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Abstract. We study the δ-version of the preferential attachment graph

with m attachments for each of incoming vertices. We show that almost

surely the scaled size of a breadth-first (descendant) tree rooted at a

fixed vertex converges, for m = 1, to a limit whose distribution is a

mixture of two beta distributions, and that for m > 1 the limit is 1. We

also analyze the likely performance of a greedy matching algorithm for

all m ≥ 1 and establish an almost sure lower bound for the size of the

matching set.

1. Introduction

It is widely accepted that graphs/networks are an inherent feature of life

today. The classical models Gn,m and Gn,p of Erdős and Rényi [17] and

Gilbert [22], respectively, lacked some salient features of observed networks.

In particular, they failed to have a degree distribution that decays poly-

nomially. Barabási and Albert [3] suggested the Preferential Attachment

Model (PAM) as a more realistic model of a “real world” network. There

was a certain lack of rigour in [3] and later Bollobás, Riordan, Spencer and

Tusnády [6] gave a rigorous definition.

Many properties of this model have been studied. Bollobás and Riordan

[7] studied the diameter and proved that with high probability (whp) PAM

with n vertices and m > 1 attachments for every incoming vertex has diam-

eter ≈ log n/ log logn. Earlier result by Pittel [30] implied that for m = 1

whp the diameter of PAM is of exact order log n. Bollobás and Riordan

[9, 10] studied the effect on component size from deleting random edges

from PAM and showed that it is quite robust whp. The degree distribu-

tion was studied in Mori [27, 28], Flaxman, Frieze and Fenner [18], Berger,

Borgs, Chayes and Saberi [4]. Peköz, Röllin and Ross [29] established con-

vergence, with rate, of the joint distribution of the degrees of finitely many

vertices. Acan and Hitczenko [2] found an alternative proof, without rate,

via a memory game. Pittel [32] used the Bollobás-Riordan pairing model to
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approximate, with explicit error estimate, the degree sequence of the first

nm/(m+2) vertices, m ≥ 1, and proved that, for m > 1, PAM is connected

with probability ≈ 1 − O((log n)−(m−1)/3). Random walks on PAM have

been considered in the work of Cooper and Frieze [14, 15]. In the first paper

there are results on the proportion of vertices seen by a random walk on

an evolving PAM and the second paper determines the asymptotic cover

time of a fully evolved PAM. Frieze and Pegden [21] used random walk in

a “local algorithm” to find vertex 1, improving results of Borgs, Brautbar,

Chayes, Khanna and Lucier [12]. The mixing time of such a walk was an-

alyzed in Mihail, Papadimitriou and Saberi [23] who showed rapid mixing.

Interpolating between Erdős-Rényi and preferential attachment, Pittel [31]

considered birth of a giant component in a graph process GM on a fixed

vertex set, when GM+1 is obtained by inserting a new edge between vertices

i and j with probability proportional to [deg(i) + δ] · [deg(j) + δ], with δ > 0

being fixed.

The previous paragraph gives a small sample of results on PAM that can

be related to its role as a model of a real world network. It is safe to say that

PAM has now been accepted into the pantheon of random graph models that

can be studied purely from a combinatorial aspect. For example, Cooper,

Klasing and Zito [16] studied the size of the smallest dominating set and

Frieze, Pérez-Giménez, Pra lat and Reiniger [19] studied the existence of

perfect matchings and Hamilton cycles.

2. Our Results

We study the number of descendants of a given vertex and also analyse the

performance of an on-line greedy algorithm for finding a large matching. We

carry out this analysis in the context of a generalization of the model from [6].

The precise model is taken from Hofstad [26, Ch. 8], and is described next.

Preferential Attachment, δ-extension:

Vertex 1 has m loops, so its degree is 2m initially. Recursively, vertex t+ 1

has m edges, and it uses them one at a time either to connect to a vertex

x ∈ [t] or to loop back on itself.

More precisely, at step i ∈ [m]:

Step t+ 1:

(a) vertex t+ 1 attaches itself to x ∈ [t], thus increasing degrees of both x

and t+ 1 by 1, with probability C · (dt,i−1(x) + δ), where dt,i−1(x) is the

degree of vertex x just before the arrival of vertex t+1 plus the number

of times vertex t+ 1 connected to vertex x in the preceding i− 1 steps;

(b) vertex t+ 1 loops back on itself with probability C · (dt,i−1(t+ 1) + 1 +

iδ/m), thus increasing the degree of t+ 1 by 2, where dt,i−1(t+ 1) is the
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degree of t+ 1 after i− 1 attachments. (The summand 1 in the formula

for the probability is the contribution to the degree of t+1 coming from

the i-th edge whose other endpoint has not been chosen yet.)

(c) C is determined from the condition “the t+1 probabilities add up to 1”.

In other words, denoting by w the random receiving end of the i-th edge

of t+ 1, we have

P(w = x) =

{
C × (dt,i−1(x) + δ) if x ∈ [t]

C × (dt,i−1(t+ 1) + 1 + iδ/m) if x = t+ 1,
(2.1)

where

C =

(
(t+ i/m)δ + 1 +

t+1∑
x=1

dt,i−1(x)

)−1

=
1

(t+ i/m)δ + 2(mt+ i)− 1
.

Remark 2.1. Note that the process is well defined for δ ≥ −m since for

such δ, all the probabilities defined in (2.1) are nonnegative and add up to 1.

