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Abstract

Let p = 1+ε
n . It is known that if N = ε3n → ∞ then with high probability (w.h.p.)

Gn,p has a unique giant largest component. We show that if in addition, ε = ε(n) → 0
then w.h.p. the cover time of Gn,p is asymptotic to n log2 N ; previously Barlow, Ding,
Nachmias and Peres had shown this up to constant multiplicative factors.

1 Introduction

Let G = (V,E) be a connected graph with vertex set V of size n and an edge set E. In a simple
random walk W on a graph G, at each step, a particle moves from its current vertex to a
randomly chosen neighbor. For v ∈ V , let Cv be the expected time taken for a simple random
walk starting at v to visit every vertex of G. The vertex cover time CG of G is defined as
CG = maxv∈V Cv. The (vertex) cover time of connected graphs has been extensively studied.
It was shown by Feige [17], [18], that for any connected graph G, the cover time satisfies
(1− o(1))n log n ≤ CG ≤ (1 + o(1)) 4

27
n3.

In a series of papers, Cooper and Frieze have asymptotically established the cover time in a
variety of random graph models. The following theorem lists some of the main results. (Here
An ≈ Bn if An = (1 + o(1))Bn as n→∞.)
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Theorem 1. The following asymptotic estimates for the cover time hold with high probability
(w.h.p.):

[5] If G = Gn,p with p = c logn
n

, c > 1, then CG ≈ φ(c)n log n where φ(c) = c log
(

c
c−1

)
.

[6] If G = Gn,r with r = O(1), a random r-regular graph, then CG ≈ r−1
r−2

n log n.

[7] Let G = Gn,d,r with d ≥ 3 and r =
(
c logn
Υdn

)1/d

be the random geometric graph on n vertices

in dimension d1. Then CG ≈ φ(c)n log n.

[8] If D = Dn,p (the random digraph counterpart of Gn,p), then CD ≈ φ(c)n log n.

Cooper and Frieze [9] also established the cover time of the giant component C1 of the random
graph Gn,p with p = c/n, where c > 1 is a constant. They showed in this setting that w.h.p.
the cover time CC1 satisfies

CC1 ≈
cx(2− x)

4(cx− ln c)
n(lnn)2,

where x denotes the solution in (0, 1) of x = 1− e−cx.

This raises the question as to what happens in Gn,p if p = (1 + ε)/n, ε > 0 and we allow
ε → 0. It is known that a unique giant component emerges w.h.p. only when ε3n → ∞.
Barlow, Ding, Nachmias and Peres [2] showed that w.h.p.

CC1 = Θ(n log2(ε3n)). (1)

Cooper, Frieze and Lubetzky [10] showed that if C
(2)
1 denotes the 2-core of the giant compo-

nent C1 of Gn,p (C1 stripped of its attached trees), then, in this range of p, w.h.p. C
C

(2)
1
≈

1
4
εn log2(ε3n), but they were not able to determine the cover time of the giant C1 asymptoti-

cally. We do this in the current paper, confirming their conjecture.

We prove the following theorem:

Theorem 2. Let p = 1+ε
n

with ε = ε(n) > 0, ε→ 0 such that ε3n→∞. Let C1 be the giant
component of Gn,p. Then w.h.p.

CC1 ≈ n log2(ε3n).

Our proof is very different from the proof in [10]. We will use the notion of a Gaussian
Free Field (GFF). This was used in the breakthrough paper of Ding, Lee and Peres [14] that

1Here Υd is the volume of the Euclidean ball of radius one in Rd. The random geometric graph G = Gn,d,r

is defined as follows: we choose n points independently uniformly at random from [0, 1]d to be the vertices of
G and two points are joined by an edge if and only if they are at most distance r-apart.
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describes a deterministic algorithm for approximating CG to within a constant factor. This
was later refined by Ding [15] and by Zhai [24]. It is the latter paper that we will use. In the
next section, we will describe the tools needed for our proof. Then in Section 3 we will use
these tools to prove Theorem 2.

2 Tools

2.1 Gaussian Free Field

Definition 1. For our purposes, given a graph G = (V,E), a GFF is a random vector
(ηv, v ∈ V ) whose joint distribution is Gaussian with

(i) E(ηv) = 0 for all v ∈ V .

(ii) ηv0 = 0 for some fixed vertex v0 ∈ V .

(iii) E((ηv − ηw)2) = Reff(v, w) for all v, w ∈ V .

Note that in particular, Var(ηv) = E(η2
v) = Reff(v, v0). (Here Reff is the effective resistance

between v and w, when G is treated as an electrical network where each edge is a resistor of
resistance one. See Doyle and Snell [16] or Lewin, Peres and Wilmer [22] for nice discussions
of this notion). As its name suggests, Reff is most naturally defined in terms of electrical
networks. For us the following mathematical definition will suffice: for a graph G = (V,E)
and vertices v, w ∈ V , we use the commute time identity to define

Reff(v, w) =
τ(v, w) + τ(w, v)

2|E|
, (2)

where τ(v, w) is the expected time for a simple random walk starting at v to reach w.

Note that, as suggested by the electrical analog, we have

Reff(v, w) ≤ dist(v, w). (3)

This is a simple consequence of Rayleigh’s Monotonicity Law (delete all edges except for a
shortest path from v to w), see [16].

In the continuous setting, the Gaussian free field generalizes Brownian motion (or the Brow-
nian bridge) and can be seen as a model of a random surface. In the discrete setting, the
Gaussian Free Field can be seen as generalizing Brownian motion on a line to an analog of
Brownian motion on the topology of the graph. In particular, if G is a path with t edges, and
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the fixed vertex v0 is an endpoint of the path, then the normals ηv in the GFF for the path
can be generated in terms of Brownian motion W (t), by setting ηv to be W (dist(v, v0)).

The important thing for the present paper is a remarkable connection between the Gaussian
Free Field on a graph and its cover time. Let us define

M = E(max
v∈V

ηv).

Ding, Lee and Peres [14] proved that there are universal constants c1, c2 such that

c1|E|M2 ≤ CG ≤ c2|E|M2. (4)

Next let R = maxv,w∈V Reff(v, w). Zhai [24] proved the following theorem:

Theorem 3 (Zhai). Let G = (V,E) be a finite undirected graph with a specified vertex v0 ∈ V .
There are universal positive constants c1, c2 such that if we let τcov be the first time that all
the vertices in V have been visited at least once for the walk on G started at v0, we have

Pr
(∣∣∣τcov − |E|M2

∣∣∣ ≥ |E|(√λR ·M + λR)
)
≤ c1e

−c2λ (5)

for any λ ≥ c1.

Setting X = τcov
|E|M2 , this gives after crude estimates

|EX − 1| ≤ E|X − 1| =
∫ ∞

0

Pr(|X − 1| > t)dt ≤ C

(√
R

M2
+

R

M2

)
for a universal constant C. Note that R and M do not depend on v0 (for M , observe that for
any fixed vertex w, E[maxv∈V ηv] = E[(maxv∈V (ηv − ηw)) + ηw] = E[maxv∈V (ηv − ηw)], since
the Gaussians have mean 0, see also Remark 1.3 in [24]). After taking the maximum over v0

we thus get that CG = maxv0 Eτcov satisfies

CG = |E|M2

(
1 +O

(√
R

M2
+

R

M2

))
. (6)

Now, as we will see in the next section, the number of edges in the emerging giant is given by
the following theorem:

Theorem 4. Let G = Gn,p be as in Theorem 2. Then

|E(C1)| ≈ 2εn w.h.p. (7)

This follows from the work in [12] as we will see in Section 2.2.

Our main contribution is the following theorem:
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Theorem 5. Let G = Gn,p be as in Theorem 2 and let M the the expected maximum of a
GFF on G as defined above. Then

M ≈ log(ε3n)

(2ε)1/2
w.h.p. (8)

This immediately implies Theorem 2 as follows:

Proof of Theorem 2. In view of (6) obtained from Theorem 3, Theorem 5 implies Theorem
2 if we can show that w.h.p. R = o(M2). Now, we know from (1), (4) and (7) (or from
Theorem 5) that w.h.p. M = Ω(ε−1/2 log(ε3n)). Therefore to prove that R = o(M2) it will
be sufficient to prove

R = O

(
log(ε3n)

ε

)
. (9)

This can be verified as follows: first we observe that the effective resistance between two
vertices of a graph G is always bounded above by the diameter of G, see (3). Second, it was

proved in [13] that w.h.p. the diameter of Gn,p is asymptotically equal to 3 log(ε3n)
ε

and so (9)
follows immediately.

