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1 Introduction

Let s be a vertex of a simple connected graph G on n vertices. We build a sequence
T1,T2, . . . ,Tn of random subtrees of G as follows. The tree T1 has a single vertex, s. For
each 1 < i ≤ n, tree Ti is obtained by choosing a uniformly random edge of G with exactly
one endpoint in Ti−1, and adding the edge to Ti−1. Note that Tn is a (not necessarily uni-
form) random spanning tree of G rooted at s, which we denote by T (G,s). In this paper
we study the height (maximum length of a root-to-leaf path) of T (G,s) and give several
bounds for it in terms of parameters of G.

In the special case when G is the complete graph, each tree Ti is obtained from Ti−1
by choosing a uniformly random node of Ti−1 and joining a new leaf to that node. This is
the well studied random recursive tree process, and Devroye [6] and Pittel [13] have shown
that the height of Tn = T (Kn, s) is (e+ o(1)) lnn with probability 1− o(1).

Our results. Let D = D(G) and ∆ = ∆(G) denote the diameter and maximum
degree of G, respectively, and let us denote the height of a tree T by h(T ). An obvious
lower bound for h(T (G,s)) is D/2. We prove the following bounds hold with probability
1− on(1) for any n-vertex graph G and any s ∈ V (G). (The notation ok(1) denotes the set of
functions f : R→ R such that f (k)→ 0 as k→∞.)

1. In Theorem 1 we show h(T (G,s)) ∈ O(∆(D + logn)). For D ∈ Ω(log∆) this is tight:
in Theorem 7 we show that for every ∆ ≥ 2 and every D ≥ e6 ln∆, there exist G and s
with h(T (G,s)) ∈Ω(∆(D + logn)).

2. If G is d-degenerate (that is, every subgraph of G has a vertex of degree at most
d), then in Theorem 2 we show h(T (G,s)) ∈ O(

√
d∆(D + logn)). The class of O(1)-

degenerate graphs is quite rich and includes every minor-closed graph family. This
upper bound is tight, even for planar graphs (d = 5), graphs of thickness t (d = 5t),
and graphs of treewidth k (d = k). (The concepts of Euler genus, thickness, and
treewidth are defined in Section 4).

For D ∈ Ω(log∆) and planar graphs (which are 5-degenerate) this is tight: in The-
orem 8 we show for any ∆ > 2 and D > 106 ln∆ there exists a planar graph G and
vertex s with h(T (G,s)) ∈Ω(

√
∆(D + logn)).

Also, for D ∈ Ω(log∆) and d ≤ ∆ this is tight: in Theorem 9 we show for any
∆ > 1, D > 106 ln∆ and d ≤ ∆ there exist a d-degenerate graph G and vertex s with
h(T (G,s)) ∈Ω(

√
d∆(D + logn))

3. If G has Euler genus less than C
√
∆D/ log∆, then h(T (G,s)) ∈ O(

√
∆(D + logn)) (see

Theorem 3) . For D ∈ Ω(log∆) and zero Euler genus this is tight: in Theorem 8 we
show for any ∆ > 2 and D > 106 ln∆ there exist a planar graph G and vertex s with
h(T (G,s)) ∈Ω(

√
∆(D + logn))

4. For any d,k ≥ 1, if G is the d-dimensional grid of side-length k (which has n = (k+1)d

vertices), we have h(T (G,s)) ∈ O(dk + d5/3 ln(k + 1)). If k = 2 or k/ ln(k + 1) = Ω(d2/3),
we have h(T (G,s)) ∈Θ(D) = Θ(dk) (see Theorem 5 and Corollary 2).
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5. IfG has edge-expansion factor1 (i.e., Cheeger constant) Φ , then h(T (G,s)) ∈O(Φ−1∆ logn)
(see Theorem 4). This implies, for example, that h(T (G,s)) ∈O(logn) if G is the com-
plete graph or if G is a random ∆-regular graph (since a random ∆-regular graph has
Φ ∈Ω(∆), see [3]).

Our main tool for proving upper bounds, Lemma 2, bounds h(T (G,s)) in terms of
the first-passage percolation cover time and the number of paths of a given length starting
at s. To prove our results using this tool, we prove several new bounds on first-passage
percolation cover times as well as the number of simple paths in various families of graphs,
which are of independent interest.

Our results on first-passage percolation cover time. Suppose independent ex-
ponential(1) random variables {τe} are assigned to edges of G. Let Γ (s,v) denote the set of
all (s,v)-paths in the graph. Then the first-passage percolation cover time is defined as

τ(G,s) = max
v∈V (G)

min
γ∈Γ (s,v)

∑
e∈γ

τ(e)

In Lemma 3 we show a general upper bound of O(lnn + D) for τ(G,s). (This and the
following results hold with probability 1− on(1).)

In the special case when G is the d-dimensional grid with side length k (and diam-
eter dk), we prove the improved bound τ(G,s) =O(k). The special case of k = 1, namely the
d-cube graph, was studied by Fill and Pemantle [8], who showed 1.414 ≤ τ(G,s) ≤ 14.041.
The upper bound was subsequently improved to 1.694 by Bollobás and Kohayakawa [4]
and recently to 1.575 by Martinsson [10].

The remainder of the paper is organized as follows: Section 2 presents some pre-
liminaries and useful facts about sums of independent random variables, In Section 3 we
present the connection with first-passage percolation and prove a general upper bound.
Section 4–Section 7 present our upper bounds on h(T ). Section 8 and Section 9 present
families of graphs with matching lower bounds.

We use the following notational conventions: logx denotes the binary logarithm of
x and lnx denotes the natural logarithm of x. Every graph, G, that we consider is finite,
simple, undirected and connected, and n denotes its number of vertices.

2 Preliminaries

Recall that an exponential(λ) random variable, X, has a distribution defined by

Pr{X > x} = e−λx , x ≥ 0 ,

and mean E[X] =
∫∞

0 Pr{X > x}dx = 1/λ. We make extensive use of the fact that exponential
random variables are memoryless:

Pr{X > t + x | X > t} = Pr{X > t + x}
Pr{X > t}

=
e−λ(t+x)

e−λt
= e−λx = Pr{X > x} .

1The edge expansion factor and related quantities are defined in Section 6.
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We will also often take the minimum of δ independent exponential(λ) random variables
and use the fact that this is distributed like an exponential(λδ) random variable:

Pr{min{X1, . . . ,Xδ} > x} = (Pr{X1 > x})δ = e−δλx ∼ exponential(λδ) .

We will make use of two concentration inequalities for sums of exponential random vari-
ables, both of which can be obtained using Chernoff’s bounding method (see, e.g., [9, The-
orem 5.1]). If Z1, . . . ,Zk are independent exponential(λ) random variables (so that they
each have mean µ = 1/λ), then for all d > 1,

Pr

 k∑
i=1

Zi ≤ µk/d

 ≤ exp(−k(lnd − 1 + 1/d)) ≤
( e
d

)k
(1)

and for all t > 1,

Pr

 k∑
i=1

Zi ≥ µkt

 ≤ exp(k − kt/2) . (2)

The sum of k independent exponential(λ) random variables is called an Erlang(k,λ) ran-
dom variable.

