for each case, let’s verify that for D0 large, these cases
do indeed cover all cases. If either min{∠wx′y′,∠wy′x′} or min{∠zx′y′,∠zy′x′}
are at least γ, then we are already in Case 2, by appropriate choices of the labels
w, z, x′, y′ from the available pairs. If on the other hand both min{∠wx′y′,∠wy′x′}
and min{∠zx′y′,∠zy′x′} are at most γ, then either the angle from w to the center
of Q to z is in (π− γ, π+ γ), and we are in Case 1 with the correct choice of which
endpoints of Q are called x′, y′, or the angle is less than γ, and we are in Case 3
with a suitable choice of labels.

Case 1: In this case, making D0 large ensures that dist(w, x′) − dist(w,α) and
dist(z, y′) − dist(z, b) are bounded by a number arbitrarily close to 0, violating
(1) (or (2), if we had flipped the roles of w and z). So this case cannot occur in
simultaneously with (1) and (2).

Case 2: The second condition of this case implies that for any α ∈ Q, we have that
dist(w, x′) < dist(w, a) + λ (for sufficiently large D0), which allows us to modify
(1) to the inequality

(3) dist(z, y′)− dist(z, b) ≥ 1− 3λ− 2β.

But z is at at least some fixed positive angle from the line through x, y (to which
all points in Q are arbitrarily close). Thus, making D0 large ensures that dist(z, a)
varies by an arbitrarily small amount as we vary α ∈ Q, contradicting (3).

Case 3: Recall that the shortest path on Q goes from x to p, then through P̄
optimally to q, and then ends at y. In particular, this path has endpoint pair
{x, y}.

Let us consider the lengths of shortest paths through Q for choices of endpoints
other than {x, y}. In particular, we claim that the next-best pair of endpoints is
either {x, p}, and {q, y}. For the pair x, p, the short path goes from x to y to q,
through P̄ to p. The path for the pair y, q goes from y to x to p, through P̄ to q
(which of these choices gives rise to a shorter path depends on the precise rounding
Q ≈ Q). These paths both have length 3 + β2/2 + Θ(λ + β3) (here we use that√

1 + β2 ≈ 1+β2/2). And now we will show that any path with a pair of endpoints
other than {x, y}, {x, p}, or {q, y} will be longer than any of these choices.

12 ALAN FRIEZE AND WESLEY PEGDEN

We prove this as follows. First let us consider the case where both endpoints lie
in P̄. In this case, both x and y are internal vertices of the path through Q, and
thus it has length at least 4. Thus we may assume that one endpoint is x, while
the other is some vertex v ∈ P̄. We consider two cases: suppose from v the path
transits all of P̄ before leaving P̄; in this case, the optimal choice (over all choices
for v ∈ P̄) is clearly to begin from p, transit P̄ optimally ending in q, proceed to y,
and then return to x, as before. Suppose instead that from v, the path visits some
of P̄, then visits y, then returns to visit the rest of P̄, before exiting to P̄ to x. In
this case, the total length used is roughly 3 + 2β2/2 + Θ(λ).

Thus, since wx and zp is the shortest pair of independent edges joining {w, z} to
Q, we must have either that the shortest path from w to z through Q uses these
edges and and takes the optimum path in Q from x to p, or else that it takes a
path in Q which is shorter than this optimum path from x to p. But from above,
we see that each such choice transits P̄ optimally. �

4.3. The set MH . We use Q to construct a larger set MH . MH consists of:

(1) a copy of Q, rescaled by a factor α to lie in B(0, 1), and

(2) the set Y = YH ⊆ B(0,
√
R) from the definition of scalefreeness.

The set MH ensures that hypothesis (a) of Definition 2.5 is satisfied at points
centering approximations of MH .

4.4. Perturbing input MH for simulation of AH by a Turing machine.
The heart of our proof will consist of using the path-finding heuristic AH to at-
tempt to find a good path through the set MH , which would require solving the
Papadimitrou set, and contradicting the assumption that P 6= NP. We will show
that the failure of AH to transit MH optimally leads to a significant excess length
in the tour TH found by the heuristic H, since a significant number of suitable
approximate copies ofMH occur throughout the random point set, just by chance.

For the behavior of AH onMH to reliably predict the behavior of the approximate
copies throughout the tour TH , however, we will need to know that the behavior of
AH is stable to small perturbations in the positions of the points in MH . Indeed,
this may not be the case in general, but at least, we want to know that we can
efficiently, with a deterministic algorithm, perturb the points of MH to produce
a set Mg

H on which the behavior of AH is stable with respect to (even smaller)
perturbations.