2.2 Structure of the emerging giant

Ding, Kim, Lubetzky and Peres [12] describe the following construction of a random graph,
which we denote by H. Let 0 < µ < 1 satisfy µe−µ = (1 + ε)e−(1+ε). Let N (µ, σ2) denote the
normal distribution with mean µ and variance σ2.

giantconstruction

Step 1. Let Λ ∼ N
(
1 + ε− µ, 1

εn

)
and assign i.i.d. variables Du ∼ Poisson(Λ) (u ∈ [n]) to

the vertices, conditioned that
∑
Du1Du≥3 is even.

Let Nk = | {u : Du = k} | and N≥3 =
∑

k≥3Nk. Select a random graph K1 on N≥3

vertices, uniformly among all graphs with Nk vertices of degree k for all k ≥ 3.

Step 2. Replace each edge e ∈ E(K1) by a path Pe of length Geom(1 − µ) to create K2.
(Hereafter, K1 denotes the graph from Step 1 whose vertices are the subset of vertices
of H consisting of these original vertices of degree ≥ 3 and K2 ⊇ K1 denotes the
graph created by the end of this step.)

Step 3. Attach an independent Poisson(µ)-Galton-Watson tree with root v to each vertex v
of K2.
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The main result of [12] is the following theorem:

Theorem 6. Let ε → 0 such that ε3n → ∞. For any graph property A, Pr(H ∈ A) → 0
implies that Pr(C1 ∈ A)→ 0.

We will work with this construction for the remainder of the manuscript. For our application
of the Gaussian free field, we make the convenient choice that v0 is a vertex in K1.

Proof of Theorem 4. Let H be the graph constructed in Steps 1-3. In view of Theorem 6, in
order to show |E(C1)| ≈ 2εn, we show |E(H)| ≈ 2εn. We observe that

1− µ− ε ∈ [0, ε2]. (10)

Recall from Step 1 that Λ ∼ N
(
1 + ε− µ, 1

εn

)
. Applying the Chebyshev inequality we see

that for any θ > 0, we have

Pr (|Λ− E(Λ)| ≥ θ) ≤ 1

θ2εn
.

Putting θ = n−1/3, we see that θ2εn = εn1/3 →∞, so

Λ = EΛ +O(n−1/3) = 2ε+O(n−1/3 + ε2), w.h.p. (11)

The restriction
∑
Du1Du≥3 is even will be satisfied with constant probability and then we see

that w.h.p.

N≥3 ≈
4

3
ε3n and almost all vertices of K1 have degree three. (12)

Therefore, w.h.p.,

|E(K1)| ≈ 3

2

4

3
ε3n = 2ε3n (13)

The expected length of each path constructed by Step 2 is asymptotically equal to 1/(1−µ) ≈
1/ε. The path lengths are independent with geometric distributions (which have exponential
tails) and so their sum is concentrated around their mean (by virtue of, e.g. Bernstein’s
inequality) which is asymptotically equal to |E(K1)|1

ε
≈ 2ε2n. Thus, w.h.p., |E(K2)| ≈ 2ε2n.

Note also that in K2, w.h.p., there is no path longer than 2
ε

logN≥3.

Furthermore, the expected size of each tree in Step 3 is also asymptotically equal to 1/ε.
These trees are independently constructed whose sizes also have exponentially decaying tails
and so the total number of edges is concentrated around its mean which is asymptotically
equal to |E(K2)|1

ε
≈ 2εn. Thus, w.h.p. |E(H)| ≈ 2εn, which proves Theorem 4.

Let
N = ε3n and let κ denote the smallest power of 2 which is at least 1/ε.

Lemma 7. W.h.p. |Pe| ≤ 2 logN
ε

for all paths Pe created in Step 2.
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Proof.

Pr

(
|Pe| ≥

2 logN

ε

)
≤ (1− ε(1− ε))2 logN/ε ≤ N−(2−o(1)).

The result now follows from (13) and the Markov inequality.

2.2.1 Galton-Watson Trees

A key parameter for us will be the probability that a Galton-Watson tree with Poisson(µ)
offspring distribution survives for at least k levels. The following Lemma was proved by Ding,
Kim, Lubetzky and Peres (see Lemma 4.2 in [13]).

Lemma 8. Let 0 < µ < 1 and ε > 0 satisfy µe−µ = (1 + ε)e−(1+ε). Let T be a Poisson(µ)-
Galton-Watson tree. Let Lk denote the k-th level of T . Then there exist absolute constants
c1 < c2 such that for any k ≥ 1/ε we have

c1(ε exp
{
−k(ε+ c1ε

2)
}

) ≤ Pr (Lk 6= ∅) ≤ c2(ε exp
{
−k(ε− c2ε

2)
}

).

Their proof also easily gives the following result.

Lemma 9. For k < 1/ε we have

Pr (Lk 6= ∅) <
10

k
.

We shall need the following result about trees attached in Step 3. Here and throughout the
remainder of the paper,

N = ε3n.

Lemma 10. Consider the construction of the graph H from Steps 1-3. Let 0 < γ < 1. Let
T be the set of trees attached in Step 3 of giantconstruction. Then, w.h.p. (referring to
the entire construction, not just Step 3), we have:

(a)

There are between
1

2
c1N

1−γ+O(ε) and 2c2N
1−γ+O(ε) trees in T of depth at least γε−1 logN.

(14)

(b)

There are no trees in T of depth exceeding
2 logN

ε
. (15)

In fact the probability of the event in (15) is 1−O(N−(1−o(1))).
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Here c1, c2 > 0 are the universal constants from Lemma 8.

Proof. (a) Let pγ denote Pr(Lk 6= 0) for kγ = bγε−1 logNc, γ > 0. Conditioning on the results
of Step 1 and Step 2, the number νγ of trees created in Step 3 of depth at least k is a binomial
with number of trials |V (K2)| and probability of success pγ. Recall |V (K2)| ≈ (1 + o(1))4N

ε
.

It follows from Lemma 8 that

(1 + o(1))
4N

3
· 1

ε
· c1ε exp {−(γ +O(ε)) logN)} =

4c1

3
N1−γ+O(ε) ≤ E(νγ) ≤

4c2

3
N1−γ+O(ε).

Since 1− γ > 0 and ε→ 0, note that eventually 1− γ +O(ε) > δ0 for some positive universal
constant δ0, so N1−γ+O(ε) →∞.

Thus conditional on the results of Step 1 and Step 2, νγ is distributed as a binomial with
mean going to infinity and so we have that if 0 < γ < 1 then the Chernoff bounds imply (14).

(b) It follows from Lemma 8 that the probability that any fixed tree has depth at least
2ε−1 logN is O(εN−2−o(1)). There are w.h.p. O(ε2n) trees and so the expected number of
trees with this or greater depth is O(ε2n× εN−2−o(1)) = O(N−1−o(1)). The result now follows
from the Markov inequality.

2.3 Normal Properties

In this section we describe several properties of the normal distribution that we will use in
our proof.

First suppose that g1, g2, . . . , gs are independent copies of N (0, 1). Then if Gs = maxi=1,...,s gi,

E (Gs) =
√

2 log s− log log s+ log(4π)− 2γ√
8 log s

+O

(
1

log s

)
(16)

where γ = 0.577 . . . is the Euler-Mascheroni constant. For a proof see Cramér [11].