For positive integers a and b, we define the random variable Ya,b as follows: Con-
sider a tree in which the root has a children, and each of the root’s children have b children.
Put an independent exponential(1) weight on each edge. Then Ya,b is defined as the mini-
mum weight of a path from the root to a leaf. The following auxiliary lemma is proved in
Appendix A.

Lemma 1. Let X1, . . . ,Xm be i.i.d. distributed as Ya,b for some a,b. Then

E[X1] =O(1/a+ 1/
√
ab)

and moreover,

Pr

 m∑
i=1

Xi ≥ 3m(64/a+ 1024/
√
ab)

 ≤ exp(−m/9) .

3 Connection with first-passage percolation and a generic upper bound

In this section, we establish the connection with first-passage percolation, and prove an
upper bound for τ(G,s) in general graphs, which results in an upper bound for h(T (G,s)).
This connection will be used in subsequent sections to provide tighter bounds for h(T (G,s))
in several graph classes.

Recall the generation process for T (G,s): we start with a tree containing only ver-
tex s initially; in each round, we choose an edge uniformly at random among edges with
exactly one endpoint in the existing tree, and add it to the existing tree.

We may view this as an infection process: at round 0 only vertex s is infected. In
each round, suppose the set of infected vertices is S. We choose a uniformly random edge
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between S and its compliment, and let the disease spread along that edge, hence increasing
the number of infected vertices by one.

Now consider the following continuous time view of this infection process, which is
known as Richardson’s model [7] or first-passage percolation [1]. At time 0 we infect vertex
s. For each edge uv, whenever one of u and v gets infected, we put an exponential(1) timer
on edge uv. When the timer rings, the disease spreads along that edge and both u and
v get infected (it might be the case that both u and v are already infected by that time).
Suppose at some moment in this process, the subset S of vertices are infected. Then, by
memorylessness of the exponential distribution, the disease is equally like to spread along
any of the edges existing between S and its complement. Therefore, the tree along which
the disease spreads has the same distribution as T (G,s).

This viewpoint induces weights on the edges: to each edge e we assign weight
τ(e), which is the ringing time for the timer on this edge. Note that the weights are i.i.d.
exponential (1) random variables. The weight of a path P , denoted τ(P ), is simply the sum
of weights of its edges. The first-passage percolation hitting time (or simply, the hitting time)
for v is the weight of the lightest path from s to v:

τ(G,s,v) = min
γ∈Γ (s,v)

τ(γ) .

The first-passage percolation cover time (or simply, the cover time) is the first time that all
vertices are infected, which can be written as

τ(G,s) = max
v∈V (G)

τ(G,s,v) .

Note that this is also the maximum weight of a root-to-leaf path in the infection tree T (G,s),
which we will use to bound the height of T (G,s), the maximum length of a path in (the
unweighted version of) T (G,s) (in general, the longest path and the heaviest path may be
different).

For a positive integer L and a vertex s of graph G, let Π(G,s,L) denote the number
of simple paths of length L in G that start from s. We now prove a lemma that upper
bounds h(T (G,s)) in terms of τ(G,s) and Π(G,s,L).

Lemma 2. Let s ∈ V (G), 0 ≤ p < 1 ≤ a, c > 0, and L = dceaKe be such that Pr{τ(G,s) > K} ≤ p
and Π(G,s,L) ≤ aL. Then h(T (G,s)) ≤ L with probability at least 1− p − c−L.

Proof. Let T = T (G,s). If h(T ) > L, then at least one of the following two events occurred:

1. T contains a root-to-leaf path of weight greater than K .

2. G contains a path starting at s of length L whose weight is less than K .

By assumption, the probability of the first event is at most p. The weight of a single path
of length L is the sum of L exponential(1) random variables so, by (1) and the union bound
over all aL paths, the probability of the second event is at most

aL
(eK
L

)L
≤ c−L .
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In light of Lemma 2, we can upper bound h(T (G,s)) if we have upper bounds on
the cover time and on the number of paths of length L originating at s. An obvious upper
bound for the latter is ∆L. The following lemma gives a general upper bound for the
former, which results in a general upper bound for h(T (G,s)). In the following sections we
obtain better bounds for these two quantities in special graph classes, resulting in sharper
bounds on h(T (G,s)).

Lemma 3. For any s ∈ V (G), we have τ(G,s) ≤ 4lnn+ 2D with probability at least 1− 1/n.

Proof. For each vertex v ∈ V (G), we show the probability that it is not infected by time
4lnn + 2D is at most n−2, and then apply the union bound over all vertices. Let P be a
shortest (s,v)-path in G. Let k ≤ D denote the length of P , so τ(P ) ∼ Erlang(k,1). Note that
for any t, τ(P ) ≤ t implies v is infected by time t. Thus, using (2), the probability that v is
not infected by time 4lnn+ 2D is bounded by

Pr{τ(P ) > 4lnn+ 2D} = Pr{Erlang(k,1) > 4lnn+ 2D} ≤ exp(k − 2lnn−D) ≤ n−2 .

We immediately get a general upper bound for h(T (G,s)).

Theorem 1. Let G be an n-vertex graph with diameter D and maximum degree ∆ > 1, and let s
be an arbitrary vertex. Then, with probability at least 1−O(1/n) we have

D
2
≤ h(T (G,s)) ≤ 2e∆(4lnn+ 2D) ≤ (4e∆+ 8e∆ ln∆)D + 16e∆ .

Note that this gives an asymptotically tight bound of h(T (G,s)) = Θ(D) for graphs
with bounded maximum degree.

Proof. The first inequality is trivial. The second inequality is an application of Lemma 2
with a = ∆, p = 1/n, K = 4lnn + 2D and c = 2, using the bound of Lemma 3 for the cover
time. The last inequality follows from the crude bound ∆D ≥ n/3, which holds for any
n-vertex graph with maximum degree ∆ and diameter D.

4 An upper bound in terms of graph degeneracy

Recall that a graph is d-degenerate if each of its subgraphs has a vertex of degree at most d.
The following lemma shows that, for large L, d-degenerate graphs have considerably less
than ∆L walks of length L.

Lemma 4. Let G be an n-vertex d-degenerate graph with maximum degree ∆. Then the number
of walks in G of length L is bounded by 2n2L(d∆)L/2.

Proof. Enumerate the vertices of G as v1, . . . , vn so that vi has at most d edges in the sub-
graph induced by vi , . . . , vn (this ordering may be obtained by repeatedly removing a vertex
of degree at most d).
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We give a way to encode the walks in a one-to-one way, and then bound the total
number of possible generated codes. Let W = vi0 , . . . , viL be a walk of length L in G and
let k = k(W ) denote the number of indices ` ∈ {1, . . . ,L} such that i`−1 < i`. If k ≥ L/2 then
we say that W is easy; note that at least one of W and its reverse is easy, hence the total
number of L-walks is at most twice the number of easy L-walks. We encode an easy walk
W in the following way:

1. We first specify the starting vertex vi0 . There are n ways to do this.

2. Next we specify whether i`−1 < i` for each ` ∈ {1, . . . ,L}. There are at most 2L ways to
do this.

3. Next, we specify each edge of W . For each ` ∈ {1, . . . ,L− 1}, if i` < i`+1, then there are
at most d ways to do this, otherwise there are at most ∆ ways to do this. Therefore,
the total number of ways to specify all edges of the walk is at most

dk∆L−k ≤ (d∆)L/2 ,

since d ≤ ∆ and k ≥ L/2.