This leads to the following question, which one might hope would be easier than
resolving the computational status of comparing sums of radicals:

Question 4.2. Given K, is there an L and a polynomial-time deterministic algo-
rithm which takes as input a set X of N points (at polynomial precision), and a

parameter ε = 2−N
K

, and outputs a perturbed set of points X ′ ≈ε X, such that

for all nontrivial choices of ξi ∈ {−1, 0, 1}, we have that |
∑
ξixi| ≥ 2−N

L

?

SCALEFREE HARDNESS OF AVERAGE-CASE EUCLIDEAN TSP APPROXIMATION 13

We do not need to answer to this question here, however. Instead, we take ad-
vantage of the fact that AH is required to terminate after only polynomially many
comparisons, to prove the following Lemma, which offers an easier way out:

Lemma 4.3. For a polynomial path-finding heuristic AH , a set Z of N points,
and a constant K, we can determinstically, in polynomial time, find a set Z ′ ≈ε Z
for ε = 2−N

K

such that each of the polynomially many sums
∑(N

2)
i=1 ξidi evaluated

by AH on input Z ′ will be separated from 0 by at least 2−N
L

, for a constant L
depending only on K and AH .

Proof. Recall that the path-finding heuristic is an algorithm which runs in polyno-
mial time in the number of points in its input, with access to a blackbox for making
comparisons among sums of distances between input points. The Lemma we are
proving claims the existence of a deterministic Turing machine to round the points
of the input set Z. To carry out this procedure, we begin by simply running AH on

the input Z. At each time t = 1, 2, . . . ,poly(N) when a comparison C =
∑
ξ

(t)
i di

is requested of the blackbox, we do the following:

(1) Compute
∑
ξ

(t)
i di to precision 2−(NK+10t+8).

(2) IF the result lies within 2−(NK+10t+4) of 0, THEN:
Step A: Change the position of some points by at most (in total) distance

2−(NK+10t+2) so that after the change, the same sum differs by at least

2−(NK+10t+4) from 0.
(3) Accept the resulting status (positive/negative) of the sum as if it had been

returned by the blackbox, and continue running AH .

(The implementation of Step A is discussed below.) In this way, as AH runs on
Z, we peturb the input points repeatedly so that all comparisons requested of the
blackbox can be distinguished from 0 by a Turing machine operating at polynomial
precision.

Consider some comparison step t after which the tth sum
∑
ξ

(t)
i di was guaranteed

to differ by at least 2−(NK+10t+4) from 0. In each subsequent step, this tth sum
will change slightly, as points of the input are perturbed further. However, by
the triangle inequality, the total impact on this tth sum of later perturbations is
bounded by

∞∑
`=t+1

2−(NK+10`+2) = 2−(NK+10t+2)
∞∑
`′=1

2−10`′ ≤ 2−(NK+10t+11),

which is smaller than the difference 2−(NK+10t+4) guaranteed at step t by the step
t perturbation. As a result, at the end of the this procedure, (after polynomially
many perturbations have been carried out, for each of the polynomially many steps
of the run of AH), each of the comparisons which AH requested can be reliably
computed on the perturbed point set by a Turing machine simulating AH at poly-

nomial precision 2−N
L

for a suitable constant L, which depends just on K and the
polynomial running time of AH . �

14 ALAN FRIEZE AND WESLEY PEGDEN

b

b

b

b

b b b b b b b b b b b

Figure 3. The set Π(10) (rotated 90 degrees).

GivenMH , we letMg
H denote the the set resulting from the perturbation procedure

of Lemma 4.3.

Implementing Step A. We first choose two points p, q such that there exists i such

that ξ
(t)
i is not zero. Let di = d = |p− q|. WLOG we let p = (0, 0) and q = (d, 0).

Let ρ = 2−(NK+10t+3) and define the points p′ = p− (ρ, 0), q′ = q + (ρ, 0).

Next let pj , j = 1, 2, . . . ,K be the points, other than q, such that for some i we have

di = |p− pj | and ξ
(t)
i 6= 0. Let d′j = |pj − p′| for i = 1, . . . ,K and then re-defining

dj = |p− pj | we let

∆(p) =

∣∣∣∣∣∣
K∑
j=1

ξ
(t)
j (dj − d′j)

∣∣∣∣∣∣ .
We observe that replacing p by p′ results in a new comparison C ′p where

(4) C ′p − C = ∆(p) + ζp where ζp = |p′ − q| − |p− q|.