Next suppose that (Xi)1≤i≤s and (Yi)1≤i≤s are two centered Gaussian vectors in Rs such that
E(Xi −Xj)

2 ≤ E(Yi − Yj)2 for all 1 ≤ i, j ≤ s. Then,

E(max {Xi : i = 1, 2, . . . , s}) ≤ E(max {Yi : i = 1, 2, . . . , s}) (17)

(sometimes refered to as Slepian’s lemma). See Fernique [19] (Theorem 2.1.2 and Corollary
2.1.3). Finally we have that if (Xi)1≤i≤s is a centered Gaussian vector and σ2 = maxi Var(Xi),
then

E(max
1≤i≤s

Xi) ≤ σ
√

2 log s. (18)
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This can be found, for example, in the appendix of the book by Chatterjee [4]; it follows
from a simple union bound. Nevertheless, repeated carefully chosen applications of (18) will
suffice to prove our upper bound on M . (Importantly, observe by comparison with (16) that
independent normals are asymptotically the worst case for the expected maximum.)

We also have
Pr(| max

1≤i≤s
Xi − E(max

1≤i≤s
Xi)| > t) ≤ 2e−t

2/2σ2

. (19)

See for example Ledoux [20].

2.4 First Visit Time Lemma

In this section we give a lemma that the first author has used (along with Colin Cooper) many
times in the study of the cover time of various models of random graphs. Let G denote a fixed
connected graph, and let u be some arbitrary vertex from which a walk Wu is started. Let
Wu(t) be the vertex reached at step t and let P

(t)
u (x) = Pr(Wu(t) = x). Let ω → ∞ and let

T = Tmix be the mixing time in the sense that for t ≥ Tmix

max
u,x∈V

∣∣∣∣∣P (t)
u (x)− πx

πx

∣∣∣∣∣ ≤ 1

ω
(20)

Next, considering the walk Wv, starting at v, let rt = Pr(Wv(t) = v) be the probability that
this walk returns to v at step t = 0, 1, ....

For t ≥ 0, let At(v) be the event that Wu does not visit v in steps T, T + 1, . . . , t. The vertex
u will have to be implicit in this definition. Let πv be the steady state probability of vertex v
and

Rv =
T∑
t=0

rt, where rt = P (t)
v (v). (21)

Lemma 11. Suppose that
Tπv = o(1). (22)

Then for all t ≥ T ,

Pr(At(v)) = exp

{
−πv(1 +O(Tπv))t

Rv

}
+ o(Te−cλt/T ), (23)

for some absolute constant c > 0.

In the lemma as used by Cooper and Frieze [5] – [10], there was a technical condition that
has been removed by Manzo, Quattropani and Scoppola [21] and we have taken advantage of
this improvement to the lemma.
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2.5 Effective resistance on K2

Recall that the emerging giant can be modeled as a collection of independent Poisson Galton
Watson trees attached to K2. Our proof will depend on a bound on the effective resistance
of K2 and then show that this bound suffices to analyze the effective resistance within the
Galton Watson trees. Recall that we think of the graph as an electrical network where each
edge is a resistor of resistance one.

There are several steps to the analysis and we give an outline here. The main result of the
section is Lemma 12.

(a) At the top level we bound effective resistance between v, v0 ∈ V (K2) using the commute
time identity, (2).

(b) We observe that a random walk on K2 is rapidly mixing and so bounding commute times
reduces to bounding the expected time to visit v0 from the steady state using the First
Visit Lemma. We transform K2 into a related graph K̂2 to ensure that (22) holds, and

such that a bound on resistance for K̂2 yields a bound on resistance in K2.

(c) To apply Lemma 11 we need to bound Rv, the expected number of returns to a vertex

v within the mixing time T . Almost all vertices of K2, K̂2 are far from short cycles and
so their local neighborhoods are trees. We prune these trees so that they induce binary
trees in K1. This just simplifies some calculations. Pruning increases Rv and effective
resistances and thus it suffices to bound Rv on these pruned trees.

(d) Having control of the Rv allows Lemma 11 to control commute times. When we apply
this lemma in Section 3.2, we find some minor correlation problem. This will be handled
with the use of the edge-deletion graphs K̂2,e defined below.

Transforming K2 Let `1 = dκ logN/ log logNe. We replace each such path of length ` in
K2 by one of length d`/`1e`1. Rayleigh’s Law ([16], [22]) states that increasing the resistance
of any edge increases all effective resistances. Placing a vertex in the middle of an edge has the
same effect as that of increasing the resistance of that edge. This implies that all resistances
between vertices are increased by this change of path length. Now every path has a length
which is a multiple of `1 and so if we replace paths, currently of length k`1 by paths of length
k, then we change all resistances by the same factor `1. We let K̂2 = (V̂ , Ê) denote the graph

obtained in the above manner and let R̂eff denote effective resistance in K̂2.

For e ∈ E(K1) we let Reff,e denote effective resistance in K2 − E(Pe). In addition, for each

e ∈ E(K1) we shorten paths Pf , f 6= e in K2 − E(Pe). The graph obtained is K̂2,e = (V̂ , Êe).

Let R̂eff,e ≥ R̂eff denote effective resistance in K̂2,e.
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Remark 1. From our construction, we see that R̂eff,e is independent of the length of Pe. The
usefulness of this construct will become apparant when we estimate the size of the sets U i,j,k

in Section 3.2.1.

Suppose next that we arbitrarily orient the induced paths Pe, e ∈ E(K1) from he to te where
e = {he, te}. For v ∈ V (K2) \ V (K1), we let e1(v) denote the edge of K1 whose division
includes v. We note that

Reff(v, v0) ≤ Reff,e1(v)(te1(v), v0) ≤ `1R̂eff,e1(v)(te1(v), v0) for all v ∈ V (K2) \ V (K1). (24)

For k ≥ 1 we let

Âk =

{
e ∈ E(K1) : R̂eff,e(te, v0) ≥ κk

`1

}
.

Most vertices in K1 have tree-like neighborhoods. We will define the notion of a tree-like
vertex formally below. Suffice it to say at the moment that w.h.p. there are at most log100N
vertices that are not tree-like.

Lemma 12. If te ∈ V (K1) is tree-like, then

Pr(e ∈ Âk|K1) ≤ e−(2−o(1))κk,
`1

κ
≤ k ≤ 2 logN. (25)

Here we are conditioning on the output of Step 1 in giantconstruction; the probability
space is just over the randomness in Step 2.

Proof. We use the commute time identity (2) ([16], [22]) for a random walk Ŵe on the graph

K̂2,e, to write for v ∈ e ∈ E(K1),

2R̂eff,e(v, v0)|Êe| = τ(v, v0) + τ(v0, v), (26)

where τ(v, w) is the expected time for Ŵe to reach w when started at v.

The proof of this lemma is unfortunately quite long. We break it up into a sequence of claims,
that we will verify subsequently. In what follows v ∈ V (K1) will be fixed and e will be a fixed
edge of K1 that contains v.

Claim 1. W.h.p., the mixing time T̂mix of Ŵe is O((log logN)2 logN), assuming we take
ω = N in (20).

For vertices v, w ∈ V (K1) we bound τ(v, w) by T̂mix plus the expected time to reach w from

the steady state of Ŵe.

Claim 2. The expected time for Ŵe to reach vertex v from the steady state is O(Rv/πv), where
Rv is as defined in (21).
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Fix e ∈ E(K1). For a vertex v ∈ V (K1) we let let Nv (the neighborhood) be the subgraph of
K1 induced by the set of vertices on paths of length at most L = 1000 log logN in K1 − e.
Then let N̂v be the subgraph of K̂2 − e that is obtained from Nv through the execution of
Step 2 and the subsequent shortening of paths that creates K̂2.

We say that v ∈ V (K1) is tree-like if Nv (and hence N̂v) induces a tree.

Claim 3. W.h.p.,

(a) For all v, Nv contains at most one cycle.

(b) The number of non-tree-like vertices is at most log100N .

In view of this claim, we will mainly focus on tree-like vertices and deal with the non-tree-like
vertices fairly crudely. Let Tv denote the tree induced by Nv and let T̂v denote the tree induced
by N̂v. Let B̂v = Bv (the boundary) denote the leaves of T̂v (equivalently, the leaves of Tv).

Claim 4. If w ∈ B̂v then the expected number of visits to v from w in K̂2, in time T̂mix, is
o(1).