Therefore, the number of easy L-walks is bounded by n2L(d∆)L/2, as required.

Theorem 2. Let G be an n-vertex d-degenerate graph with diameter D and maximum degree ∆,
and let s be an arbitrary vertex. Then, with probability at least 1−O(1/n) we have h(T (G,s)) ≤
8e
√
d∆(2D + 4lnn).

Proof. Let c = 2, K = 4lnn + 2D, p = 1/n, a = 4
√
d∆, and L = dceaKe > 8lnn. Lemma 3

guarantees τ(G,s) ≤ 4lnn+ 2D with probability at least 1− 1/n, and Lemma 4 guarantees
Π(G,s,L) ≤ 2n2L(d∆)L/2 ≤ aL. Applying Lemma 2 completes the proof.

Note that Theorem 2 actually implies Theorem 1 up to constant factors, since all
graphs of maximum degree ∆ are ∆-degenerate, so

√
d∆ ≤ ∆ in all cases. However, Theo-

rem 2 provides sharper bounds for many important graph classes:

• Planar graphs are 5-degenerate. (This is a consequence of Euler’s formula and the
fact that planarity is preserved under taking subgraphs).

• The thickness of a graph is the minimum number of planar graphs into which the
edges of G can be partitioned. Graphs of thickness t are 5t-degenerate. (This fol-
lows from definitions and the 5-degeneracy of each individual planar graph in the
partition.)

• The Euler genus of a graph is the minimum Euler genus of a surface on which the
graph can be drawn without crossing edges. Graphs of Euler genus g are O(

√
g)-

degenerate.2

2This follows from the facts in every n-vertex Euler-genus g graph, n ∈Ω(
√
g) and there exists a vertex of

degree at most 6 +O(g/n). (See, e.g., [14, Lemma 7 and Theorem 2].)
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• A tree decomposition of a graph G is a tree T ′ whose vertex set B is a collection of
subsets of V (G) called bags with the following properties:

1. For each edge vw of G, there is at least one bag b ∈ B with {v,w} ⊆ B.

2. For each a vertex v of G, the subgraph of T ′ induced by the set of bags that
contain v is connected.

The width of a tree-decomposition is one less than the size of its largest bag. The
treewidth of G is the minimum width of any tree decomposition of G. Graphs of
treewidth k are k-degenerate. (This is a consequence of the fact that k-trees are edge-
maximal graphs of treewidth k.)

Therefore, Theorem 2 implies that, when the relevant parameter, g, t or k, is bounded,
h(T ) ∈O(

√
∆(D + logn)) with high probability.

5 An upper bound in terms of Euler genus

Since graphs of Euler genus g areO(
√
g)-degenerate, Theorem 2 implies that if G has Euler

genus g, then h(T (G,s)) ∈ O(g1/4∆1/2(D + logn)). In this section we show that the depen-
dence on the genus g can be eliminated when the diameter is large compared to the genus.
We begin with a upper-bound on path counts that is better (for graphs of small genus) than
Lemma 4.

Lemma 5. Let G be a simple n-vertex graph of Euler genus g, diameterD, and maximum degree
∆ ≥ 6. Then the number of simple paths in G of length L is at most 2n2L6L/2−3g∆L/2+3g .

Proof. The following proof makes use of some basic notions related to graphs on surfaces;
see Mohar and Thomassen [12] for basic definitions and results. Since G has Euler genus
g, it has a 2-cell embedding in a surface of Euler genus g. Euler’s formula then states that

m = n+ f − 2 + g , (3)

where n and m are the numbers of vertices and edges of G and f is the number of faces in
the embedding of G. Every edge is on the boundary of at most 2 faces of the embedding
and, since G is simple, every face is bounded by at least 3 edges. Therefore, f ≤ 2m/3, so
(3) implies

m ≤ 3n− 6 + 3g .

Therefore, the average degree of an n-vertex Euler genus g graph is at most 6 + (6g −12)/n.
In particular, if n ≥ 6g, then g has average degree less than 7, so G contains a vertex of
degree at most 6.

When we remove a vertex from G we obtain a graph whose Euler genus is not more
than that of G. Therefore, by repeatedly removing a degree 6 vertex, we can order the
vertices of G as v1, . . . , vn so that, for each i ∈ {1, . . . ,n − 6g}, vi has at most 6 neighbours
among vi+1, . . . , vn. We call vn−6g+1, . . . , vn annoying vertices and edges between them are
annoying edges.
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Let P = vi0 , . . . , viL be a path of length L in G. For each i ∈ {1, . . . ,L}, the edge vi`−1
vi`

is called bad if it is annoying or if i`−1 > i`; otherwise it is called good. Let k denote the
number of good edges in P . Say P is good if k ≥ L/2−3g. Note that the number of annoying
edges of P is bounded by 6g − 1, hence at least one of P and its reverse is good. We bound
the number of good L-paths; the total number of L-paths is at most twice this bound. We
encode a good L-path P as follows:

1. We first specify the starting vertex vi0 . There are n ways to do this.

2. Next we specify whether each edge of P is good or bad. There are 2L ways to do this.

3. Next, we specify each edge of P . For each good edge, there are at most 6 ways to
do this. For each bad edge there are at most ∆ ways to do this. Therefore, the total
number of ways to specify the edges of P is at most

6k∆L−k ≤ 6L/2−3g∆L/2+3g ,

since k ≥ L/2− 3g and ∆ ≥ 6.

Therefore, the number of good L-paths is at most n2L6L/2−3g∆L/2+3g , as required.

Theorem 3. Let G be an n-vertex Euler-genus g graph with diameter D, maximum degree ∆

and let s ∈ V (G) be an arbitrary vertex. If g ln∆ ≤ 36
√
∆(D+lnn) then, with probability at least

1−O(1/n), h(T (G,s)) ≤ 107
√
∆(2D + 4lnn).

Proof. The conclusion follows from Theorem 1 for ∆ ≤ 6, so we will assume ∆ > 6. Let
c = 2, K = 4lnn + 2D, p = 1/n, a = 8

√
6∆, and L = dceaKe > 8lnn. Lemma 3 guarantees

τ(G,s) ≤ 4lnn+ 2D with probability at least 1− 1/n, and Lemma 4 guarantees

Π(G,s,L) ≤ 2n×2L×(6∆)L/2×∆3g ≤ (2×2×
√

6∆)L exp
(
108
√
∆(D + lnn)

)
≤ (2×2×

√
6∆×2)L = aL.

Applying Lemma 2 completes the proof.

6 An upper bound for edge expanders

All of the preceding upper bounds on h(T ) have a (linear or rootish) dependence on ∆,
the maximum degree of a vertex in G. This seems somewhat counterintuitive, since high
degree vertices in G should produce high degree vertices in T and therefore decrease h(T ).
In this section we show that indeed large edge expansion (also called isoperimetric number
or Cheeger constant) results in low-height trees.