However, we will see that Gm,−m(t) is the star centered at vertex 1, and the

key problems we want to solve have trivial solutions in that extreme case.

We will use the notation {Gm,δ(t)} for the resulting graph process. In

particular, for m = 1 we have: using “ |◦” to indicate conditioning on pre-

history,

P
(
t+ 1 selects x|◦

)
=


1 + δ

(2 + δ)t+ (1 + δ)
, x = t+ 1,

dt(x) + δ

(2 + δ)t+ (1 + δ)
, x ∈ [t].

(2.2)

The total degree of Gm,δ(t) is 2mt.

2.1. Number of Descendants. Fix a positive integer r and let X(t) de-

note the number of descendants of r at time t. Here r is a descendant of r

and x is a descendant of r = O(1) if and only if x chooses to attach itsef to

at least one descendant of r in Step x. In other words, if we think of the

graph as a directed graph with edges oriented towards the smaller vertices,

vertex x is a descendant of r if and only if there is a directed path from x

to r. We prove two theorems:

Theorem 2.2. Suppose that m = 1 and δ > −1 and p(t) = X(t)/t. Then

almost surely (i.e. with probability 1), lim p(t) exists, and its distribution

is the mixture of two beta-distributions, with parameters a = 1, b = r −
1

2+δ and a = 1+δ
2+δ , b = r, weighted by 1+δ

(2+δ)r−1 and (2+δ)(r−1)
(2+δ)r−1 respectively.

Consequently a.s. lim inft→∞ p(t) > 0.
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Note. (i) The proof is based on a new family of martingales M`(t) :=

(X(t)+ γ
2+δ )

(`)

(t+β)(`)
, (z)(`) standing for the rising factorial. This family definitely

resembles the martingales Mori [27, 28] used for the vertex degrees. Our

proof of the martingale property is, unsurprisingly, quite different. (ii)

Whp G1,δ is a forest of Θ(log t) trees rooted at vertices with loops. For the

preferential attachment tree (no loops), Janson [25] recently proved that

the scaled sizes of the principal subtrees, those rooted at the root’s children

and ordered chronologically, converge a.s. to the GEM distributed random

variables. His techniques differ significantly.

When m > 1 we have the somewhat surprising result that, for r = O(1),

almost surely all but a vanishingly small fraction of vertices are descendants

of r, (cf. [25]).

Theorem 2.3. Let m > 1 and δ > −m and let pX(t) = X(t)/t, pY (t) =

Y (t)/(2mt), where Y (t) is the total degree of the descendants of r at time t.

Then almost surely lim pX(t) = lim pY (t) = 1.

2.2. Greedy Matching Algorithm. We analyze a greedy matching algo-

rithm; a.s. it delivers a surprisingly large matching set even for relatively

small m. This algorithm generates the increasing sequence {M(t)} of partial

matchings on the sets [t], with M(1) = ∅. Suppose that X(t) is the set of un-

matched vertices in [t] at time t. If t+1 chooses a vertex u ∈ X(t) to attach

itself to then M(t + 1) = M(t) ∪ {{u, t + 1}}, otherwise M(t + 1) = M(t).

(If t+ 1 chooses multiple vertices from X(t), then we pick one of those as u

arbitrarily.) Let

h(z) = hm,δ(z) := 2

[
1−

(
m+ δ

2m+ δ

)
z

]m
− z − 1

and let ρ = ρm,δ be the unique root ρ = ρm,δ in the interval [0, 1] of h(z) = 0:

ρm,δ ∈ (0, 1) if δ > −m. Denoting x(t) = X(t)/t, we have

Theorem 2.4. If δ > −m, then, for any α < 1/3, almost surely,

lim
t→∞

tα max{0, x(t)− ρm,δ} = 0.

In consequence, the Greedy Matching Algorithm a.s. finds a sequence of

nested matchings {M(t)}, with M(t) of size at least (1− o(1))(1− ρm,δ)t/2.

Remark 2.5. Observe that ρm,−m = 1, which makes it plausible that the

maximum matching size is miniscule compared to t. In fact, by Remark 2.1,

Gm,−m(t) is the star centered at vertex 1 and hence the maximum matching

size is 1.
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Remark 2.6. Consider the case δ = 0. Let rm := 1− ρm,0; some values of

rm are:

r1 = 0.5000, r2 = 0.6458, r5 = 0.8044,

r10 = 0.8863, r20 = 0.9377, r70 = 0.9803.
(2.3)

With a bit of calculus, we obtain that rm = 1− 2m−1 log 2 +O(m−2).

Remark 2.7. Close to the PAM is the Uniform Attachment Model: vertex

t+ 1 selects uniformly at random (repetitions allowed) m vertices from the

set [t]. (See Acan and Pittel [1] for connectivity and bootstrap percolation

results.) An argument, broadly analogous to the one for Theorem 2.4, gives

the following theorem.

Theorem 2.8. Let rm denote a unique positive root of 2(1 − zm) − z = 0:

rm = 1−m−1 log 2 +O(m−2). Then, for any α < 1/3, almost surely

lim
t→∞

tα
∣∣1− rm − x(t)

∣∣ = 0

for the uniform attachment model.

[Note that x(t) is the fraction of unmatched vertices.]

Some values of rm in this case are:

r1 = 0.6667, r2 = 0.7808, r5 = 0.8891,

r10 = 0.9386, r20 = 0.9674, r35 = 0.9809.