Thus, if we make B̂v into absorbing states for the walk Ŵe then Rv is the expected number of
returns before absorption, plus o(1). So let R̃v be the expected number of visits to v before the

walk is absorbed into B̂v. Thus Rv ≤ R̃v + o(1). Next let pesc(v) be the escape probability i.e.
the probability that a random walk started at v doesn’t return to v, before being absorbed.
Then

R̃v =
1

pesc(v)
and pesc(v) =

1

DvR̃eff(v, B̂v)
. (27)

Recall that Dv denotes the degree of vertex v. For a proof of the second equation in (27), see
Doyle and Snell [16], Section 1.3.4.

We now prune Tv: moving level by level from the neighbors of the root v, we prune Tv so
that we obtain a tree of depth L in which every vertex other than the root or the leaves has
degree three. It is possible that the root v already has degree two. Remember that we have
deleted one edge e, incident to v. We denote the pruned tree by T̃v. Rayleigh’s principle
and equation (27) show that the pruning decreases the escape probability and increases the
expected number of returns which is now denoted R̃v. (Note that the pruning can only reduce

the expected number of visits in Claim 4.) Let T ∗v be the subtree of T̂v corresponding to T̃v.

An edge f ∈ E(K1) gives rise to a path Pf in K̂2 and let ψ(f) = ̂̀(P1) − 1, where ̂̀(·)
denotes d`(·)/`1e. Note: our definition of `1 means that w.h.p. almost all of the paths Pf
in K̂2 consist of a single edge and for these ψ = 0. Also let ψ(v) =

∑
f∈E(T ∗v ) ψ(f). Let

Ws = {v ∈ V (K1) : ψ(v) ≤ sκ}.

12



Claim 5. W.h.p., if v ∈ V (K1) then

(a) Pr(v /∈ Ws) ≤ exp
{
− sκ(κε(1−ε) logN−1000(log logN)2)

log logN

}
.

(b) If v ∈ Ws and e ∈ E(K1) and te = v then

R̂eff,e(te, B̂te) ≤

{
1
2

s = 0.
sκ
4

+ 1
2

s ≥ 1.

In summary, if R̂eff,e(te, v0) > kκ/`1 then te /∈ Ws where sκ/4 + 1/2 = kκ/`1 ≥ 1. Therefore,
for k as in (25),

Pr(e ∈ Âk | K1) ≤ Pr(v /∈ Ws) ≤ exp

{
−(4kκ− 2`1)((1− ε) logN − 1000(log logN)2)

`1 log logN

}
= e−(2−o(1))κk.

This would complete the proof of Lemma 12. We must now substantiate our claims.

Proof of Claim 1 For a graph G = (V,E), let eG(S) denote the number of edges contained
in the set S ⊆ V and eG(S : S̄) be the number of edges with exactly one end in S. For a

graph G and S ⊆ V let ΦG(S) = eG(S:S̄)
D(S)

where D(S) is the sum of degrees of vertices in S.

The conductance ΦG of G is equal to minD(S)≤|E|ΦG(S). It is shown in [12], Lemma 3.5 that
w.h.p. ΦK1 ≥ c1, for some absolute constant c1 > 0. We need the conductance of K1 − f
where f is an arbitrary edge of K1.

Claim 6. In K1, w.h.p., e(S) ≤ |S| for |S| ≤ log1/2N .

Assume this claim for now, and condition on the event in the claim. Let ẽ(S : S̄) denote the
edges other than f between S and S̄. Then we have ẽ(S : S̄) ≥ e(S : S̄) − 1. If 2 ≤ |S| ≤
log1/2N then because the minimum degree in K1 is at least 3, ẽ(S : S̄) ≥ e(S : S̄)−1 ≥ |S|−1.

If |S| ≥ log1/2N then e(S : S̄) ≥ 3c1|S| and then ẽ(S : S̄) ≥
(

3c1 − 1

log1/2N

)
|S| and so the

conductance of K1 − f is at least c1/2.

The conductance of K̂2,e is at least c1
2
· 1

2 log logN
because each edge of K1 − e is replaced by

a path of length at most 2 log logN . Finally note that for a random walk on a graph G,

we have that after t steps max
{
|P (t)
u (x)− πx|

}
≤
(

1− Φ2
G

2

)t
, see for example [22]. Putting

t = C(log logN)2 logN yields the claim, for C sufficiently large.
End of Proof of Claim 1

13



Proof of Claim 2 This will follow from Lemma 11 applied to the random walk on K̂2,
once we have verified (22). Here T = O(log1+o(1)N) and max πv = O

(
logN
N

)
and so Tπv =

O
(

log2+o(1) N
N

)
. Then we have, from (23), that the expected time to reach v is of order∑

t≥T

Pr(At(v)) =
∑
t≥T

(
exp

{
−πv(1 +O(Tπv))t

Rv

}
+ o(Te−ct/T )

)
≤ (1 + o(1))Rv

πv
.

End of Proof of Claim 2

Proof of Claim 3 For this claim we use the configuration model of Bollobás [3] as applied
to K1. We note that w.h.p. Λ ≈ 2ε in Step 1, see (10). And also that Nk≥3 ≈ N .

(a) If Nv contains more than one cycle, then K1 contains a set S of at most s ≤ 4L vertices
that contain at least s + 1 edges. The probability Π of this can be bounded as follows: let
φ = Λ3e−Λ

6
be the probability that Poisson(Λ) ≥ 3.

In the following, s is the size of S. Then 3s ≤ D ≤M1 is the total degree of S and d1, . . . , ds
are the individual degrees. Here M1 ≈ 2N will be a high probability bound on |E(K1)|. We

multiply by the probablity
∏s

i=1
Λdie−Λ

di!φ
that these are the degrees. Then we choose 2s + 2

configuration points and pair them up in
(

D
2s+2

) (2s+2)!
(s+1)!2s+1 ways. The final term

(
s+1
3N

)s+1
bounds

the probability of the pairings. Thus

Π ≤
4L∑
s=4

(
N

s

) M1∑
D=3s

∑
d1+···+ds=D
d1,...,ds≥3

(
s∏
i=1

Λdie−Λ

di!φ

)(
D

2s+ 2

)
(2s+ 2)!

(s+ 1)!2s+1

(
s+ 1

3N

)s+1

≤
4L∑
s=4

(
Ne

s

)s
e−Λs

φs(s+ 1)!2s+1

(
s+ 1

3N

)s+1 M1∑
D=3s

ΛD 1

6s(D − 3s)!

∑
d1+···+ds=D
d1,...,ds≥3

(
D − 3s

d1 − 3, . . . , ds − 3

)

≤
4L∑
s=4

(
Ne

s

)s
eo(s)6s

(2ε)3s(s+ 1)!2s+1

(
s+ 1

3N

)s+1 M1∑
D=3s

(2ε)DD2s+2sD−3s

6s(D − 3s)!
.

Next let uD = (2ε)DD2s+2sD−3s

(D−3s)!
. Then,

uD+1

uD
≤ 2εs

D − 3s

(
D + 1

D

)2s+2

≤ 2e(2s+2)/Dεs

D − 3s
≤ 1

2
if D ≥ 3s+ 10εs.

and so

Π ≤ 2
4L∑
s=4

(
Ne

s

)s
eo(s)

(2ε)3s(s+ 1)!2s+1

(
s+ 1

3N

)s+1 3s+10εs∑
D=3s

(2ε)DD2s+2sD−3s

(D − 3s)!

≤ eO(1)s

N

4L∑
s=4

(
e2(3s+ 10εs)6+20ε+2/ss10ε

s

)s
= o(1).

14



(b) The number of non-tree-like vertices is at most the number of vertices that are within L
of a cycle of length at most L. We can bound the expected number of such vertices as follows:
we choose s vertices for the cycle and then another t for the path in

(
N
s

)(
N
t

)
s!t! ways. We sum

over the degree sequence of the chosen vertices. The factor di−1di
2N

bounds the probability the
path plus cycle exists.

L∑
s,t=4

(
N

s

)(
N

t

)
s!t!

∑
di≥3,i∈[s+t]

s+t∏
i=1

(
Λdie−Λ

di!φ
× di−1di

2N

)
where d0 = ds

≤
L∑

s,t=4

∑
di≥3,i∈[s+t]

s+t∏
i=1

Λdie−Λ

(di − 2)!φ

≤
L∑

s,t=4

(
∞∑
d=3

Λde−Λ

(d− 2)!φ

)s+t

≤
L∑

s,t=4

(
6
∞∑

d−3=0

Λd−3

(d− 3)!