For an n-vertex graph G and a subset A ⊆ V (G), define e(A) = |{vw ∈ E(G) : v ∈
A, w < A}|, and for any k ∈ {1, . . . ,n− 1}, define

ek(G) = min{e(A) : A ⊆ V (G), |A| = k} .

Observe that ek(G) is symmetric in the sense that ek(G) = en−k(G) . We define the edge
expansion of G is

Φ(G) = min {ek(G)/k : k ∈ {1, . . . ,bn/2c}}
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We will express the height of T in terms of the total inverse perimeter size Ψ , which is closely
related to the edge expansion:

Ψ (G) =
bn/2c∑
k=1

1
ek(G)

≤
bn/2c∑
k=1

1
kΦ(G)

=
lnn+O(1)

Φ(G)
.

Theorem 4. Let G be an n-vertex graph with with maximum degree ∆, edge-expansion Φ ,
total inverse perimeter size Ψ , and let s be an arbitrary vertex. Then, with probability at least
1− exp(−Ω(Ψ∆)) we have h(T (G,s)) ∈O(Ψ∆) ⊆O(Φ−1∆ logn).

Before proving Theorem 4, we consider the example of the complete graph G = Kn.
In this graph, the minimum degree is n − 1, so all preceding theorems (at best) imply an
upper bound of O(n) on h(T (Kn, s)). However, ek(Kn) = k(n − k), so Φ(Kn) = dn/2e, and
Ψ (Kn) = O(logn/n). Then Theorem 4 implies that h(T (Kn, s)) ∈ O(logn) with high prob-
ability. This upper bound is of the right order of magnitude, since it matches the (tight)
results of Devroye and Pittel for the height of the random recursive tree [6, 13].

Proof. Fix some path P = (s = v0),v1, . . . , vL in G and suppose that P appears as a path in T .
Then there are times 1 ≤ k1 < · · · < kL < n such that for each i ∈ {1, . . . ,L}, vi joins T when T
has size ki . For a fixed P and fixed 1 ≤ k1 < . . . < kL < n, the probability that this happens is
at most

L∏
i=1

1
eki (G)

,

and the probability that P appears in T (without fixing k1, . . . , kL) is at most

∑
1≤k1<···<kL<n

 L∏
i=1

1
eki (G)

 < 1
L!

 ∑
(k1,...,kL)∈{1,...,n−1}L

 L∏
i=1

1
eki (G)


 =

1
L!

n−1∑
k=1

1
ek(G)


L

≤ (2Ψ )L

L!

Finally, since G contains at most ∆L paths of length L,

Pr{h(T (G,s)) ≥ L} ≤ ∆L × (2Ψ )L

L!
≤

(
2eΨ∆

L

)L
≤

(1
2

)L
,

for L ≥ 4eΨ∆.

Observe that the last step in the proof of Theorem 4 is to use the union bound over
all paths of length L. If we have a better upper-bound than ∆L on the number of such
paths, then we obtain a better upper bound on h(T ). Lemma 4 gives a better upper bound
for d-degenerate graphs, using which we immediately obtain the following corollary.

Corollary 1. Let G be an n-vertex d-degenerate graph with diameter D and maximum degree
∆, total inverse perimeter size Ψ , and let s be an arbitrary vertex. Then, with probability at least
1−O(1/n), h(T (G,s)) ∈O(Ψ

√
d∆+ logn) ∈O(logn(1 +

√
d∆/Φ)).

9



Proof. As in the proof of Theorem 4, and using the upper bound 2n2L(d∆)L/2 for the num-
ber of paths of length L, given by Lemma 4, we have

Pr{h(T (G,s)) ≥ L} ≤ 2n2L(d∆)L/2 × (2Ψ )L

L!
≤ 2n

(
4eΨ
√
d∆/L

)L
≤

(
8eΨ
√
d∆n1/L/L

)L
,

which is smaller than 1/n for L ≥ 8e3Ψ
√
d∆+ lnn, as required.

7 Upper bounds for high dimensional grids and hypercubes

The d-cube is the graph having vertex set {0,1}d in which two vertices are adjacent if and
only if they differ in exactly one coordinate. Every vertex in the d-cube has degree d and
the d-cube has diameter d. The d-cube is an interesting example in which the path count
is high, but this is counteracted by a low first-passage percolation time.

Theorem 5. Let n = 2d , letG be the d-cube and let s ∈ V (G) be arbitrary. Then, with probability
at least 1− on(1), h(T (G,s)) ∈Θ(d).

Proof. Fill and Pemantle [8] showed that the first-passage percolation cover time for the
d-cube is at most 14.05 with probability 1−on(1). Every vertex of the hypercube has degree
d, so the number of paths of length L starting at s is less than dL. The result then follows
by applying Lemma 2 with p = on(1), c = 2, K = 14.05, and a = d.

A natural generalization of the d-cube is the (d,k)-grid, which has vertex set {0, . . . , k}d
and has an edge between two vertices if and only if the (Euclidean or `1) distance between
them is 1. The (d,k)-grid has diameter D = dk and maximum degree ∆ = 2d.

Note that in the case k = 1, the (d,1)-grid is the d-cube, for which Theorem 5 gives
the optimal bound and this bound can be extended to k ∈O(1). Theorem 1 gives an upper
bound of O(d2k) on h(T (G,s)), which is optimal for d ∈ O(1). The rest of this section is
devoted to proving the following result on the first-passage-percolation cover time of the
(d,k)-grid, which gives an optimal bound on the height of T (G,s) for all values of k and d.

Theorem 6. Let G be the (d,k)-grid and n = (k + 1)d . Then, for any vertex s ∈ V (G), we have
that τ(G,s) =O(k) with probability 1− on(1).

Before jumping into the proof, we note that applying Lemma 2 gives the following
corollary of Theorem 6.

Corollary 2. Let G be the (d,k)-grid and n = (k + 1)d . For any vertex s ∈ V (G) we have that
with probability 1− on(1), h(T (G,s)) = Θ(dk).

To prove Theorem 6, we will make use of a concentration result about the first-
passage percolation time on the d-cube.

10



Lemma 6. Let Q be the d-cube, let s ∈ V (Q) be arbitrary, and let s̄ ∈ V (Q) be the unique vertex
at distance d from s. Then there exist universal constants c > 0 and x0 > 0 such that,

Pr{τ(Q,s, s̄) > x} ≤ e−cxd ,

for all x ≥ x0.

Proof. We assume that d is greater than some sufficiently large constant, d0. Otherwise
the result follows trivially from the union bound: With probability at least 1− d2d−1e−x/d ,
every edge of the d-cube has weight at most x/d. For d ≤ d0, this satisifies the statement of
the lemma with x0 = 3d0 lnd0 and c = 1/(3d2

0 ).

We will prove the result for all x ≤ d2. Proving it for x in this range is sufficient, by
a standard bootstrapping argument: For x > d2, let r = 2dlog(x/d2)e, so that

x0 ≤ x/r ≤ d2

where the first inequality holds provided that d2 ≥ 2x0. Consider a modified version of
Richardson’s infection model, which has the same rules as the original process except that,
for each i ∈ N, if the process has not infected s̄ by time ix/r, then we restart the process
from the beginning. Clearly the time to infect s̄ in this modified process dominates the
time to infect s̄ in the original process, so

Pr{τ(Q,s, s̄) > x} ≤ Pr{τ(G,s, s̄) > x/r}r ≤
(
e−cxd/r

)r
= e−cxd .