3. Proof of Theorem 2.2

For t ≥ r > 1, let X(t) = Xm,δ(t) = Xm,δ(t, r), Y (t) = Ym,δ(t) =

Ym,δ(t, r) denote the size and the total degree of the vertices in the vertex

set of the sub-tree T (t) = Tm,δ(t, r) rooted at r; so X(r) = Xm,δ(r, r) = 1

and Y (r) = Ym,δ(r, r) ∈ [m, 2m], m (2m resp.) attained when t + 1 forms

no loops (forms m loops resp.) at itself. Introduce p(t) = pY (t) = Y (t)
2mt and

pX(t) = X(t)
t . This notation will be used in the proof of Theorem 2.3 as

well, but of course m = 1 in the proof of Theorem 2.2.

Here

Y (t) =

{
2X(t), if r looped on itself,

2X(t)− 1, if r selected a vertex in [r − 1].
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(In particular, pX(t) = p(t) +O(t−1).) So, by (2.2),

P(X(t+ 1) = X(t) + 1|◦) =
Y (t) + δX(t)

(2 + δ)t+ (1 + δ)

=


(2 + δ)X(t)

(2 + δ)t+ (1 + δ)
, if r looped on itself,

(2 + δ)X(t)− 1

(2 + δ)t+ (1 + δ)
, if r selected a vertex in [r − 1].

Thus we are led to consider the process X(t) such that

P(X(t+ 1) = X(t) + 1|◦) =
(2 + δ)X(t) + γ

(2 + δ)t+ (1 + δ)
, (3.1)

P(X(t+ 1) = X(t)|◦) = 1− P(X(t+ 1) = X(t) + 1|◦);

γ = 0 if r looped on itself, γ = −1 if r selected a vertex in [r − 1].

Note. Suppose δ = −1, (see Remark 2.1). Then, by (2.2), vertex r selects

a vertex in [r − 1], so that γ = −1. Since X(r) = 1, it follows from (3.1)

that X(t) ≡ 1 for t ≥ r. This means that G1,−1(t) is the star with vertex 1

being the star’s center, cf. [26, Exercise 8.5].

Lemma 3.1. Let (z)(`) =
∏`−1
j=0(z + j), β = 1+δ

2+δ . Then, conditioned on the

attachment record during the time interval [r, t], i.e. starting with attach-

ment decision by vertex r, we have

E

[(
X(t+ 1) +

γ

2 + δ

)(`)
∣∣∣∣∣◦
]

=
t+ β + `

t+ β

(
X(t) +

γ

2 + δ

)(`)

.

Consequently M(t) :=
(X(t)+ γ

2+δ )
(`)

(t+β)(`)
is a martingale.

For δ = 0 this claim was proved in Pittel [32].

Proof. First of all,

(2 + δ)X(t) + γ

(2 + δ)t+ (1 + δ)
=
X(t) + α

t+ β
, α =

γ

2 + δ
, β =

1 + δ

2 + δ
.
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Introduce Z(t) = X(t) + α. By (2.2), we have: for k ≥ 1, and t ≥ r,

E[Zk(t+ 1)|◦] = (Z(t) + 1)k
Z(t)

t+ β
+ Zk(t)

(
1− Z(t)

t+ β

)
=

Z(t)

t+ β

k∑
j=0

(
k

j

)
Zj(t) + Zk(t)

(
1− Z(t)

t+ β

)

= Zk(t) +
Z(t)

t+ β

k−1∑
j=0

(
k

j

)
Zj(t)

= Zk(t)
t+ β + k

t+ β
+

1

t+ β

k−1∑
j=1

(
k

j − 1

)
Zj(t).

(3.2)

Next recall that

z(`) =
∑̀
k=1

zks(`, k), (3.3)

where s(`, k) is the signless, first-kind, Stirling number, i.e. the number of

permutations of the set [`] with k cycles. In particular,∑
`≥1

η`
s(`, k)

`!
=

1

k!
logk

1

1− η
, |η| < 1, (3.4)

Comtet [13, Section 5.5]. Using (3.2) and (3.3), we have

E
[
Z(`)(t+ 1)|◦

]
=
∑̀
k=1

s(`, k)E
[
Zk(t+ 1)|◦

]
= (t+ β)−1

∑̀
k=1

s(`, k) ·

(
(t+ β + k)Zk(t) +

k−1∑
j=0

(
k

j − 1

)
Zj(t)

)

=: (t+ β)−1
∑̀
i=1

σ(`, i)Zi(t),

σ(`, i)=


(t+ β + `)s(`, `), if i = `,

(t+ β)s(`, i) +
∑̀
k=i

s(`, k)

(
k

i− 1

)
, if i < `.

We need to show that σ(`, i) = (t+β+`)s(`, i) for k < `, which is equivalent

to

`s(`, i) =
∑̀
k=i

s(`, k)

(
k

i− 1

)
.
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To prove the latter identity, it suffices to show that, for a fixed i, the expo-

nential generating functions of the two sides coincide. By (3.4),∑
`≥1

η`

`!

∑̀
k=i

s(`, k)

(
k

i− 1

)
=
∑
k≥i

(
k

i− 1

)∑
`≥k

η`

`!
s(`, k)

=
∑
k≥i

(
k

i− 1

)
1

k!
logk

1

1− η
=

1

(i− 1)!

(
log−1 1

1− η

)∑
s≥1

1

s!
logs

1

1− η

=
1

(i− 1)!

(
logi−1 1

1− η

)(
1

1− η
− 1

)
=

1

(i− 1)!