)s+t

≤ log5000N.

The claim follows from applying the Markov inequality.
End of Proof of Claim 3

Proof of Claim 4 We bound the number of returns as follows. Consider a random walk
X on {0, 1, 2, . . .} where we start the walk at 0 and when at 0 < i < L we go to i + 1 with
probabilty 1/3 and to i− 1 with probability 2/3. Whenever we are at 0 we move to 1 on the
next move. Here 0 represents an arbitrary boundary vertex and L represents v. At each point
of the walk on T̂v where we are at a vertex of K1, we have probability at most 1/3 of moving
closer to v.

Now consider a time t when X (t) = L/2. If X (t+L/4) ≥ L/2 then at least L/8 of these L/4
moves must be in the increasing direction. But the Chernoff bounds then imply that

Pr

(
X
(
t+

L

4

)
≥ L

2

)
≤ Pr

(
Bin

(
L

4
,
1

3

)
≥ L

8

)
≤ exp

{
− L

12
× 1

27

}
≤ 1

log3N
.

It follows from this that the probability a walk from the boundary reaches v in T steps is at
most T/ log3N and then the expected number of visits is at most T 2/ log3N = o(1).
End of Proof of Claim 4

Proof of Claim 5 (a) For an edge e of T̃v, we have that Pr(ψ(e) ≥ t) ≤ (1− ε(1− ε))t`1 ,
a probabilistic bound on the length of the path Pe ins Step 2 of giantconstruction (see

15



(10)). The ψ values of each such edge are independent and so as T̃v contains m ≤ 3·21000 log logN

edges then

Pr(v /∈ Ws) ≤
∑

s1+···+sm=t≥sκ

m∏
i=1

(1− ε(1− ε))si`1

=
∑
t≥sκ

(
m+ t− 1

t− 1

)
(1− ε(1− ε))t`1

≤
∑
t≥sκ

(
(m+ t)e

t
· exp

{
−κε(1− ε) logN

log logN

})t
(28)

Let ut denote the summand in (28). We have that if sκ ≤ m then

m∑
t=sκ

ut ≤
m∑
t=sκ

(
2me · exp

{
−κε(1− ε) logN

log logN

})t
≤

m∑
t=sκ

exp

{
−t (κε(1− ε) logN − 700(log logN)2)

log logN

}
≤ exp

{
−sκ(κε(1− ε) logN − 800(log logN)2)

log logN

}
. (29)

And,

∑
t≥max{sκ,m}

ut ≤
∑

t≥max{sκ,m}

(
2e · exp

{
−κε(1− ε) logN

log logN

})t
≤ exp

{
−sκ(κε(1− ε) logN − 800(log logN)2)

log logN

}
. (30)

Part (a) of the claim follows from (29) and (30).

(b) Given T ∗v with ψ(v) = s we modify it in such a way that the expected number of returns
increase and then bound this as claimed. Roughly speaking, we concentrate all the resistance
at the induced paths incident with v; by proving that this only increases effective resistance,
it allows us to reduce the problem of bounding the effective resistance to this case.

Suppose then that v 6= w ∈ V (K1)∩V (T ∗v ) and w’s neighbors in K1 are w0, w1, w2 where w0 is
the one closer to v than w on the tree T ∗v . Suppose also that ψ({w,w1})+ψ({w,w2}) > 0. We
transform T ∗v by increasing the length of the path from w to w0 by ψ({w,w1}) + ψ({w,w2})
and reducing the lengths of the paths joining w to w1 and w to w2 to be single edges so that
ψ(w,w1) = ψ(w,w2) = 0. This preserves the sum of ψ values and we claim that R̂eff,e(v, B̂v)

does not decrease. In this way, R̂v does not decrease, see (27). To see this, let ρ(w), w ∈ V (T ∗v )

be the effective resistance between w and B̂v as measured in the sub-tree with root w. Let
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w0, w1, w2 be as before and let w3 be the other neighbor of w0 further from v (if it exists).
Before the transformation, we have

1

ρ(w0)
=

1

`(w0, w) + 1
1

`(w0,w1)+ρ(w1)
+ 1
`(w0,w2)+ρ(w2)

+
1

`(w0, w3) + ρ(w3)
(31)

and after the transformation we have

1

ρ(w0)
=

1

`(w0, w) + `(w,w1) + `(w,w2)− 2 + 1
1

1+ρ(w1)
+ 1

1+ρ(w2)

+
1

`(w0, w3) + ρ(w3)
(32)

The R.H.S. of (32) is at most the R.H.S. of (31). This follows from the inequality

α + β +
1

1
γ

+ 1
δ

− 1
1

α+γ
+ 1

β+δ

≥ 0. (33)

After multiplying through by (α+β+γ+δ)(γ+δ) we obtain an expression with only positive
terms. We apply (33) with α = `(w,w1)− 1, β = `(w,w2)− 1, γ = ρ(w1), δ = ρ(w2).

Proceeding in this way, we end up with a tree in which all maximal induced paths in T ∗v are of
length one, except for the one incident with v. Furthermore, ψ is unchanged and resistance is
not decreased by this transformation. The sum of the lengths of the maximal induced paths
incident with v is then ψ(v) + 2 (recall that v has degree 2 in T ∗v )

Finally, we balance the lengths of these two paths incident with v by replacing the path lengths

at v by 1 + dψ(v)
2
e and 1 +

⌊
ψ(v)

2

⌋
. This increases resistance because for positive integers x, y,

we have 1
x

+ 1
y
≥ 1
d(x+y)/2e + 1

b(x+y)/2c .

Note next that the effective resistance between the root of a binary tree and its leaves is at
most one. To see this we let Rd be the effective resistance if the depth is d. Then we have

Rd =
1

1
Rd−1+1

+ 1
Rd−1+1

=
Rd−1 + 1

2
.

It then follows that

R̂eff,e(v, B̂v) ≤
1

1

1+dψ(v)
2
e

+ 1

1+bψ(v)
2 c

=

(
1 + dψ(v)

2
e
)(

1 +
⌊
ψ(v)

2

⌋)
2 + ψ(v)

(
1 + ψ(v)

2

)2

2 + ψ(v)
=
ψ(v)

4
+

1

2
.

End of Proof of Claim 5
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Proof of Claim 6 Let φ ≈ Λ3e−Λ

6
,Λ ≈ 2ε be the probability that Poisson(Λ) ≥ 3. For a

set S ⊆ V (K1) with |S| = s, we have

Pr(e(S) ≥ s+ 1) ≤
∑
D≥3s

∑
d1+···+ds=D

s∏
i=1

Λdi

di!φ
× 2D

(
D

N

)s+1

≤
∑
D≥3s

2D
(
D

N

)s+1

× ΛD

φs
× sD

D!
. (34)

Explanation: Let M1 = |E(K1)| and let D = D(S) denote the sum of the degrees in S and∑
d1+···+ds=D

∏s
i=1

Λdi
di!φ

bounds the probability that this sum is D. To bound the probability

that e(S) ≥ s+1 we have to choose some subset of the D configuration points of size s+1 that
pair with configuration points in S. We bound the probability that such a set of configuration

points exist by 2D
(
D
N

)s+1
. Note here that M1 ≥ 3N/2 and the probability that a configuration

point of S, pairs with another such point is bounded by (D − 1)/(2M − 1), conditional on

previous pairings of points in S. Finally, we bound
∑

D≥3s

∑
d1+···+ds=D

∏s
i=1

1
di!

by sD

D!
.

Letting uD = 2DΛDDs sD

D!
we see that

uD
uD+1

≤ 2× es/D × (2 + o(1))ε× s

D
� 1.

So,

Pr(∃|S| ≤ log1/2N : e(S) ≥ |S|+1) ≤ 3 log1/2N

N

log1/2N∑
s=4

(
N

s

)(
eo(1) × 8× 3× 6× e3

27
×
( s
N

))s

≤ 3 log1/2N

N

log1/2 N∑
s=4

150s = o(1).