Thus, it suffices to prove the lemma for x0 ≤ x ≤ d2. For each i ∈ {0,1, . . . ,d}, let Li
denote the subset of

(d
i

)
vertices whose distance to s is i. Balister et al. [2, Lemma 4] show

that there are constants α,γ > 0 such that, if we sample each edge of Q independently
with probability α/d then, with probability at least 1− e−γd2

, there is a path of length d −4
consisting entirely of sampled edges and having one endpoint in L2 and one endpoint in
Ld−2.

In our setting, where edge weights are independent exponential(1), if we only con-
sider edges of weight at most ln(d/(d −α)), then we obtain a sample in which each edge is
independently sampled with probability α/d. Therefore, with probability at least 1−e−γd2

,
there is a path of weight at most d ln(d/(d −α)) = O(1) joining a vertex u in L2 to a vertex
w in Ld−2.

Now, there are d edge-disjoint paths of length 2 joining s to u. Consider one such
path, P . If P has weight greater than x/3 then at least one of P ’s edges has weight greater
than x/6, which occurs with probability at most 2e−x/6. Therefore, the probability that all
d paths have weight greater than x/3 is at most (2e−x/6)d ≤ e−adx for 0 < a < 1/6 − ln2/x.
Similarly, with probability at least 1− e−adx, there is a path of length 2 and weight at most
x/3 joining w to s̄.

Therefore,

Pr{τ(Q,s, s̄) > 2x/3 + d ln(d/(d − a))} ≤ Pr{τ(G,s, s̄) > x} ≤ 2e−axd + e−γd
2

provided that x ≥ max{3d ln(d/(d − a)), ln2/(1/6 − a)}. This holds, for example, when x ≥
x0 = 12ln2, a = 1/12, and d ≥ 1.
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Lemma 6 extends from τ(Q,s, s̄) to τ(Q,s,v) for any vertex v ∈ V (Q) using the union
bound and the fact that v is at distance at least d/2 from at least one of s or s̄. (This
argument is also used by Balister et al. [2].)

Corollary 3. Let Q be the d-cube, and let s,v ∈ V (Q) be arbitrary. Then there exist universal
constants c > 0 and x0 > 0 such that,

Pr{τ(Q,s,v) > x} ≤ e−cxd ,

for all x ≥ x0.

Corollary 3 says that the tail of τ(Q,s,v) is dominated by an exponential(cd) ran-
dom variable. The next lemma shows that sums of independent copies of τ(Q,s,v) also
behave (roughly) like sums of independent exponential(cd) random variables.

Lemma 7. Let Q be a d-cube, let s1, . . . , sk ∈ V (Q) and v1, . . . , vk ∈ V (Q) be arbitrary, and let
Z1, . . . ,Zk be i.i.d., random variables where Zi is distributed like τ(Q,si ,vi). Then there exist
universal constants c > 0 and x0 > 0 such that

Pr

 k∑
i=1

Zi > ak

 ≤ e(x0+1)k−acdk/2 ,

for all a > 0.

Proof. If X is exponential(cd), then Corollary 3 says that

Pr{τ(Q,si ,vi) > x} ≤ e−cxd = Pr{X > x}

for all x > x0. This implies that

Pr{τ(Q,si ,vi) > x} ≤ Pr{X + x0 > x}

for all x > 0, i.e., X + x0 stochastically dominates τ(Q,si ,vi). Therefore, if X1, . . . ,Xk are
independent exponential(1), then

Pr

 k∑
i=1

Zi > ak

 ≤ Pr

 k∑
i=1

Xi > (a− x0)k

 ≤ e(x0+1)k−acdk/2 ,

where the second inequality is an application of (2).

We can now finish the proof of Theorem 6.

Proof of Theorem 6. The idea of this proof is that, for any vertex v, there is a path from s to
v that visits at most k d-cubes. Therefore, there is a path from s to v whose length can be
expressed as a sum like that considered in Lemma 7.

For each vertex u = (u1, . . . ,ud) with ui ∈ {0, . . . , k−1} for each i ∈ {1, . . . ,d}, define the
subgraph Qu = G[Vu] of G induced by the vertex set

Vu = {(u1 + x1, . . . ,ud + xd) : xi ∈ {0,1} for each i ∈ {1, . . . ,d}} .

Each Qu is a (d,1)-grid, i.e, a d-cube. For any vertex v ∈ G, there is a sequence v1,v2, . . . , vk′
of vertices in G with k′ ≤ k such that

12



1. s ∈Qv1
and v ∈Qvk′ ;

2. for each i ∈ {1, . . . , k′ − 1}, Qvi and Qvi+1
have at least one vertex in common.

3. for each i ∈ {1, . . . , k′} and each j ∈ {1, . . . , k′} \ {i − 1, i, i + 1}, Qvi and Qvj have no edges
(or vertices) in common.

The sequence v1, . . . , vk′ can be found with a greedy algorithm: Define v′0 = s. Now, if v′i−1
and v differ in r coordinates, then there is some vertex vi such that Qvi contains v′i−1 as
well as some vertex v′i whose distance to v is r less than the distance from v′i−1 to v. It is
straightforward to verify that the resulting sequence of vertices v1, . . . ,vk′ satisfies the three
properties described above.

For each i ∈ {1, . . . , k′}, let si = v′i−1 and xi = v′i . Now, observe that

τ(G,s,v) ≤
k′∑
i=1

τ(Qvi , si ,xi) .

Point 3, above, ensures that the random variables τ(Qv1
, s1,x1), . . . , τ(Qvk′ , sk′ ,xk′ ) can be

partitioned into two sets of size bk′/2c and dk′/2e where the variables within each set are
independent.

By Lemma 7 we now have

Pr{τ(G,s,v) > ak} ≤ Pr


dk′/2e∑
i=1

τ(Qv2i−1
, s2i−1,x2i−1) > ak

+ Pr


bk′/2c∑
i=1

τ(Qv2i
, s2i ,x2i) > ak


≤ 2e(x0+1)k−acdk/2 .

Applying the union bound over all (k + 1)d choices of v completes the proof:

Pr{τ(G,s) > ak} ≤
∑

v∈V (G)

Pr{τ(G,s,v) > ak}

≤ 2(k + 1)de(x0+1)k−acdk/2

= ed ln(2(k+1))+(x0+1)k−acdk/2

= on(1) ,

for

a >
2(d ln(2(k + 1) + (x0 + 1)k)

cdk
.

8 Lower Bounds for General Graphs

Next, we describe a series of lower bound constructions that match the upper bounds
obtained in Theorems 1–3. In particular, these constructions show that the dependence on
∆ in the upper bounds in the previous sections can not be asymptotically reduced.

In this section we prove the following theorem.
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· · ·

V1 V2 V3 V4 V5 V6 VL−1 VL

Figure 1: The graph H .