(
logi−1 1

1− η

)
η

1− η
.

And, using (3.4) again,∑
`≥1

η`

`!
`s(`, i) = η

∑
`≥1

`η`−1

`!
s(`, i)

= η
d

dη

(
1

i!
logi

1

1− η

)
=

1

(i− 1)!

(
logi−1 1

1− η

)
η

1− η
.

�

To identify the lim p(t), recall that the classic beta probability distribution

has density

f(x; a, b) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1, x ∈ (0, 1),

parametrized by two parameters a > 0, b > 0, and moments∫ 1

0
x`f(x; a, b) dx =

`−1∏
j=0

a+ j

a+ b+ j
. (3.5)

We can now complete the proof of Theorem 2.2. By Lemma 3.1, we have

E[M(t)|γ] = M(r), i.e.

E

[(
X(t) + γ

2+δ

)(`)

(t+ β)(`)

∣∣∣∣∣γ
]

=

(
1 + γ

2+δ

)(`)

(r + β)(`)
.

For every ` ≥ 1, by martingale convergence theorem, conditioned on γ, there

exists an integrably finite Mγ,` such that a.s.

lim
t→∞

(
X(t) + γ

2+δ

)(`)

(t+ β)(`)
=Mγ,`, ` ≥ 0,

and

E[Mγ,`] =

(
1 + γ

2+δ

)(`)

(r + β)(`)
.
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So, using the notation pX(t) = X(t)/t, we have: a.s.

lim
t→∞

(pX(t))` =Mγ,` = (Mγ,1)`, (3.6)

and

E
[
(Mγ,1)`

]
=

(
1 + γ

2+δ

)(`)

(r + β)(`)
=

`−1∏
j=0

1 + γ
2+δ + j

r + β + j
.

This means that Mγ,1 is beta-distributed with parameters 1 + γ
2+δ and

r + β − 1− γ
2+δ . By the definition of γ and (2.2), we have

P(γ = 0) =
1 + δ

(2 + δ)(r − 1) + (1 + δ)
=

1 + δ

2r − 1 + δr
.

We conclude that limt→∞ p(t) has the distribution which is the mixture of

the two beta distributions, with parameters a = 1, b = r− 1
2+δ , and a = 1+δ

2+δ ,

b = r, weighted by 1+δ
(2+δ)r−1 and (2+δ)(r−1)

(2+δ)r−1 respectively.

This completes the proof of Theorem 2.2.

3.1. Proof of Theorem 2.3. We need to derive tractable formulas/bounds

for the conditional distribution of Y (t+ 1)−Y (t). First, let us evaluate the

conditional probability that selecting the second endpoints of the m edges

incident to vertex t+ 1 no loops will be formed. Suppose there has been no

loop in the first i− 1 steps, i ∈ [m]; call this event Ei−1. On event Ei−1, as

the i-th edge incident to t+1 is about to attach its second end to a vertex in

[t]∪ {t+ 1}, the total degree of all these vertices is 2mt+ i− 1 (1 ≤ i ≤ m).

So, by the definition of the transition probabilities (items (a), (b), (c)) we

have

P(Ei|◦) =
2mt+ i− 1 + tδ

2mt+ 2(i− 1) + tδ + 1 + iδ
m

,

“◦” indicating conditioning on the full record of i−1 preceding attachments

such that the event Ei−1 holds. Crucially this conditional probability de-

pends on i only. Therefore the probability of a given full loops-free record

of the m attachments is equal to the corresponding probability for the “no

loops in m attachments process”, multiplied by

Πm(t) :=
m∏
i=1

2mt+ i− 1 + tδ

2mt+ 2(i− 1) + tδ + 1 + iδ
m

= 1−O(t−1). (3.7)
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Lemma 3.2. If no loops are allowed in the transition from t to t+ 1, then

P(Y (t+ 1) = Y (t) +m+ a|◦)

=

(
m

a

)
(Y (t) + δX(t))(a)

(
2mt− Y (t) + δ(t−X(t))(m−a)(
(2m+ δ)t

)(m)
, (a ∈ [m]),

P(Y (t+ 1) = Y (t) | ◦) =

(
2mt− Y (t) + δ(t−X(t))(m)(

(2m+ δ)t
)(m)

.

Proof. Vertex t + 1 selects, in m steps, a sequence {v1, . . . , vm} of m ver-

tices from [t], with t choices for every selection. The total vertex degree

of [t] (of V (T (t)) respectively) right before step i is 2mt + i − 1
(
Y (t) +

µi respectively, µi := |{j < i : vj ∈ V (H(t))}|
)
. Conditioned on this prehis-

tory,

P(vi ∈ V (T (t))) =
Y (t) + δX(t) + µi
2mt+ δt+ i− 1

,

P(vi ∈ [t] \ V (T (t))) =
2mt− Y (t) + δ(t−X(t)) + i− 1− µi

2mt+ δt+ i− 1
.

Therefore a sequence v = {v1, . . . , vm} will be the outcome of the m-step

selection with probability

P(v) =

∏
i∈[m]

(
(2m+ δ)t+ i− 1

))−1

×
∏

i:vi∈V (T (t))

(
Y (t)+δX(t)+µi

)
·

∏
i:vi∈[t]\V (T (t))

(
2mt−Y (t)+δ(t−X(t))+i−1−µi

)
.