End of Proof of Claim 6

This completes the proof of Lemma 12. (Because there are so few non-tree-like vertices, for

such v we will bound R̂eff,e(v, v0) by the diameter O
(

logN
ε

)
of K2.)

3 Proof of Theorem 5

Theorem 6 allows us to work with H instead of C1, and we assume from now on that H has
the following properties that have been shown or claimed to hold w.h.p. above, namely:

Assumed Properties of H: APOH
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(i) |V (K1)| ≈ 4N/3,

(ii) |E(K1)| ≈ 2N ,

(iii) |V (K2)| ≈ 2ε2n,

(iv) |E(K2)| ≈ 2ε2n,

(v) |V (H)| ≈ 2εn,

(vi) |E(H)| ≈ 2εn.

(vii) There are between 1
2
c1N

1−γ+O(ε) and 2c2N
1−γ+O(ε) trees of depth at least γε−1 logN and

there are no trees of depth exceeding 2 logN
ε

.

In what follows, we may write in terms of unconditional probabilities and expectations, but
these will refer to the GFF and will assume that H is a fixed graph with property APOH.
There are some places where we have to prove further properties of H, but we will be sure to
flag them.

3.1 Lower Bound

It turns out that for the lower bound, it suffices to consider the maximum over a very restricted
set, consisting just of a single vertex from each sufficiently deep tree.

Lemma 13.

E

(
max
v∈V (G)

ηv

)
≥ (1 + o(1))

log(ε3n)

(2ε)1/2
.

Proof. We first identify a subset of verties on which the GFF behaves as having independent
components and then produce a lower bound using Slepian’s comparison (17), combined with
(16). Consider the set of Galton-Watson trees attached to H of depth at least d = iε−1, i to
be chosen. Choose one vertex at depth d from each tree to create Sd. It follows from (14) with
γ = i/ logN , that there will be at least cN1−γ+O(ε) such trees for some constant c > 0. Let
(η̂v)v∈Sd be a random vector with i.i.d. N (0, γε−1 logN) entries. Then η̂v − η̂w has variance
exactly 2γε−1 logN whereas ηv − ηw has variance at least 2γε−1 logN (the graph-distance
between v and w is at least 2d = 2iε−1 = 2γε−1 logN) and so it follows from (17) that

E(max {ηv : v ∈ Sd}) ≥ E(max {η̂v : v ∈ Sd}). (35)

Applying (16) we see that

E(max {η̂v : v ∈ Sd}) ≥ (1 + o(1))(2 log(|Sd|)1/2 · (γε−1 logN)1/2
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η̂v has the same distribution as a standard Gaussian multiplied by (γε−1 logN)1/2). Using
|Sd| ≥ cN1−γ+O(ε), we obtain

E(max {η̂v : v ∈ Sd}) ≥ (1 + o(1))(2 log(cN1−γ+O(ε)))1/2 · (γε−1 logN)1/2

≈ (2γ(1− γ))1/2 logN

ε1/2
. (36)

Putting γ = 1/2 in (36) and applying (35) yields

E

(
max
v∈V (G)

ηv

)
≥ E

(
max
v∈Sd

ηv

)
≥ (1 + o(1))

logN

(2ε)1/2
.

Recalling that N = ε3n, this finishes the proof of the lemma.

The important task is to achieve a matching upper bound.

3.2 Upper Bound

We begin with an outline of the proof of the upper bound.

We let κ := d1/εe, and will write `0 = dlog2 κe. We say that v ∈ G is a d-survivor if
it has at least one d-descendant xd(v); that is, a vertex xd(v) such that dist(K2, xd(v)) =
dist(K2, v) + dist(v, xd(v)) = dist(K2, v) + d.

Recall that we have oriented the induced paths Pe from he to te. See the paragraph following
Remark 1. Then for each such e and v ∈ V (Pe) we let d1(v) denote the distance from v to
V (K1) traversing Pe in the chosen direction. Let e(v) denote the edge of K2 corresponding to
the path Pe containing v.

Each v ∈ V (H) \ V (K2) lies in a Galton-Watson tree with a root w = ρGW (v) ∈ V (K2) lying
on a path created in Step 2 from an edge e. Let d1(v) = d1(w) and let

U i,0,k =
{
v ∈ V (K2) : d1(v) ∈ [iκ, (i+ 1)κ− 1], e(ρGW (v)) ∈ Âk \ Âk+1

}
and define for each 1 ≤ j ≤ 2 logN and 0 ≤ i, k ≤ 2 logN a set U i,j,k by choosing, for each
κ-survivor in U i,j−1,k, an arbitrary κ-descendant xκ(v); these chosen κ-descendants comprise
U i,j,k. Evidently, we have for U =

⋃
i,j,k≥0 U

i,j,k that

E(max
v∈V

ηv) ≤ E(max
u∈U

ηu) + E(max
v∈V

(ηv − ηu(v))), (37)

for any function u : V → U . We will bound the two terms on the right hand side separately.
Let

Tδ =
eδ logN

(2ε)1/2
,
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where δ = max
{

10ε, 1

log1/3 N

}
.

Lemma 14. With the notation introduced above, we have

E(max
u∈U

ηu) ≤ (1 + o(1))Tδ. (38)

Lemma 15. There is a function u : V → U such that

E(max
v∈V

(ηv − ηu(v))) = o(Tδ). (39)

Observe that the proof of the upper bound in Theorem 5 follows from (37) and Lemmas 14
and 15; it remains just to prove these two Lemmas.

3.2.1 Proof of Lemma 14

We let Zi,j,k = maxv∈U i,j,k ηv and

E(max
v∈U

ηv) = E

(
max

0≤i,j,k≤2 logN
Zi,j,k

)
≤ Tδ +

∑
0≤i,j,k≤2 logN

E (max(Zi,j,k − Tδ, 0))

= Tδ +

2 logN∑
i,j,k=0

∫
t≥Tδ

Pr(Zi,j,k ≥ t)dt. (40)

The bounds on i, j, k follow from Lemmas 7, 10, 12 respectively.

Our task now is to bound the sum of integrals in (40). In words, the idea is that U is
partitioned into smaller pieces U i,j,k such that each piece is of a small enough cardinality
such that the Gaussian concentration of Zi,j,k around its mean allows us to control the above
integrals.

Let a vertex of v of K2 be tree-like if the endpoint te of the path Pe containing it is a tree-like
vertex of K1. Similarly, a vertex of a Galton-Watson tree is tree-like if its root is tree-like.
Now write

U i,j,k = U i,j,k
T ∪̇ U i,j,k

N

where U i,j,k
T and U i,j,k

N are those vertices whose GW trees are attached at tree-like and non-
tree-like vertices of K2, respectively.

Case 1: U i,j,k
T for k0 = log1/2N ≤ k ≤ 2 logN : tree-like vertices

Because we are bounding the sum of integrals on the RHS of (40) it will be safe to ignore events
of probability o(log−3N). So from now on, w.h.p. will mean with probability 1− o(log−3N).
We will work assuming that K1 is fixed and satisfies the conditions APOH(i) and (ii) defined
at the beginnning of Section 3. We can then focus on 0 ≤ i, j, k ≤ 2 logN . This is because it
follows from Lemmas 7, 8(b) and 12 that these bounds hold with probability 1−O(N−1−o(1)).
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Claim 7. We have that w.h.p.

|U i,j,k
T | ≤ O

(
Ne−ε(1−ε)κ(i+j+k)

)
for 0 ≤ i, j ≤ 2 logN, k0 ≤ k ≤ 2 logN. (41)

Proof. We write

|U i,j,k| =
∑

v∈U i,j−1,k

1Bv ,

where the event Bv is the that vertex v is a κ-survivor. We have

E(|U i,j,k
T |) = O

(
κN(1− ε(1− ε))κi · e−(2−o(1))κkθk · (1− ε(1− ε))κ(j−1) · εe−εκ

)
= O

(
Ne−ε(1−ε)κ(i+j+(2−o(1))k)

)
. (42)

where θk = 1k≥`1/κ.