Theorem 7. There exists a positive constant c such that for any given positive integers 1 < ∆,D
satisfying D ≥ 16e3 ln∆, there exists an n-vertex graph G with maximum degree ≤ ∆, diameter
≤D, and a vertex s satisfying Pr{h(T (G,s)) ≥ c(∆ lnn+∆D)} ≥ 1− on(1).

The graph G is obtained by gluing together two graphs H and I . The graph H
has large diameter and high connectivity. The graph I has low connectivity and small
diameter. By gluing them we obtain a graph of low diameter (because of I) but for which
the infection is more likely to spread via H (because of its high connectivity), and hence
will have a large height. We begin by defining and studying H and I individually.

8.1 The Ladder Graph H

Let L,δ,a be positive integers. The graph H is shown in Figure 1. The vertices of H are
partitioned into L groups V1, . . . ,VL, each of size δ. The edge set of H is

E(H) =
L−1⋃
i=1

{vw : v ∈ Vi , w ∈ Vi+1} .

First we show that the infection spreads rather quickly in H , namely we prove
upper bounds for τ(H,v,w).

Lemma 8. Let a > e2. Then for any 1 ≤ i < j ≤ n and any v ∈ Vi , w ∈ Vj we have

Pr{τ(H,v,w) > 2aL/(e2δ)} ≤ exp(L− aL/(2e2)) + exp(−aL/(e2δ)) .

Proof. Consider the following greedy algorithm for finding a path from v to w: The path
starts at v (which is in Vi). When the path has reached some vertex x ∈ Vk , for k < j −1, the
algorithm extends the path by taking the minimum-weight edge joining x to some vertex
in Vk+1. When the algorithm reaches some x ∈ Vj−1, it takes the edge xw.

Let m = j − i. Each of the first m − 1 edges in the resulting path has a weight that
is the minimum of δ exponential(1) random variables. Thus, the sum of weights of these
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edges is the sum of m− 1 exponential(δ) random variables, i.e. an Erlang(m− 1,δ) random
variable. The weight of the final edge is an exponential(1) random variable. Thus we find

Pr
{
τ(H,v,w) > 2aL/(e2δ)

}
≤ Pr

{
Erlang(m− 1,δ) + exponential(1) > 2aL/(e2δ)

}
≤ Pr

{
Erlang(m− 1,δ) > aL/(e2δ)

}
+ Pr

{
exponential(1) > aL/(e2δ)

}
≤ Pr

{
Erlang(L,δ) > aL/(e2δ)

}
+ exp(−aL/(e2δ))

≤ exp(L− aL/(2e2)) + exp(−aL/(e2δ)) .

The first inequality follows from the discussion above. The second inequality follows from
the union bound. The third inequality is because an Erlang(L,δ) random variable stochas-
tically dominates an Erlang(m−1,δ) random variable, and the definition of the exponential
distribution. The final equality follows from the tail bound (2).

8.2 The Subdivided Tree I

Next, we consider a tree I that is obtained by starting with a perfect binary tree3 having L
leaves and then subdividing each edge incident to a leaf daL/δe − 1 times so that each leaf-
incident edge becomes a path of length daL/δe. Note that I has height daL/δe + log2L − 1
(we assume L is a power of 2).

We next show that the infection spreads rather slowly in I , namely we prove lower
bounds for τ(I,v,w).

Lemma 9. For any distinct leaves v and w we have Pr{τ(I,v,w) ≤ 2aL/(e2δ)} ≤ exp(−2aL/δ).

Proof. The path from v to w in I contains at least 2daL/δe edges. Therefore, the weight
of this path is lower-bounded by the sum of 2daL/δe independent exponential(1) random
variables. The lemma then follows by applying (1) to this sum.

8.3 Putting it Together

The lower-bound graph G is now constructed by taking a tree I with L leaves and a graph
H with L groups V1, . . . ,VL each of size δ = b(∆− 1)/2c. Next, we consider the leaves of I in
the order they are encountered in a depth first-traversal of I and, for each i ∈ {1, . . . ,L} we
identify the ith leaf of I with some vertex in Vi . See Figure 2.

Lemma 10. For any vertex s ∈ V1 in the graph G described above, we have

Pr{h(T (G,s)) < L− 1} ≤ L2
(
exp((1− a/2e2)L) + exp(−aL/(e2δ)) + exp(−2aL/δ)

)
Proof. Recall that T (G,s) is the shortest-path tree rooted at s for the first-passage percola-
tion in G. If this tree contains no edge of I , its height is at least L − 1. If it does use some

3A perfect binary tree, sometimes called a complete binary tree, is a binary tree in which all ver-
tices have 0 or 2 children, and all leaves have the same depth: https://xlinux.nist.gov/dads/HTML/

perfectBinaryTree.html
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· · ·

H

I

Figure 2: The lower bound graph G. Dashed segments denote subdivided edges (paths of
length daL/δe).

edge of I , then there must be two leaves v and w of I such that τ(I,v,w) ≤ τ(H,v,w). Since
there are

(L
2
)
< L2 choices for the pair {v,w}, using Lemma 8 and Lemma 9, we can bound

the probability of this event by

L2 (Pr{dH (v,w) > 2aL/δ}+ Pr{dI (v,w) < 2aL/δ})

≤ L2
(
exp((1− a/2e2)L) + exp(−aL/(e2δ)) + exp(−2aL/δ)

)
,

which proves the lemma.

We now have all the ingredients to prove the main theorem of this section, Theo-
rem 7.

Proof of Theorem 7. Let a = 4e2, δ = (∆ − 1)/2, and let L be the largest power of 2 that is
not larger than D∆/8a. Let G be the graph described above. The maximum degree of G is
2δ+ 1 = ∆, and the diameter of G is bounded by

2(aL/δ+ log2L) ≤ 2(a× (D∆/8a)/(∆/2) + log2(D∆/8a)) ≤D ,

and its number of vertices is

n = Lδ+ (2L− 1) +L(aL/δ − 1) < L(δ+ 1 + aL/δ) .

We have

L ≥D∆/4a = Ω(D∆+∆ lnL+∆ ln(δ+ 1 + aL/δ)) = Ω(∆ lnn+∆D) .

16



By Lemma 10, there exists a vertex s such that

Pr{h(T (G,s) ≥Ω(∆ lnn+∆D))} ≥ Pr{h(T (G,s) ≥ L− 1)}

≥ 1−L2
(
exp((1− a/2e2)L)− exp(−aL/(e2δ))− exp(−2aL/δ)

)
= 1−

(
exp(−L+ 2lnL)− exp(−8L/∆+ 2lnL)− exp(−16e2L/∆+ 2lnL)

)
= 1− oL(1) = 1− on(1) ,

completing the proof.

9 Lower Bounds for Degenerate Graphs

Theorem 7 shows that Theorem 1 cannot be strengthened without knowing more about
G than its number of vertices, maximum degree, and diameter. Theorem 2 provides a
stronger upper bound under the assumption that G is d-degenerate. In this section we
show that Theorem 2 is also tight, even when restricted to very special subclasses of d-
degenerate graphs.

First we show that the bound given by Theorem 2 for O(1)-degenerate graphs is
tight, even when we restrict our attention to planar graphs, which are 5-degenerate. Since
planar graphs have genus 0, this lower bound also shows that Theorem 3, which applies
to bounded genus graphs, is tight.