Furthermore, for a ∈ [m], on the event {Y (t+ 1) = Y (t) +m+ a} for each

admissible v we have

{µi} = {0, 1, . . . , a− 1}, {i− 1− µi} = {0, 1, . . . ,m− a− 1},

so that

P(v) =
(Y (t) + δX(t))(a)

(
2mt− Y (t) + δ(t−X(t))(m−a)(
(2m+ δ)t

)(m)

Since the total number of admissible sequences is
(
m
a

)
, we obtain the first for-

mula in Lemma 3.2. The second formula is the case of P(v) with a = 0. �

It is clear from the proof that {Pm(a)}0≤a≤m,

Pm(a) :=

(
m

a

)
(Y (t) + δX(t))(a)

(
2mt− Y (t) + δ(t−X(t))(m−a)(
(2m+ δ)t

)(m)
,

is a probability distribution of a random variable D, a “rising-factorial”

counterpart of the binomial D = Bin(m, p = Y (t)/2mt). Define the falling
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factorial (x)` = x(x − 1) · · · (x − ` + 1). It is well known that E[(D)µ] =

(m)µp
µ, (µ ≤ m). For D we have

E[(D)µ] =
∑
a

(a)µPm(a) =
(m)µ (Y (t) + δX(t))(µ)(

(2m+ δ)t
)(µ)

·
∑
a≥µ

(
m− µ
a− µ

)

×
(Y (t) + δX(t) + µ)(a−µ)

(
(2m+ δ)t+ µ− (Y (t) + δX(t) + µ))((m−µ)−(a−µ))

(2mt+ µ)(m−µ)

=
(m)µ (Y (t) + δX(t))(µ)(

(2m+ δ)t
)(µ)

, (3.8)

since the sum over a ≥ µ is
∑

ν≥0 Pm−µ(ν) = 1.

From Lemma 3.2 and (3.8) we have: if no loops during the transition from

t to t+ 1 are allowed, then

E[Y (t+ 1)− Y (t)|◦] =
m∑
a=1

(a+m)Pm(a)

=
m
(
Y (t) + δX(t)

)
(2m+ δ)t

+m

(
1−

(
(2m+ δ)t− Y (t)− δX(t)

)(m)(
(2m+ δ)t

)(m)

)
, (3.9)

and

E[X(t+ 1)−X(t)|◦] = 1−
(
(2m+ δ)t− Y (t)− δX(t)

)(m)(
(2m+ δ)t

)(m)
(3.10)

What if the ban on loops at the vertex t+ 1 is lifted? From the discussion

right before Lemma 3.2, we see that both E[
(
Y (t+ 1)− Y (t)

)
I(no loops)|◦]

and E[
(
X(t+ 1)−X(t)

)
I(no loops)|◦] are equal to the respective RHS’s in

(3.9) and (3.10) times Πm(t) = 1−O(t−1). Consequently, adding the terms

O(t−1) to the RHS of (3.9) and to the RHS of (3.10) we obtain the sharp

asymptotic formulas for E[Y (t+ 1)−Y (t)|◦] and E[X(t+ 1)−X(t)|◦] in the

case of the loops-allowed model.

Let

p(t) =
2m

2m+ δ
pY (t) +

δ

2m+ δ
pX(t),

where pY (t) = Y (t)
2mt and pX(t) = X(t)

t as defined in the beginning of the

section. Theorem 2.3 asserts

Theorem 3.3. Let m > 1 and δ > −m. Then almost surely lim pY (t) =

lim pX(t) = 1.

Proof. First of all, we note that mX(t) ≤ Y (t) ≤ 2mX(t). The lower bound

is obvious. The upper bound follows from induction on t: Suppose Y (t) ≤
2mX(t). If X(t+1) = X(t), then Y (t+1) = Y (t) ≤ 2mX(t) = 2mX(t+1).
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If X(t + 1) = X(t) + 1, then Y (t + 1) ≤ Y (t) + 2m ≤ 2mX(t) + 2m =

2mX(t+ 1). Therefore, by the definition of p(t), we have

pX(t)

2
≤ pY (t) ≤ pX(t) =⇒ m+ δ

2m+ δ
pX(t) ≤ p(t) ≤ pX(t); (3.11)

in particular, p(t) ∈ [0, 1] since δ ≥ −m. We will also need(
(2m+ δ)t− Y (t)− δX(t)

)(m)(
(2m+ δ)t

)(m)
= (1− p(t))m +O(t−1).

So, using (3.9), we compute

E[pY (t+ 1)|◦] = E
[
Y (t+ 1)

2mt
· t

t+ 1

∣∣∣◦]
=

t

t+ 1

(
pY (t) +

1

2t

[
1 + p(t)− (1− p(t))m

]
+O(t−2)

)
= pY (t) + qY (t),

qY (t) :=
1

2(t+ 1)

[
1 + p(t)− 2pY (t)− (1− p(t))m

]
+O(t−2). (3.12)

Likewise

E[pX(t+ 1)|◦] = pX(t) + qX(t),

qX(t) =
1

t+ 1

[
1− pX(t)− (1− p(t))m

]
+O(t−2).

(3.13)

Multiplying the equation (3.12) by 2m
2m+δ , the equation (3.13) by δ

2m+δ , and

adding them, we obtain

E[p(t+ 1)|◦] = p(t) + q(t),

q(t) =
m+ δ

(2m+ δ)(t+ 1)

[
1− p(t)− (1− p(t))m

]
+O(t−2).