Similarly, if we replace q by q′ then we obtain a new comparison C ′q where

(5) C ′q − C = ∆(q) + ζq where ζq = |p− q′| − |p− q|.

We now consider two cases:
Case 1: max

{
|C ′p|, |C ′q|

}
≥ ρ/2.

In this case the move p→ p′ or the move q → q′ implements Step A.

Case 2: max
{
|C ′p|, |C ′q|

}
< ρ/2.

Suppose now we move p → p′ and q → q′ to obtain a comparison C ′p,q. Then we
have

(6) C ′p,q = ∆(p) + ∆(q) = C ′p + C ′q − (ζp + ζq).

But,

ζp = ζq = ρ,

So, from (6), we see that

|C ′p,q| ≥ 2ρ− ρ = ρ,

and so moving p→ p′ and q → q′ implements Step A.

4.5. The set ΠH . We now construct a certain set Π = Π(k) and show that it
constrains the optimal tour in a useful way. In particular, we let Π(k) consist of
the four points π1 = (0, 5), π2 = (0, 0), π3 = (1, 0), π4 = (1, 5) together with all the

points (1
2 ,

5j
k) for 0 ≤ j ≤ k (see Figure 3).

SCALEFREE HARDNESS OF AVERAGE-CASE EUCLIDEAN TSP APPROXIMATION 15

Lemma 4.4. If dist({x, y},Π(k)) is sufficiently large and P is a shortest Hamilton
path from x to y in Π(k) ∪ {x, y}, then for at least one i ∈ {1, 2, 3, 4} we have that
neither neighbor v1

i , v
2
i of πi on P is in {x, y}, and moreover that dist(πi, v

1
i) and

dist(πi, v
2
i) become arbitrarily close to 1

2 has k increases; in particular, the neighbors

of πi are nearly horizontal translates of πi, lying on the line x = 1
2 . �

We now define ΠH as follows. We take four copies of the set Mg
H , each rescaled

to lie in small balls of radius εΠ > 0. In Π(k) (for k = k(H) sufficiently large),
we replace the four points πi with these copies; those corresponding to π3 and π4

are reflected horizontally. (In particular, the resulting set ΠH still has horizontal
reflection symmetry.)

Suppose we take this εΠ suitably small, that U ≈δH ΠH for sufficiently small
δH > 0, and that the optimal tour on X ⊇ U transits U in a single path. Then
each approximate copy ofMg

H in U is transited in single path by the optimal tour
(corresponding to hypothesis (d) from Definition 2.5) and moreover, Lemma 4.4
implies that for at least one of the four copies M1,M2,M3,M4 of Mg

H , H either
satisfies hypothesis (e) or else pays an additive error.

4.6. The set Π3
H . We let Π3

H denote 3 copies of ΠH centered at the vertices of an
equilateral triangle of sidelength 2D1, say. This triple configuration ensures that
the optimum tour will transit at least one of the copies of Mg

H in a a single pass.
Indeed, Observations 2.9 and 2.10 from [7] now give the following:

Lemma 4.5. Suppose that D2 is a sufficiently large absolute constant, (A, N) is an
instance of the Set Partition problem, and Π3

H = Π3
H(A, N). If Π3

H ≈δ0 Z ⊆ X ⊆
[0, t]d for δ0 = αε0

104C0D0k
and dist(Z,X \Z) ≥ D2, then any TSP tour T on X can

either be shortened in Π3
H by some additive constant or otherwise has the property

that at least one of the (approximate) copies of ΠH in Z is traversed (optimally)
by a path by T . �

We emphasize that the constants α ≤ 1� D0 � D1 � D2 are absolute, indepen-
dent of (A, N).

4.7. Using a TSP Heuristic to solve the Set Partition problem. At this
point, in preparation for the proof of Theorem 1.1, we use the scalefree heuristic H
to define the following polynomial time algorithm to solve a Set Partition instance
(A, N), which will be correct unless Theorem 1.1 holds for H. (Thus, P 6= NP will
imply Theorem 1.1.)

(1) ComputeMH(A, N) to precision δ0
4 . Using Lemma 4.3, perturb the points

as necessary to produce a set M , for which the path-finding heuristic AH
can be simulated by a Turing machine in polynomial-time.