Theorem 8. There exists an absolute constant c > 0 such that for any ∆ > 1 and D ≥ 106 ln∆

there exists a planar graph with diameter ≤ D, maximum degree ≤ ∆, and a vertex s such that
with probability 1− on(1) we have h(T (G,s)) > c

√
∆(D + lnn).

Proof. Let C = 105, a = e2C, δ = ∆/2, and L = D
√
δ/3a, and Let H be the graph shown

in Figure 3, where each Vi has δ vertices. Let I be the perfect binary tree with L leaves,
with each leaf-incident edge subdivided aL/

√
δ − 1 times. Let G be the graph obtained

from identifying the ith leaf of I with an arbitrary vertex from Vi . Note that G is a planar
graph with maximum degree 2δ = ∆, diameter 2(aL/

√
δ + 1 + log2L) ≤ D, and n = δL +

L − 1 + (2L − 1) + L(aL/δ − 1) = O(δL + L2/δ) vertices. Let s be an arbitrary vertex in V1.
Since L = Ω(

√
∆(D + lnn)), to complete the proof, we need only show that with probability

1− on(1) we have h(T (G,s)) ≥ 2L− 2.

Choose an arbitrary vertex t ∈ VL. LetA denote the event τ(H,s, t) ≤ CL/
√
δ, and let

B denote the event “for all pairs v andw of leaves of I we have τ(I,v,w) > CL/
√
δ. Note that

if bothA and B happen, then the path in T (G,s) from s to t uses edges from H only, which
implies the height of this tree is at least 2L−2. To complete the proof via the union bound,
we need only show that each of A and B happen with probability 1− oL(1) = 1− on(1).

We start with A. In H , one can go from the vertex in-between Vi and Vi+1 to the
vertex in-between Vi+1 and Vi+2 by taking a path whose weight is distributed as a Yδ,1
random variable (recall the definition of a Ya,b random variable from Section 2). Therefore,
we have

τ(H,s, t) = X1 +X2 +
L−2∑
i=1

Zi ,
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· · ·

V1 V2 V3 V4 V5 V6 VL−1 VL

Figure 3: The graph H in the proof of Theorem 8.

where X1,X2 are independent exponential(1) random variables (weights of the first and
last edges), and Zi ’s are independent Yδ,1 random variables. Since C/3 ≥ 3 × (64 + 1024),
Using Lemma 1 (concentration for the sum of Ya,b random variables) we have

1−Pr{A} ≤ 2Pr
{
X1 > CL/3

√
δ
}
+Pr

L−1∑
i=1

Zi > CL/3
√
δ

 ≤ 2exp
(
−CL/3

√
δ
)
+exp(−(L−2)/9) = oL(1)

We now prove B happens with high probability. The path connecting any pair of
leaves of I contains at least 2aL/

√
δ edges, each of them having an independent exponen-

tial(1) weight. Therefore, using union bound over all pairs and using (1) we get

1−Pr{B} ≤
(
L
2

)
×Pr{Erlang(2aL/

√
δ,1) ≤ CL/

√
δ} ≤ L2 × (eC/2a)2aL/

√
δ = oL(1) ,

completing the proof.

Next we describe a lower-bound construction that is d-degenerate, has thickness d
and treewidthO(d). This construction shows that Theorem 2 is asymptotically tight for all
values d ≤ ∆ (with certain restrictions etc.).

Theorem 9. There exists an absolute constant c > 0 such that for any ∆ > 1 with D ≥ 106 ln∆

and d < ∆, there exists a graph G with diameter ≤ D, maximum degree ≤ ∆, and the following
properties:

(i) G is d-degenerate, has thickness ≤ d and treewidth ≤ 2d + 1.

(ii) G has a vertex s such that with probability 1−on(1) we have h(T (G,s)) > c
√
d∆(D +

lnn).

Proof. Let C = 105, a = e2C, δ = ∆/2, and L = D
√
d∆/8a, and Let H be the graph shown

in Figure 4, where each Vi has δ vertices and each V ′i has d vertices, and each of the pairs
(V1,V

′
1), (V ′1,V2), (V2,V

′
2), etc. form a complete bipartite graph. Let I be the perfect binary

tree with L leaves, with each leaf-incident edge subdivided aL/
√
dδ − 1 times. Consider

18



· · ·

V1 V2 V3 V4 V5 V6 VL

V ′1 V ′2 V ′3 V ′4 V ′5 V ′L−1

· · ·

· · ·

Figure 4: The d-degenerate graphH used in the proof of Theorem 9. In this example, δ = 7
and d = 3.

the leaves of I in the order they are encountered in a depth first-traversal, for each i ∈
{1, . . . ,L} identify the ith leaf of I with some vertex in Vi . Let G be the resulting graph.
Note that G has maximum degree 2δ = ∆, diameter ≤ 2(1 + aL/

√
dδ + log2L) ≤ D, and

n = (δ+D)L+ 2L− 1 +L(aL/dδ − 1) =O(∆L+L2/d∆) vertices.

(i) Graph G is d-degenerate because the vertices of degree greater than d form an
independent set. Therefore, every induced subgraph of G is either an independent set (so
has a vertex of degree 0) or contains a vertex of degree at most d.

To see that G has thickness d, for each i = 1, . . . ,L, assign to each vertex of V ′i a
distinct colour from one of d colour classes. Now partition the edges incident to these
vertices among d subgraphs depending on the color of the vertex they are incident to.
Edges not incident to these vertices can be assigned to any subgraph. With this partition
of edges, each subgraph becomes a subgraph of the planar graph used in the proof of
Theorem 8.

To see that G has treewidth 2d + 1, we build a tree decomposition of G with bags of
maximum size 2d + 2. For convenience, we define V0 = VL+1 = ∅.

We begin with a tree T ′ of empty bags that has the same shape as I . For each vertex
v of I , let Bv denote the bag of v.

1. Assign each vertex of v of I to Bv and to the (up to 2) children of Bv in T ′.

2. Let v1, . . . , vL be the leaves of I ordered so that each vi ∈ Vi . In the leaf bag Bvi of T ′

we add all vertices in V ′i−1 and V ′i .

Now each vertex in V ′i appears in Bvi and Bvi+1
; so we add all vertices of V ′i to each of

the bags on the path in T ′ from Bvi to Bvi+1
.

3. Finally, to each Bvi we attach δ − 1 bags as leaves of T ′; in each bag we put all the
vertices in V ′i ∪V

′
i+1, and a distinct vertex of Vi \{vi}. We call each such bag Bv , where

v is the unique vertex of Vi \ {vi} contained in the bag.

No bag contains more than 2d + 2 vertices: for a leaf vi , Bvi contains vi and its
parent, as well as vertices in V ′i−1 ∪ V

′
i . For a non-leaf vertex v of I , observe that (in any
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binary tree) there are at most two distinct indices i, j such that v lies on the (vi ,vi+1)-path
in I and on the (vj ,vj+1)-path, hence Bv contains v and its parent, as well as possibly V ′i
and V ′j . For each v ∈ Vi \ {vi}, Bv contains at most 2d + 1 vertices; v and the vertices in
V ′i−1 ∪V

′
i .