(3.14)

Since 1 − z − (1 − z)m ≥ 0 on [0, 1], the equation (3.14) implies that∑
t E[|q(t)|] < ∞. So, a.s. there exists Q := limτ→∞

∑
1≤τ≤t q(τ), with

E[|Q|] ≤
∑

t E[|q(t)|] < ∞, i.e. a.s. |Q| < ∞. Introducing Q(t + 1) =∑
τ≤t q(τ), we see from (3.14) that {p(t+1)−Q(t+1)}t≥1 is a martingale with

supt |p(t+ 1)−Q(t+ 1)| ≤ 1 +
∑

τ≥1 |q(τ)|. By the martingale convergence

theorem we obtain that there exists an integrable limt→∞(p(t)−Q(t+ 1)),

implying that a.s. there exists a random p(∞) = limt→∞ p(t). The (3.14)

also implies that

1 ≥ E[p(∞)] =
m+ δ

2m+ δ

∑
t≥1

1

t+ 1
E
[
1− p(t)− (1− p(t))m

]
+O(1).

Since m+ δ > 0 and

lim
t→∞

E
[
1− p(t)− (1− p(t))m

]
= E

[
1− p(∞)− (1− p(∞))m

]
,



AGE-BIASED ATTACHMENT GRAPHS 13

and the series
∑

t≥1 t
−1 diverges, we obtain that P(p(∞) ∈ {0, 1}) = 1.

Recall that p(t) ≥ m+δ
2m+δ pX(t). If we show that a.s. lim inft→∞ pX(t) > 0,

it will follow that a.s. p(∞) > 0, whence a.s. p(∞) = 1, implying (by

p(t) ≤ pX(t)) that a.s. pX(∞) exists, and is 1, and consequently (by the

formula for p(t)) a.s. pY (∞) exists, and is 1.

So let’s prove that a.s. lim inft→∞ pX(t) > 0. Recall that we did prove

the latter for m = 1. To transfer this earlier result to m > 1, we need to

establish some kind of monotonicity with respect to m. A coupling to the

rescue!

For the B-R model, with loops allowed at every vertex, the following

coupling between Gm,0(t) and G1,0(mt) was discovered by Bollobás and Ri-

ordan [7]. Start with the {G1,0(t)} random process and let the vertices be

v1, v2, . . . . To obtain the random graph process {Gm,0(t)} from {G1,0(mt)},
(1) collapse the first m vertices v1, . . . , vm into the first vertex w1 of

Gm,0(t), the next m vertices vm+1, . . . , v2m into the second vertex

w2 of Gm,0(t), and so on;

(2) keep the full record of the multiple edges and loops formed by col-

lapsing the blocks {v(i−1)m+1, . . . , vim} for each i.

Doing this collapsing indefinitely we get the jointly defined Bollobás-

Riordan graph processes {Gm,0(t)} and {G1,0(mt)}. The beauty of the δ-

extended Bollobás-Riordan model is that similarly this collapsing operation

applied to the process {G1,δ/m(mt)} delivers the process {Gm,δ(t)}, [26].

(See Appendix for the explanation.)

Remark 3.4. It follows from this coupling that Gm,−m(t) is the star cen-

tered at vertex 1. This follows from the fact that G1,−1(mt, 1) is a star and

confirms the claim in Remark 2.1. In the coupling, each additional vertex

is joined to vertex 1 by m parallel edges.

Lemma 3.5. For the processes {Gm,δ(t)} and {G1,δ/m(mt)} coupled this

way, we have Xm,δ(t, r) ≥ m−1X1,δ/m(mt,mr).

Proof. Let us simply write G1 and Gm for the two graphs G1,δ/m(mt) and

Gm,δ(t), respectively. Similarly, write T1 and Tm, respectively, for the de-

scendant tree in G1,δ/m(mt) rooted at mr and the descendant tree in Gm,δ(t)

rooted at r. If va ∈ T1, i.e. va is a descendant of mr, then for b = da/me we

have wb = {vm(b−1)+i}i∈[m] 3 va, implying that wb is a descendant of r in

Gm, i.e. wb ∈ Tm. (The converse is generally false: if wb is a descendant of

r, it does not mean that every vm(b−1)+i, (i ∈ [m]), is a descendant of mr.)

Therefore

Xm,δ(t, r) = |V (Tm)| ≥ m−1|V (T1)| = m−1X1,δ/m(mt,mr). �
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Thus, to complete the proof of the theorem, i.e. for δ > −m, we (a) use

Theorem 2.2, to assert that for the process {G1,δ/m(t)}, a.s. lim pX(t) > 0;

(b) use Lemma 3.5, to assert that a.s. lim inf pX(t) > 0 for {Gm,δ(t)} as

well. �

4. Proof of Theorem 2.4

Recall that the greedy algorithm generates the increasing sequence {M(t)}
of partial matchings on the sets [t], with M(1) = ∅. Given M(t), let

X(t) := number of unmatched vertices at time t,

Y (t) := total degree of unmatched vertices at time t,

U(t) := number of unmatched vertices selected by t+ 1 from [t] \M(t),

x(t) := X(t)/t,

y(t) := Y (t)/(2mt).

We want to prove that, for any δ > −m and α < 1/3, almost surely,

lim
t→∞

tα max{0, x(t)− ρm,δ} = 0,

where ρm,δ is the unique root in (0, 1) of

h(z) = hm,δ(z) := 2

[
1−

(
m+ δ

2m+ δ

)
z

]m
− z − 1. (4.1)

(Note that, for δ > −m, the function h(z) is decreasing on (0, 1) and h(z) = 0

has a unique solution in the same interval.) We will prove this first for a

slightly different model that does not allow any loops other than the first

vertex. In this model, vertex 1 has m loops, and the i-th edge of vertex t+1

attaches to u ∈ [t] with probability

dt,i−1(u) + δ

2mt+ 2(i− 1) + tδ
.

