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Abstract

Let d = 1 ≤ d1 ≤ d2 ≤ · · · ≤ dn be a non-decreasing sequence of n positive
integers, whose sum is even. Let Gn,d denote the set of graphs with vertex set [n] =
{1, 2, . . . , n} in which the degree of vertex i is di. Let Gn,d be chosen uniformly at
random from Gn,d. Let d = (d1 + d2 + · · ·+ dn)/n be the average degree. We give a
condition on d under which we can show that whp the chromatic number of Gn,d is
Θ(d/ ln d). This condition is satisfied by graphs with exponential tails as well those
with power law tails.

1 Introduction

Let d = 1 ≤ d1 ≤ d2 ≤ · · · ≤ dn be a fixed non-decreasing sequence of n positive integers,
whose sum is even. Let Gn,d denote the set of graphs with vertex set [n] = {1, 2, . . . , n}
in which the degree of vertex i is di. Let Gn,d be chosen uniformly at random from Gn,d.
When di = r for i ∈ [n] then this models a random r-regular graph Gn,r and there is a
large literature on this subject. We refer the reader to the survey by Wormald [18] for an
excellent summary. By now we know much about the structure of random regular graphs.

For general d, less is known. In many, but not all, cases we can estimate |Gn,d|. See Bender
and Canfield [5], McKay and Wormald [13, 14]. We have the configuration model to study
them, Bollobás [6]. We know something of their connectivity properties, Molloy and Reed

∗Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh PA15213, U.S.A. Sup-
ported in part by NSF grant CCR-0200945.

†Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv Uni-
versity, Tel Aviv 69978, Israel. E-mail: krivelev@post.tau.ac.il. Research supported in part by USA-Israel
BSF Grant 2002-133 and by grants 64/01 and 526/05 from the Israel Science Foundation.

‡Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.

1



[16, 17].(See also Cooper and Frieze [8] for the connectivity properties of random digraphs
with a fixed degree sequence). They have been used in the context of massive graph models
of telephone networks and the WWW, Aiello, Chung and Lu [3].

In this paper we will concern ourselves with the chromatic number of Gn,d. What should
we expect? For r-regular graphs it is known that when r is large χ(Gn,r) ∼

r
2 ln r

whp1,
see Frieze and  Luczak [10] and Achlioptas and Moore [1] (see also Cooper et al. [9] for
extension of some of these results to the case where r = r(n) ≤ n1−η, for an arbitrary small
constant η > 0). For the random graph Gn,p where the average degree d = (n−1)p is large,
it is known that χ(Gn,p) ∼ d

2 ln d
, see Bollobás [7],  Luczak [12] and Achlioptas and Naor [2].

So if we let

d =
d1 + d2 + · · ·+ dn

n

be the average degree in Gn,d then we might hope to prove that χ(Gn,d) ∼ d
2 ln d

whp. This
is too much to expect given the variety of possible degree sequences. Indeed if ν = n

ln n
and

di =

{

1 i ≤ n− ν

d ln n i > n− ν

then the average degree ∼ d, but whp the sub-graph H induced by the ν largest degree
vertices has average degree close to d ln n when d is large. Then whp χ(H) ∼ d ln n

2 ln ln n
for

ln d = o(ln ln n) and so we will have to be less ambitious in our goals2. Let

Dk = dn + dn−1 + · · ·+ dn−k+1

be the sum of the k largest degrees.

Let

M1 = Dn = dn and M2 =
n
∑

i=1

di(di − 1) ≤ ∆M1 where ∆ = dn.

Theorem 1

1. Suppose that there exist constants 1/2 < α < 1, ǫ, K0 > 0 and ω = ω(n) → ∞ such
that

(a)
Dk ≤ K0dn(k/n)α (1)

for k ≤ ǫn.

(b) ∆5 ≤M2/ω.

1A sequence of events En occurs with high probability (whp) if limn→∞ Pr(En) = 1.
2The methods of [9] can be used to verify this claim.
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Then there exists b1 dependent only on α, ǫ,K0 such that whp

χ(Gn,d) ≤ b1
d

ln d
.

2. Suppose only that ∆4 ≤ M1/ω (a weaker condition than 1(b)), then there exists b2

such that whp

χ(Gn,d) ≥ b2
d

ln d
.

Notice that if Condition (a) of the theorem holds for α, ǫ,K0 then it also holds when K0

is replaced by a larger constant. As we increase K0 our bound b1 will decrease. We are
therefore justified in assuming throughout that K0 is sufficiently large that some inequalities
are valid.

Condition (b) is chosen so that we can use the results of [15]. It may be possible to prove
our results under the less stringent conditions of [14], but there are difficulties, as will be
pointed to later.

A referee has suggested that the quantity d′ = maxk D2
k/dnk (which can be viewed as

the probabilistic version of the “maximum average degree”) might be a better predictor
of chromatic number. This could well be true and it makes for an interesting research
question. We also suspect that if di ∼ df(i/n) where f is some “nice” real valued function

on [0, 1] such that
∫ 1

0
f(x)dx = 1 then we might be able to determine the chromatic number

of Gn,d asymptotically.

The proof of the upper bound is given in Section 3. The proof of the lower bound is given
in Section 4. We have made no attempt to optimize constants.

2 Degree sequences that satisfy (1)

It is natural to ask whether there many types of degree sequence that satisfy the conditions
of the first part of the theorem.