(2) Produce a list of paths through M using the algorithm AH . Because of the
rounding M produced by Lemma 4.3, comparisons of sums of distances can
be done with Turing machine operations.

16 ALAN FRIEZE AND WESLEY PEGDEN

b
b
b
b
b
b
b
b
b
b
b

b
b
b
b
b
b
b
b
b
b
b

b
b
b
b
b
b
b
b
b
b
b

Figure 4. Π3
H , consisting of three copies of ΠH , forces an opti-

mum tour to transit one of 12 copies ofMg
H (indicated here as the

small circles) in a single pass, from a narrow prescribed angle.

(3) Let L′ be the minimum length of a path covering one of the three Pa-
padimitriou sets which is a subpath of one of the paths enumerated in step
2.

(4) Return TRUE/FALSE according to whether L′ lies within or above the
threshold given by P2, respectively.

Proof of Theorem 1.1. We suppose that H is scalefree. P 6= NP implies that
there is some instance (A0, N0) of the Set Partition problem for which the algorithm
above returns an incorrect answer. Observe first that it cannot happen that the
algorithm returns TRUE when the correct answer to the Set Partition instance
is FALSE: when (A0, N0) is FALSE, property P2 implies that there can be no
path through the Papadimitriou sets shorter than the threshold below which the
algorithm above would return TRUE.

Thus we are to consider the case that the algorithm above returns FALSE even
though the correct answer to (A0, N0) is TRUE. In this case, no path enumerated
by A transits M in such a way that a Papadimitriou set is traversed optimally.

We prove Theorem 1.1 by showing that this implies there exists an εH > 0 so that
the length of the tour found by H through the random set Yn ⊆ [0, t]d is w.h.p at
least (1 + εH) times the length of the optimal tour T .

An (ε,R)-copy of Z in Yn ⊆ [0, t]d is a set Z ′ ⊆ Yn such that Z ′ ≈ε Z and such that
dist(Z ′,Yn \Z ′) ≥ R. The following Lemma shows that we find a linear number of
(ε,R) copies of any fixed finite set in the random set Yn (see Observation 3.1 from
[7]):

Lemma 4.6. Given any finite point set S, any ε, δ > 0, and any R, we have that
the number ζS of (ε,R)-copies S′ of S in a random set X = Yn ⊆ [0, t]d, such that
the points of S′ are δ-distance separated, satisfies

(7) ζS ≥ CS,R,εn w.h.p.

SCALEFREE HARDNESS OF AVERAGE-CASE EUCLIDEAN TSP APPROXIMATION 17

for some constant CS,R,ε > 0. �

Now we take ε2 to be the minimum of δ0
8 and the parameter ε from the definition

of scalefreeness for the heurstic H, take R = D2, take S = Π3
H = Π3

H(A0, N0), and
use Lemma 4.6 to find a linear number of (ε2

(Kd+1)12 , R+ ε2) copies Z of Π3
H which

are δ-distance separated.

We say that such a copy Z of Π3
H has the property ΛX if the tour TH can be

shortened within Z by δ1 for some sufficiently small but fixed δ1 > 0, and we let
νΛ denote the number of copies Z of Π3

H with property ΛX .

Claim: There exists C > 0 so that if H is scalefree, then νΛ ≥ Cn w.h.p.

Note that the claim immediately implies the theorem: in the rescaled torus [0, t]d,
the heuristic pays a total error of δ1 · νΛ, and rescaling by t = n1/d, this gives
Theorem 1.1.

Proof of the Claim. Each δ-separated copy Z itself consists of three different copies
Z1, Z2, Z3 ≈ε ΠH(A0, N0), and when Z fails to have property ΛX , Lemma 4.5 im-
plies that at least one of the copies Zj is transited by TH in a single path. Fixing
a choice of such a copy Zj , Lemma 4.4 gives that at least one of the four copies
Mi ofMg

H in Zj (and so one of the twelve copies ofMg
H in Z) satisfies hypotheses

(d) and (e) of Definition 2.5. Of course, by construction of MH , hypothesis (a) is
satisfied at the center of the copy. Moreover, with at most finitely many exceptions,
we may assume thatMH satisfies hypothesis (c). Moreover, by construction of the
perturbation Mg

H of MH using Lemma 4.3, Mg
H can be rounded to polynomial

precision and still satisfy (b). Thus all the hypotheses of the implication in Defini-
tion 2.5 are satisfied for this copy Mi of Mg

H . In particular, we conclude that the
tour TH traverses this copy Mi with one of the paths output by AH on inputMg

H ;
by hypothesis (since our proposed Set Partition algorithm output FALSE on the
instance), the path through Mi can be shortened by δ1. �

5. Branch and Bound

In our paper [7] we considered branch and bound algorithms for solving the Eu-
clidean TSP. Branch-and-bound is a pruning process, which can be used to search
for an optimum TSP tour. Branch-and-bound as we consider here depends on three
choices:

(1) A choice of heuristic to find (not always optimal) TSP tours;
(2) A choice of lower bound for the TSP;
(3) A branching strategy (giving a branch-and-bound tree).