Explanation: For a fixed vertex in K2, the expected number of vertices at level t of a G-W
tree rooted at this vertex will be at most (1 − ε(1 − ε))t. Each vertex v in such a level has
probability Pr (Bv) ≤ Pr (Lκ 6= ∅) of being a κ-survivor and we use Lemma 8 to upper bound
Pr (Lκ 6= ∅) by O(εe−εκ). Wald’s idenity implies that the expected number of vertices in the
G-W tree rooted at a fixed vertex lying in U i,j,k is thus (1− ε(1− ε))κ(j−1) · εe−εκ.

In expectation there are O(κN(1 − ε(1 − ε))κi · e−(2−o(1))κkθk) vertices w ∈ K2 for which

e(w) ∈ Âk and d1(w) ≥ κi; here we have used Lemma 12 to bound the probability that a

vertex w for which d1(w) ≥ κi has e(w) ∈ Âk, and applied Wald’s identity as before. Applying
Wald’s idenitity a final time gives (42)

Equation (41) follows from the Markov inequality. (There are O(log3N) choices for i, j, k and
there is a factor e(1−o(1))k ≥ e(1−o(1))k0 difference between the expressions in (41), (42).)

Given (41), we proceed to bound the sum in (40) term by term. (We wish to show that the
sum is o(Tδ).) To bound the probabilities Pr (Zi,j,k ≥ t), we will use the concentration of the
maximum of a Gaussian process around its expectation, whereas the expectations E(Zi,j,k)
will be simply treated with the union bound.

First we estimate the expectations.

Claim 8. For i, j ≥ 0, k ≥ k0,
E(Zi,j,k) ≤ e−δ/2Tδ. (43)

Proof. For v ∈ U i,j,k, we know that ηv has variance at most κ(i+ j + k+ 1) (by the definition
of U i,j,k, the graph-distance from v to K2 is κj and κ(i+ k + 1) comes from the definition of

Âk. It then follows from (18) in Section 2.3 and |U i,j,k| ≤ CNe−ε(1−ε)κ(i+j+k) that

E(Zi,j,k) ≤ (2 log(CNe−ε(1−ε)κ(i+j+k)))1/2 · (κ(i+ j + k + 1))1/2. (44)
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It follows from 2(xy)1/2 ≤ x+ y that we can write

E(Zi,j,k) ≤ (2ε−1)1/2(κε(i+ j + k))1/2(log(CN)− ε(1− ε)κ(i+ j + k)))1/2

≤ (1 + 7ε) log(CN)

(2ε)1/2
≤ e−2δ/3Tδ

and then E(Zi,j,k) ≤ ε−2δ/3Tδ ≤ e−δ/2Tδ.

Case 2: k0 ≤ k0 = log1/2N : tree-like vertices
We first let U i be the set of vertices v of K2 for which dist(v, te(v)) ∈ [iκ, (i+ 1)κ− 1]. Given
K1 and |E(K1)| ≈ 2N the size of U i is a binomial random variable with success probability
at most µiκ ≤ (1− ε(1− ε))iκ. So, w.h.p.

|U i| ≤ 2Ne−ε(1−ε)iκ + log10N, for all 0 ≤ i ≤ 2 logN.

The first term come from the Chernoff bounds and the log10N term is there for the case
where the expectation Ne−ε(1−ε)iκ is less than log2N . In which case we just use the Markov
inequality. This estimate is valid conditonal on U .

For each v ∈ U i recall that p = (1−ε)1−ε and let pj = pκ(j−1) ·εe−εκ bound the probability that
v has a descendant at level jκ that is a κ-survivor. Then if U i,j denotes the set of descendants
of such vertices v ∈ U i, we have

E(|U i,j|) ≤ |U i|pj ≤ (2Ne−ε(1−ε)iκ + log10N)pj.

Applying the Chernoff bounds we see that conditional on U , w.h.p.

|U i,j| ≤ 2(2Ne−ε(1−ε)iκ + log10N)pj + log10N

≤ 4Ne−ε(1−ε)(i+j−1)κ · εe−εκ + 2 log10N.

It then follows using (18) that for all k ≤ k0 = log1/2N that

E(Zi,j,k) ≤

(2ε−1)1/2

(
1 +

2 log logN

logN

)
(κε(i+ j + log1/2N))1/2(log(4N)− ε(1− ε)κ(i+ j))1/2. (45)

If now i+ j ≤ 1
100

logN then we see that

E(Zi,j,k) ≤
κ1/2 logN

9
≤ Tδ

4
.

If i+ j ≥ 1
100

logN then we use 2(xy)1/2 ≤ x+ y and (i+ j+ log1/2N) ≤ (i+ j)
(

1 + 100

log1/2 N

)
.

Applying this in (45) gives

E(Zi,j,k) ≤

(
1 + 101

log1/2N

)
(2ε)1/2

(log(4N) + 4ε logN) ≤ eδ/2 logN

(2ε)1/2
≤ ε−δ/2Tδ.
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Case 3: Non-tree-like vertices
Claim 3 says that w.h.p. there are at most log100N non-tree-like vertices of K1, we have

E(|U i,j,k
N | | Claim 3) = O(log100Ne−ε(1−ε)κ(i+j))

and so w.h.p.
|U i,j,k

N | = O(log200Ne−ε(1−ε)κ(i+j)).

And then, using the bound of 3 logN
ε

on the diameter from [13] to bound effective resistance
in K2, we have

E(Zi,j,k) = O(log(C log200Ne−ε(1−ε)κ(i+j))1/2(ε−1 logN)1/2)

= O((ε−1 logN log logN)1/2) = o(Tδ)

and we can continue as in (46).

This completes our estimates for E(Zi,j,k).

We proceed to estimate the probability the probability that Zi,j,k significantly exceeds its
mean.

To estimate this probability we use the Gaussian concentration for the maximum, (19) in
Section 2.3. As already remarked, this inequality will not be affected by the conditioning and
it yields

Pr(Zi,j,k ≥ E(Zi,j,k) + t) ≤ 2 exp

{
− t2

2(i+ j + k + 1)κ

}
≤ 2 exp

{
− t2

13κ logN

}
, (46)

where in the last inequality we use i, j, k ≤ 2 logN . Thus,∫
t≥Tδ

Pr(Zi,j,k ≥ t)dt ≤
∫
t≥Tδ

exp

{
−(t− E(Zi,j,k))

2

13κ logN

}
dt

=
√

13κ logN

∫
u≥

Tδ−E(Zi,j,k)
√

13κ logN

e−u
2

du = O

(
κ1/2 log1/2N exp

{
−(Tδ − E(Zi,j,k))

2

13κ logN

})
. (47)

Plugging (43) into (47) we see that

exp

{
−(Tδ − E(Zi,j,k))

2

13κ logN

}
≤ exp

{
−(1− e−δ/2)2T 2

δ

13κ logN

}
≤ exp

{
−(1− e−δ/2)2e2δ logN

26κε

}
≤ N−cδ

2

for some universal constant c > 0, as κε ≤ 2, e2δ → 1 and (1− e−δ/2)2 ≈ δ2/4.
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So, ∫
t≥Tδ

Pr(Zi,j,k ≥ t)dt ≤ κ1/2 log1/2N ·N−cδ2 ≤ N−cδ
2

Tδ. (48)

Thus

2 logN∑
i,j,k=0

∫
t≥Tδ

Pr(Zi,j,k ≥ t)dt ≤ 8N−cδ
2

Tδ log3N ≤ exp

{
− c logN

log2/3N
+O(1) + log logN

}
Tδ

= o(Tδ). (49)

3.2.2 Proof of Lemma 15

To prove Lemma 15 we let Wk denote the set of vertices whose distance to K2 is divisible by
k. Our goal now is to show that a general vertex v is η-close to some vertex u(v) ∈ U , i.e.
as measured by (ηv − ηu); we will do this by showing that v is η-close to its H-nearest (as
measured by graph distance) ancestor y ∈ Wκ; this will suffice since our choice of U ensures
that some vertex u ∈ U has the property that y is also the η-closest ancestor of u in Wκ.

v1 = y(v2)

v2

x(v2)

(y(v2), x(v2)) ∈ Ji+1

W2i+1 ⊆ W2i

W2i \W2i+1

W2i

(v2, x(v2)) ∈ Ji

Figure 1: The sets Wk, Jk.
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We will consider sets J0, J1, J2, . . . , J`0 , `0 = dlog2 κe of ordered pairs of vertices in H with the
following properties (see Figure 1):

A For (v1, v2) ∈ Ji, we have that v1, v2 ∈ W2i , and that v2 is a 2i-descendant of v1.