We will need the following Chernoff bound. (See e.g. [24, Theorem 2.8].)

Theorem 4.1. If X1, . . . , Xn are independent Bernoulli random variables,

X =
∑n

i=1Xi, and λ = E[X], then

P(|X − λ| > ελ) < 2 exp
(
−ε2λ/3

)
∀ε ∈ (0, 3/2).

Proof of Theorem 2.4 for “loops only at vertex 1”. Let ε = εt :=

t−1/3 log t. We will show

P(x(t) > ρ+ ε) ≤ exp
(
−Θ

(
log3 t

))
. (4.2)

Once we show (4.2), the Borel-Cantelli lemma gives

P(x(t)− ρ > t−1/3 log t infinitely often) = 0,
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which gives what we want. Let us prove (4.2).

Since each degree is at least m, we have Y (t) ≥ mX(t) and hence y(t) ≥
x(t)/2. Also, since

X(t+ 1) =

{
X(t) + 1 if U(t) = 0

X(t)− 1 if U(t) > 0,

we have

E[X(t+ 1)|◦] = X(t) + P(U(t) = 0|◦)− P(U(t) > 0|◦). (4.3)

Since P(vertex t+ 1 has some loop) = O(t−1), using Y (t) ≥ mX(t) in the

last step below, we get

P(U(t) = 0|◦) = P(U(t) = 0 and vertex t+ 1 has no loop|◦) +O
(
t−1
)

=
(
1−O

(
t−1
)) (2mt− Y (t) + δt− δX(t))(m)

(2mt+ δt)(m)
+O

(
t−1
)

=
(2mt+ δt− Y (t)− δX(t))m

(2mt+ δt)m
+O

(
t−1
)

=

(
1− 2m

2m+ δ
y(t)− δ

2m+ δ
x(t)

)m
+O

(
t−1
)

(4.4)

≤
(

1− m+ δ

2m+ δ
x(t)

)m
+O(t−1).

Now using (4.3) and (4.4) gives

E[x(t+ 1)|◦] ≤ x(t) +
1

t

[
2

(
1− m+ δ

2m+ δ
x(t)

)m
− x(t)− 1

]
+O

(
t−2
)

= x(t) + h(x(t)) +O
(
t−2
)
, (4.5)

where h(z) is as defined in (4.1).

We know that x(1) = 0. For T < t, let ET be the event that x(t) > ρ+ ε

and T ∈ [1, t) be the last time such that x(τ) ≤ ρ+ ε/2, that is,

x(T ) ≤ ρ+ ε/2; x(τ) > ρ+ ε/2, ∀ τ ∈ (T, t); x(t) > ρ+ ε.

Now

X(T ) + t− T ≥ X(t) > t(ρ+ ε) =⇒ Tx(T ) + t− T > t(ρ+ ε),

=⇒ T (ρ+ ε/2) + t− T > t(ρ+ ε),

implying, with a bit of algebra, that

t− T ≥ (1 +O(ε))
tε

2(1− ρ)
.
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We conclude that

{x(t) > ρ+ ε} ⊆
s⋃

T=1

ET , s = s(t) := t−
⌈ tε

3(1− ρ)

⌉
.

Now let us fix a T ∈ [1, s] and bound P(ET ). The main idea of the proof

is that, as long as x(τ) > ρ, by Equation (4.5), the process {x(τ)} has a

negative drift.

Let us say that we have a “failure” at step i+1 when X(i+1) = X(i)+1.

On the event ET we have X(τ) ≥ τ(ρ+ ε/2), τ ∈ (T, t], intuitively meaning

that there are many failures between steps T + 1 and t, despite negativity

of expected shift. And this should make the event ET rather unlikely. To

prove it rigorously, let ξj denote the indicator of the event {x(j − 1) > ρ+

ε/2 and X(j) = X(j−1)+1}. Let ZT := ξT+2+· · ·+ξt. On the event ET , the

sum ZT counts the total number of upward unit jumps (X(j)−X(j−1) = 1,

j ∈ [T + 2, t]) and therefore

X(T + 1) + ZT −
[
(t− T )−ZT

]
= X(t) ≥ t(ρ+ ε).

Since X(T + 1) = X(T ) + 1 ≤ T (ρ+ ε/2) + 1, we see that

ZT − [(t− T )− ZT ]

t− T
> ρ+ ε, Z(T ) := 1 + ZT ,

or equivalently,

ZT > (t− T )(1 + ρ+ ε)/2.

On the other hand, for τ ≥ T +1, using (4.4) and conditioning on the full

record (up to and including time τ), such that x(τ) > ρ+ ε/2, we have

P(ξτ+1 = 1|◦) ≤ P(X(τ + 1) = X(τ) + 1 | ◦)

≤
(

1−
(
m+ δ

2m+ δ

)(
ρ+

ε

2

))m
+O

(
τ−1

)
.

Hence, the sequence {ξτ} is stochastically dominated by the sequence of in-

dependent Bernoulli random variablesBτ with parameters min
(
µ+O(τ−1), 1

)
,

where

µ :=

(
1−

(
m+ δ

2m+ δ

)(
ρ+

ε

2

))m
=

(
1−

(
m+ δ

2m+ δ

)
ρ

)m
+O(ε).