For us a branch-and-bound tree is a rooted tree TB&B where each vertex v is labelled
by a 4-tuple (bv,Ωv, Iv, Ov). Here Iv, Ov are disjoint sets of edges and Ωv is the
set of tours T such that T ⊇ Iv and T ∩ Ov = ∅. The value bv is some lower
bound estimate of the minimum length of a tour in Ωv e.g. the optimal value of

18 ALAN FRIEZE AND WESLEY PEGDEN

the Held-Karp linear bound relaxation [5], [10], [11]. In addition there is an upper
bound B, which is the length of the shortest currently known tour, found by some
associated heuristic. This is updated from time to time as we discover better and
better tours. If the root of the tree is denoted by x then we have Ix = Ox = ∅.

In [7] we allowed essentially any branching strategy. Given Xn, we allowed any
method to produce a tree satisfying the following:

(a) When v is a child of u, Iv ⊇ Iu and Ov ⊇ Ou.

(b) If the children of u are v1, . . . , vk, then we have Ωu =
⋃k
i=1 Ωvi .

(c) The leaves of the (unpruned) branch-and-bound tree satisfy |Ωv| = 1.

This process terminates when the set L of leaves of the pruned branch-and-bound
tree satisfies v ∈ L =⇒ bv ≥ B; such a tree corresponds to a certificate that the
best TSP tour found so far by our heuristic is indeed optimum. It is clear that if
v ∈ L then Ωv does not contain any tours better than one we already know.

In [7] we concentrated on showing that even if we had access to the exact optimum
i.e. letting B = λ, the minimum length of a tour, none of a selected set of natural
lower bounds would be strong enough to make the branch and bound tree poly-
nomial size. Note that this result does not depend on the branching process itself
being efficient.

The aim of this section is to show that even if bv = λ then a certain branching
strategy will fail. Unlike in [7], we cannot allow any branching strategy for our
present result, as we might (though extreme computation in the branching process)
find that we directly branch to a vertex w where Iw is exactly the set of edges of
the shortest tour, giving B = λ, causing the algorithm to terminate, given that
bv = B for all leaves of the tree.

It turns that to prove our result, we will need only a mild restriction on the branch-
ing strategies allowed.

(1) A vertex v of out tree has two chilren w+, w−. Here Iw+ = Iv ∪{e} , Ow+ =
Ov and Iw− = Iv, Ow+

= Ov ∪ {e} for some edge e.
(2) The branch and bound tree is explored in a breadth first manner i.e. if the

root is at level 0, we do not produce vertices of level k+ 1 until all vertices
at level k have been pruned or branched on.

Note that this captures most branching strategies used in practice, which typically
are using an LP-based lower bound on the length of the tour, and branching on the
binary values possible for fractionally-valued variables in the linear program.

Theorem 1.2 will follow easily from the following claim: let H denote some scale-
free heuristic and for a vertex v of TB&B let H(v) denote the length of the tour
constructed by H, when it accounts for Iv, Ov. Let λ(v) denote the length of the
shortest tour in Ωv.

SCALEFREE HARDNESS OF AVERAGE-CASE EUCLIDEAN TSP APPROXIMATION 19

Lemma 5.1. There exist constants ε1, ε2 such that w.h.p. if vertex v is at depth
at most k1 = ε1n then H(v) ≥ λ(v) + ε2n

1/2.

Proof. Let α0n be the minimum number of copies of Z with property ΛX promised
by our analysis above, and let α1n

1/2 be a lower bound on the penalty paid by
our heuristic for each copy of Z. Then if ε1 = α0/2 we have the lemma for ε2 =
α0α1/2. �

Here we have used the fact that at depth at most k1, w.h.p. there will be a linear
number of copies of Z that are unaffected by Iv, Ov. These copies provide the
necessary increases over the optimum.