For each edge vw of G, there is some bag that contains both v and w: If vw is an
edge of T with v a child of w then Bv contains both v and w. Otherwise, v ∈ Vi and w ∈ V ′i−1
or w ∈ V ′i , in which case v and w appear in Bv .

Finally, for each vertex v of G, the subgraph of T ′ induced by bags containing v is
connected: For a vertex v ∈ I this subgraph is either an edge or a single vertex. For a vertex
v ∈ Vi this subgraph is a single vertex. For a vertex v ∈ V ′i this subgraph is a path joining
two vertices of T ′.

Therefore, T ′ is a tree-decomposition of G whose largest bag has size 2d + 2, and
thus treewidth of G is at most 2d + 1.

(ii) Let s be an arbitrary vertex in V1. Since L = Ω(
√
d∆(D + lnn)), to prove part (ii)

we need only show that with probability 1− on(1) we have h(T (G,s)) ≥ 2L− 2.

Choose an arbitrary vertex t ∈ VL. Let A denote the event τ(H,s, t) ≤ CL/
√
dδ, and

let B denote the event “for all pairs v and w of leaves of I we have τ(I,v,w) > CL/
√
dδ.

Note that if both A and B happen, then the path in T (G,s) from s to t uses edges from
H only, which implies the height of this tree is at least 2L − 2. To complete the proof
via the union bound, we need only show that each of A and B happen with probability
1− oL(1) = 1− on(1).

We start with A. In H , one can go from a given vertex in V ′i to some vertex in V ′i+1
by taking a path whose weight is distributed as a Yδ,d random variable. Therefore, τ(H,s, t)
is stochastically dominated by

X1 +X2 +
L−2∑
i=1

Zi ,

where X1,X2 are independent exponential(1) random variables (weights of the first and
last edges), and Zi ’s are independent Yδ,d random variables. Since C/3 ≥ 3 × (64 + 1024),
Using Lemma 1 (concentration for the sum of Ya,b random variables) we have

1−Pr{A} ≤ 2Pr{X1 > CL/3
√
dδ}+Pr{

L−2∑
i=1

Zi > CL/3
√
dδ} ≤ 2exp(−CL/3

√
dδ)+exp(−(L−2)/9) = oL(1)

We now prove B happens with high probability. The path connecting any pair of
leaves of I contains at least 2aL/

√
dδ edges, each of them having an independent exponen-

tial(1) weight. Therefore, using union bound over all pairs and using (1) we get

1−Pr{B} ≤
(
L
2

)
×Pr{Erlang(2aL/

√
dδ,1) ≤ CL/

√
dδ} ≤ L2 × (eC/2a)2aL/

√
dδ = oL(1) ,

completing the proof.
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A Proof of Lemma 1

We will use the following inequality, which holds for any positive integer k and any real
number λ (see [9, Theorem 5.1(ii)]):

Pr{Erlang(k,1) ≥ λk} ≤ exp(1−λ) . (4)

We will also use the following inequality, which holds for any binomial random
variable X, and any M ≤ E[X] (see [11, Theorem 2.3(c)]):

Pr{X <M/2} ≤ exp(−M/8) . (5)

We will use the following version of Bernstein’s inequality (see Theorem 2.10 and
Corollary 2.11 in [5]).

Theorem 10 (Bernstein’s inequality). Let X1, . . . ,Xm be non-negative independent random
variables for which there exist v,c satisfying

m∑
i=1

E[Xpi ] ≤ vp!cp−2/2

for all positive integers p ≥ 2. Then for any t > 0 we have

Pr

 m∑
i=1

(Xi −E[Xi]) ≥ ct +
√

2vt

 ≤ e−t ,
and

Pr

 m∑
i=1

(Xi −E[Xi]) ≥ t

 ≤ exp
(
− t2

2v + 2ct

)
,

We begin with a helper lemma.

Lemma 11. For any t we have

Pr{Ya,b > t} ≤ exp(−at/64) + exp(−abt2/1024) .
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Proof. First, consider the case t > 4. Note that there exist a independent root-to-leaf paths,
the weight of each is Erlang(2,1). Hence, using (4) and since t ≥ 4,

Pr{Ya,b > t} ≤ Pr{Erlang(2,1) > t}a ≤ (exp(1−t/2))a ≤ (exp(−t/4))a = exp(−at/4) ≤ exp(−at/64).

The case t ≤ 0 is trivial, so we consider the case 0 ≤ t ≤ 4. Note that for such t we
have 1− exp(−t/2) ≥ t/8. We say a node in the tree survives if each of the edges on its path
to the root have weight at most t/2. Note that Ya,b > t implies no node at level 2 survives.
The probability that a node at level 1 (children of the root) survives is 1 − exp(−t/2), so
the number of surviving nodes at level 1, S1, is a binomial random variable with mean
a(1− exp(−t/2)) ≥ at/8. From (5) we have

Pr{S1 < at/16} ≤ Pr{S1 < E[S1]/2} ≤ exp(−E[S1]/8) ≤ exp(−at/64) .

Conditioned on S1 ≥ at/16, the number of surviving nodes at level 2, S2, is a binomial
random variable with mean S1b(1− exp(−t/2)) ≥ abt2/128, so using(5) again we have

Pr{Ya,b > t|S1 ≥ at/16} ≤ Pr{S2 = 0|S1 ≥ at/16} ≤ Pr{S2 < abt
2/256|S1 ≥ at/16}

≤ exp(−abt2/1024) ,

completing the proof.

We are now ready to prove Lemma 1. Let X1, . . . ,Xm be i.i.d. distributed as Ya,b for
some a,b. Then we want to prove E[X1] =O(1/a+ 1/

√
ab) and moreover,

Pr

 m∑
i=1

Xi ≥ 3m(64/a+ 1024/
√
ab)

 ≤ exp(−m/9) .

Let d1 = a/64 and d2 = ab/1024. For any positive integer p, by Lemma 11 we have

E[Xp1 ] =
∫ ∞

0
Pr{X1 > t

1/p}dt ≤
∫ ∞

0
exp(−d1t

1/p) +
∫ ∞

0
exp(−d2t

2/p)

For any positive numbers c,α, we have∫ ∞
0

exp(−ctα)dt =
∫ ∞

0
exp(−x)

x1/α−1

αc1/α
dx =

c−1/α

α

∫ ∞
0
e−xx1/α−1 =

c−1/αΓ (1/α)
α

, (6)

whence,
E[Xp1 ] ≤ pd−p1 Γ (p) + pd−p/22 Γ (p/2)/2

In particular, setting p = 1 gives E[X1] ≤ 64/a+ 1024/
√
abC c. Let v = 4c2m. For p ≥ 2, we

have
m∑
i=1

E[Xpi ] ≤mpd−p1 Γ (p) +mpd−p/22 Γ (p/2)/2 ≤mp!d−p1 +mp!d−p/22 /2 ≤ vp!cp−2/2 .

Bernstein’s inequality (Theorem 10) gives that for all t,

Pr

 m∑
i=1

Xi ≥m
(
64/a+ 1024/

√
ab

)
+ ct + 3c

√
mt

 ≤ e−t ,
and choosing t =m/9 completes the proof of the lemma.
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