B J0 is the set of all edges in H that are outside of K2,

C For each i, we have for each 2i-survivor v2 ∈ W2i \W2i+1 belonging to π2(Ji), that exactly
one 2i-descendant x(v2) ∈ W2i+1 of v2 is paired in Ji+1 with its 2i+1-ancestor v1 ∈ W2i+1 .

D For all i, π2(Ji+1) ⊂ π2(Ji). (Here πj is the projection function returning the jth coordinate
of a tuple.)

Notice that pairings J0, J1, . . . , J`0 with these properties exist by induction; having constructed
J0, . . . , Ji, we construct Ji+1 by choosing pairs via properties C and D; in particular, for each
2i survivor v2 in π2(Ji) at distance k2i from K2 for odd k, we choose a 2i descendant x(v2),
and add the pair (v1, x(v2)) to Ji+1, where v1 is the 2i+1 ancestor of x(v2) (and the 2i ancestor
of v2).

So we fix some choice of the pairings J0, . . . , J`0 . We write J̄i for the set of unordered pairs
which occur (in some order) in Ji. The heart of our argument is the following lemma.

Lemma 16. Given any vertex v ∈ V , let α(v) be its H-closest ancestor in Wκ. There is a
sequence v = v0, v1, v2, . . . , vt = α(v) such that:

(a) For each j = 1, . . . , t, {vj−1, vj} ∈ J̄i for some i.

(b) For each i = 0, . . . , `0, at most 1 + 2(`0 − i) of the pairs {v0, v1} , {v1, v2} , . . . , {vt−1, vt}
belong to J̄i.

Proof of Lemma 16. Fix a vertex v ∈ V . Our goal is to find a chain v = v0, v1, v2, . . . , vt =
α(v) such that its consecutive links {vj−1, vj} are all in the sets Ji and each set Ji contains at
most 1 + 2(`0− i) links. We shall do this recursively and in order to keep track of it, we need
the following parameters

φ(v) = max {0 ≤ i ≤ `0 | v ∈ W2i}
ψ(v) = max {0 ≤ i ≤ φ(v) | v ∈ π2(Ji)} .

Claim 9. Given any v, there is a vertex a(v) such that either

(a) φ(a(v)) > φ(v) and (a(v), v) ∈ Jφ(v), or else
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(b) φ(a(v)) = φ(v) and ψ(a(v)) > ψ(v), and there exists z(v) such that (z(v), a(v)) and
(z(v), v) are both in Jψ(v).

Proof. Consider the vertex v, and let i = φ(v). We consider two cases:
Case 1: ψ(v) = φ(v). In this case, by definition of ψ(v), we have that there is a vertex a(v)
such that (a(v), v) in Ji. In particular, as 2i is the largest power of 2 such that v ∈ W2i and v
is a 2i descendant of a(v), we have that a(v) ∈ W2i+1 ; that is, that φ(a(v)) ≥ i+1, as claimed.
Case 2: ψ(v) = j < φ(v). In this case, by definition of ψ(v), we have that there is a vertex
z such that (z, v) in Jj. Now by Property C of the pairings {Ji}, z has a 2j-descendant a(v)
which is in π2(Jj+1); in particular, we have that ψ(a(v)) ≥ j + 1 > ψ(v). (Note for clarity
that a(v) and v are at the same distance from K1 in Case 2 and so φ(a(v)) = φ(v).) And by
Property D, a(v) ∈ π2(Jj) as well, and thus (z, a(v)) ∈ Jj, completing the proof of the claim.
This concludes the proof of Claim 1, and thus also Lemma 16.

Observe that Lemma 16 follows from Claim 9; indeed, one can construct the claimed sequence
recursively as follows: given the partially constructed sequence v = v0, v1, . . . , vs we append
either the single term a(vs) or the two terms z(vs), a(vs), according to which case of part (a)
of the claim applies, and terminate if φ(a(vs)) = `0. Observe that a consecutive pair v, v′ in
v0, . . . , vt belongs (as an unordered pair) to J̄i only if either

(i) v′ = a(v) and φ(v′) > φ(v), or

(ii) v′ = z(v), the term after v′ is v′′ = a(v), and ψ(v′′) > ψ(v), or

(iii) the term before v is v̂, v = z(v̂), v′ = a(v̂), and ψ(v′) > ψ(v̂).

Since (φ(v), ψ(v)) increases lexicographically in this way along the path, we have the claimed
upper bound of 1 + 2(`0 − i) on the number of of consecutive pairs from J̄i. This finishes the
proof of Lemma 16.

Now we are ready to finish the proof of Lemma 15. Thanks to Lemma 16, we can decompose
ηv − ηα(v) =

∑t
j=1 ηj−1 − ηj and using a chaining argument as before we get

EH,η

(
max
v∈V
|ηv − ηα(v)|

)
≤ EH

(
`0∑
i=0

(1 + 2(`0 − i))Eη max
{a,b}∈J̄i

|ηa − ηb|

)

≤ O

(
EH

(
`0∑
i=0

(`0 − i+ 1)
√

2i(
√

2 log |Ji|)

))
. (50)

Here, EH,η is expectation over the larger space of the random graph H together with the GFF,
while Eη is the expectation of a fixed Gaussian Free Field and EH is an expectation just over
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the random choice of H (this is to handle
√

log |Ji|, as we do not have a high probability
statement about |Ji| covered by APOH and we will only be able to control EH |Ji|). The first
inequality follows from part (b) of Lemma 16 and the second inequality follows from the union
bound on the maximum, (18).

Given (50), our task is to bound EH(|Ji|) for 0 ≤ i ≤ `0 and then show that the sum in (50)
is o(Tδ). We have from Property C that

EH(|Ji|) = O

(
EH |W2i | ×

1

2i

)
= O

(
(ε2n)×

∑
j≥0

µj2
i × 1

2i

)
= O

(
ε2n

2i(1− µi)

)
= O

( εn
22i

)
(51)

(the number of vertices on K2 is ε2n and µj2
i

bounds the expected number of vertices on level
j2i.) Going back to (50) we see that

EH,η

(
max
v∈V
|ηv − ηα(v)|

)
≤

`0∑
i=0

(`0 − i+ 1)
√

2i
√

2 log
( εn

22i

)
. (52)

Here we use that EH(
√

log |Ji|) ≤
√

log E(|Ji|), by Jensen’s inequality (log1/2 x is a concave
function) and (51).

It only remains to deal with the R.H.S. of (52). Given v ∈ V , we let u(v) to be a closest
vertex in U to v (in the graph distance). Suppose for now that u(v) = α(v), where α(v) is
provided by Lemma 16.

To get a high probability result, we will use the Markov inequality: if we denote Y =
Eη

(
maxv∈V |ηv − ηα(v)|

)
, we have PrH

(
Y > (logN)1/4EHY

)
≤ (logN)−1/4 and this explains

the log1/4N factor in (53) below. We check that the ratio between the terms i + 1 and i in
(52) equals

`0 − i
`0 − i+ 1

√
2

√
1− 2 log 2

log(εn)− 2i log 2

which is strictly larger than, say 10
9

for 0 ≤ i ≤ `0− 10. Thus the last 10 terms dominate this
sum and we get that w.h.p.

Eη(max
v∈V
|ηv − ηα(v)|) ≤ O

(
log1/4N ×

√
2`0

√
2 log

( εn
22`0

))
= O

(
log3/4N

ε1/2

)
= o(Tδ). (53)

This concludes the proof of Lemma 15 in the case u(v) = α(v). If u(v) 6= α(v), then since
ηv− ηu(v) = (ηv− ηα(v)) + (ηα(v)− ηα(α(v))) + (ηα(u(v))− ηu(v)), by the triangle inequality we can
obtain the same bound as above up to the constant 3.
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