Consequently, ZT is stochastically dominated by 1 +
∑t

j=T+2Bj , and

λ :=
t∑

j=T+2

E[Bj ] = µ(t− T ) +O(log t).

Note that, since (
1−

(
m+ δ

2m+ δ

)
ρ

)m
=
ρ+ 1

2
,
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we have

ρ+ 1 + ε

2
=
ρ+ 1

2

(
1 +

ε

ρ+ 1

)
=

(
1 +

ε

ρ+ 1

)(
1−

(
m+ δ

2m+ δ

)
ρ

)m
≥
(

1 +
ε

2

)
µ.

Thus, by Theorem 4.1, we have

P(ZT > (t− T )(1 + ρ+ ε)/2) ≤ P
(

1 +BT+2 + · · ·+Bt > (t− T )(ρ+ ε+ 1)/2
)

≤ P
(

1 +BT+2 + · · ·+Bt >
(

1 +
ε

2

)
(t− T )µ

)
≤ exp

(
−Θ(ε2(t− T ))

)
≤ e−Θ(log3 t).

Using the union bound on T finishes the proof of (4.2) and the theorem. �

Loops allowed everywhere. The above analysis is carried over to this

more complicated case via an argument similar to the one for the descendant

trees in the subsections 1.1. Here is a proof sketch. First, the counterpart

of (4.4) is:

P({U(t) = 0}∩{no loops at t+ 1}|◦)

= Πm(t)

m−1∏
j=0

(
2mt− Y (t) + δt− δX(t) + j

2mt+ 2j + 1 + δt+ (j + 1) δ/m

)

≤ Πm(t)

[(
1− m+ δ

2m+ δ
x(t)

)m
+O(t−1)

]
=
(
1−O(t−1)

) [(
1− m+ δ

2m+ δ
x(t)

)m
+O(t−1)

]
=

(
1− m+ δ

2m+ δ
x(t)

)m
+O(t−1);

see (3.7) for Πm(t). Therefore we obtain again the equation (4.5). The rest

of the proof remains the same.

Remark 4.2. Let r = rm,δ := 1 − ρm,δ, where ρm,δ is the unique root in

(0, 1) of

h(z) = hm,δ(z) := 2

[
1−

(
m+ δ

2m+ δ

)
z

]m
− z − 1.

Then, r is the unique root in (0, 1) of

f(z) = fm,δ(z) := 2− z − 2

(
m

2m+ δ
+

m+ δ

2m+ δ
z

)m
.

Thus, by Theorem 2.4, we have

lim inf(1− x(t)) ≥ r
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almost surely, where 1−x(t) is the fraction of the vertices in L(t). See (2.3)

for various r values when δ = 0.
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Appendix

In order to show that the coupling described in Section 3 really works, we

can compute the probability that the i-th edge of vertex wt+1 connects to

vertex wx in the coupling and compare it with the probability in (2.1).

Let us denote by {G′m,δ(t)} the process obtained by collapsing the ver-

tices of {G1,δ/m(mt)}. Note that (mt + i)-th edge of the {G1,δ/m(mt)}-
process becomes the i-th edge of wt+1 after the collapsing. Hence the i-th

edge of vertex wt+1 connects to wx (x ≤ t) if and only if the (mt + i)-

th edge of {G1,δ/m(mt)}-process connects vmt+i with one of the vertices

vm(x−1)+1, . . . , vmx. Let us denote by dmt+i−1(vy) the degree of vy (y ≤
mt+ i) just before the (mt+ i)-th edge of {G1,δ/m}-process is drawn. Also,

let Dt,i−1(wx) denote the degree of wx at the exact same time. Hence, by

definition,

Dt,i−1(wx) =



mx∑
y=mx−m+1

dmt+i−1(vy), x ≤ t

mt+i∑
y=mt+1

dmt+i−1(vy), x = t+ 1.

By (2.2), for x ≤ t, the probability that vmt+i connects to one of the vertices

vm(x−1)+1, . . . , vmx (equivalently, the probability that the i-th edge of wt+1
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connects to wx) is∑mx
y=mx−m+1 (dmt+i−1(vy) + δ/m)

(2 + δ/m)(mt+ i− 1) + 1 + δ/m
=
δ +

∑mx
y=mx−m+1 dmt+i−1(vy)

δ(t+ i/m) + 2mt+ 2i− 1

=
δ +Dt,i−1(wx)

δ(t+ i/m) + 2mt+ 2i− 1
.

Similarly, the probability that vmt+i selects one of vmt+1, . . . , vmt+i (equiv-

alently, the probability that the i-th edge of wt+1 is a loop) is

1 + iδ/m+
∑i−1

j=1 dmt+i−1(vmt+j)

δ(t+ i/m) + 2mt+ 2i− 1
=

1 + iδ/m+Dt,i−1(wt+1)

δ(t+ i/m) + 2mt+ 2i− 1
.

Note that the two probabilities above are the same as those in (2.1) if we

replace Dt,i−1(wx) with dt,i−1(x). Moreover, the two processes, {G′m,δ(t)}
and {Gm,δ(t)} as defined by (2.1), both start with m loops on the first

vertex, which implies d1,0(·) = D1,0(·). This gives us that {Gm,δ(t)} and

{G′m,δ(t)} are equivalent processes, that is, at every stage, they produce the

same random graph.
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