It follows from Lemma 5.1 that for v at depth at most k1 we have

H(v) ≥ λ(v) + ε2n
1/2 ≥ B + ε2n

1/2.

This means that v is not a leaf. It follows that w.h.p. there will be at least
2k1 = eΩ(n) leaves and Theorem 1.2 follows. 2

6. Further work

From among the heuristics used in practice, the major omission from the present
manuscript are the k-opt improvement heuristics, and their relatives (such as the
Lin-Kernighan heuristic). Are they scalefree in our sense (or a related sense for
which Theorem 1.1 holds)?

Theoretically, a natural question is whether our definition of a scalefree heuristic
can be significantly simplified, while still allowing Theorem 1.1.

References

[1] S. Arora, Polynomial time approximation schemes for Euclidean Traveling Salesman and
other geometric problems, Journal of the Association for Computing Machinery 45 (1998)

753-782.
[2] D. Applegate, R. Bixby, V. Chvátal and W. Cook, The Traveling Salesman Problem: A

Computational Study, Princeton University Press, 2007.

[3] J. Beardwood, J. H. Halton and J. M. Hammersley, The shortest path through many points,
Mathematical Proceedings of the Cambridge Philosophical Society 55 (1959) 299-327.

[4] N. Christofides, The Traveling Salesman Problem, in Combinatorial Optimization, N.

Christofides, P. Toth, A. Mingoza and C. Sandi, Eds., John Wiley and Sons, New York,
1971.

[5] G.B. Dantzig, D.R. Fulkerson and S.M. Johnson, Solution of a large scale traveling salesman

problem, Operations Research 2 (1954) 393-410.
[6] L. Few, The shortest path and the shortest road through n points, Mathematika 2 (1955)

141-144.

[7] A Frieze and W. Pegden, Separating subadditive Euclidean functionals, Random Structures
and Algorithms 51 (2017) 375-403.

[8] M. R. Garey, R. L. Graham, and D. S. Johnson, Some NP-complete geometric problems,

in Proceedings of the eighth annual ACM symposium on Theory of computing (STOC ’76),
ACM, New York, NY, USA, 10-22 (1976).

20 ALAN FRIEZE AND WESLEY PEGDEN

[9] M. Held and R.M. Karp, A dynamic programming approach to sequencing problems, Journal

of the Society for Industrial and Applied Mathematics 10 (1962) 196-210

[10] M. Held and R.M. Karp, The Traveling Salesman Problem and Minimum Spanning Trees,
Operations Research 18 (1970) 1138-1162.

[11] M. Held and R.M. Karp, The Traveling Salesman Problem and Minimum Spanning Trees

Part II, Mathematical Programming 1 (1971) 6-25.
[12] D. Johnson, L. Mcgeoch and E. Rothberg, Asymptotic Experimental Analysis of the Held-

Karp Traveling Salesman Bound, Proceedings of the 7th Annual ACM Symposium on Discrete

Algorithms (1991) 341-350.
[13] C. McDiarmid, On the Method of Bounded Differences, Surveys in Combinatorics 141 (1989)

148188.

[14] D. Miller and J. Pekny, Exact Solution of Large Asymmetric Traveling Salesman Problems,
in Science 251 754–761.

[15] J. Mitchell, Guillotine Subdivisions Approximate Polygonal Subdivisions: A simple
polynomial-time approximation scheme for geometric TSP, k-MST, and related problems,

SIAM Journal on Computing 28 (1999) 1298-1309.

[16] C. H. Papadimitriou, The Euclidean travelling salesman problem is NP-complete, in Theo-
retical Computer Science 4 (1977) 237-244

[17] J. Michael Steele, Subadditive Euclidean functionals and nonlinear growth in geometric prob-

ability, The Annals of Probability 9 (1981) 365-376.
[18] J. Michael Steele, Probability Theory and Combinatorial Optimization, SIAM CBMS series,

1996.

[19] S. Steinerberger, New Bounds for the Traveling Salesman Constant, Advances in Applied
Probability 47 (2013)

[20] L. Tóth, Über einen geometrischen Satz, Mathematische Zeitschrift 46 (in German) (1940)
8385.

[21] T. Volgenant and R. Jonker, A Branch and Bound Algorithm for the Symmetric Traveling

Salesman Problem based on the 1-tree Relaxation, European Journal of Operations Research
9 (1982) 83-89.

Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA
15213, U.S.A.

Email address, Alan Frieze: alan@random.math.cmu.edu

Email address, Wesley Pegden: wes@math.cmu.edu