We first consider a degree sequence with a power law tail. For integer ℓ ≥ 1 we let νℓ denote
the number of vertices of degree ℓ. Our assumption is that there are some constants A > 0
and γ > 3 such that for ℓ ≥ (A/ǫ)1/(γ−1)

νℓ ≤











0 ℓ ≤ 1

⌊Adℓ−γn⌋ 2 ≤ ℓ ≤ n1/5/ ln n

0 ℓ > n1/5/ ln n

.

Here we have α = γ−2
γ−1

> 1/2.
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We have forced Condition (b) and so we only need to check Condition (a). Suppose now
that k = κn ≤ ǫn. Then

Dk ≤ Adn
∑

ℓ≥r

ℓ−(γ−1) = (1 + δr)
Adn

γ − 2
r2−γ

where δr → 0 as r →∞ and

r = min

{

ρ : Ad
∑

ℓ≥ρ

ℓ−γ ≥ κ

}

= (1 + δ′κ)

(

Ad

(γ − 1)κ

)1/(γ−1)

where δ′κ → 0 as κ→ 0. Thus,

Dk ≤ (1 + δr)(1 + δ′κ)2−γ(γ − 2)−1A

(

γ − 1

Ad

)α

dnκα

and we have the condition of Theorem 1.

A similar argument holds if we assume that our degree sequence has an exponential tail
viz. for some constants A > 0 and 0 < ǫ≪ γ < 1 we have for ℓ ≥ ⌊ln1/γ(Ad/ǫ)⌋

νℓ ≤ Adγℓn.

Note that whp the degree sequence of Gn,p, p = c/n, c constant, satisfies this condition.

Suppose now that k = κn ≤ ǫn. Then

Dk ≤ Adn
∑

ℓ≥r

ℓγℓ ≤ Adn

∫ ∞

x=r−1

xγxdx =
Adnγr−1

ln 1/γ

(

r − 1 +
1

ln 1/γ

)

where

r = min

{

ρ : Ad
∑

ℓ≥ρ

ℓγℓ ≥ κ

}

∼ ln1/γ

(

Ad

κ ln 1/γ

)

as ǫ→ 0.

Thus,
Dk ≤ 2κn

and we have the condition of Theorem 1 with room to spare.

3 Upper bound

3.1 Configurations

We will work initially in the configuration model and then show how our results can be
justified in the uniform model. Let W = [nd] be our set of points and let Wi = [d1 +
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· · · + di−1 + 1, d1 + · · · + di], i ∈ [n], partition W . The function φ : W → [n] is defined
by w ∈ Wφ(w). Given a pairing F (i.e. a partition of W into m = dn/2 pairs) we obtain
a (multi-)graph GF with vertex set [n] and an edge (φ(u), φ(v)) for each {u, v} ∈ F .
Choosing a pairing F uniformly at random from among all possible pairings of the points
of W produces a random (multi-)graph GF .

This model is valuable because of the following easily proven fact: Suppose G ∈ Gn,d. Then

Pr(GF = G | GF is simple) =
1

|Gn,d|
.

It follows that if G is chosen randomly from Gn,d, then for any graph property P

Pr(G ∈ P) ≤
Pr(GF ∈ P)

Pr(GF is simple)
. (2)

Before starting the proof of the upper bound in Theorem 1, we introduce some notation
that we will use throughout the course of the proof. Let

θ = max

{

d2/(2α+1),
16

2α− 1

}

and

ǫ1 = min

{

ǫ,

(

(2α− 1)θ

K1d

)2/(2α−1)
}

. (3)

for some sufficiently large K1.

For a set U ⊆ V (GF ) we denote by D(U) the sum of the degrees of U in GF .

We first prove

Lemma 1 Whp GF does not contain a set of vertices S with k = |S| ≤ ǫ1n, such that S
induces a sub-graph G[S] with minimum degree at least θ.

Proof Suppose that there exists a vertex set S of size k ∈ [θ, ǫ1n] that induces a graph
G[S] with minimum degree at least θ. Let S1 be the k/2 lowest degree vertices of S and
let S2 = S \ S1. For vertex sets S, T let e(S) denote the number of edges contained in S
and let e(S : T ) denote the number of edges joining S and T .

At least one of the following two events must occur:

E1: e(S1 : S2) ≥ θk/4;

E2: e(S1) ≥ θk/8.
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This follows because

2e(S1) + e(S1 : S2) =
∑

v∈S1

dG[S](v) ≥ θk/2.

Now k ≤ ǫ1n and so,

dn− θk/2 ≥ dn− θǫ1n/2 ≥
99

100
dn

provided

K1 ≥ 16

(

1600

2α− 1

)α−1/2

.

(We have chosen K1 large enough so that whichever of d2/(2α+1), 16
2α−1

is the larger, θǫ1 <
1/100.)

And so

Pr(E1) ≤
ǫ1n
∑

k=θ

∑

|S|=k

(

D(S1)

θk/4

)(

D(S2)

dn− θk/2

)θk/4

(4)

≤
ǫ1n
∑

k=θ

(

n

k

)(

Dk/2

θk/4

)(

Dk/2

dn− θk/2

)θk/4

≤
ǫ1n
∑

k=θ

(en

k

)k
(

5eD2
k/2

θkdn

)θk/4

≤
ǫ1n
∑

k=θ

(en

k

)k
(

5eK2
0d

22αθ
·

(

k

n

)2α−1
)θk/4

≤
ǫ1n
∑

k=θ

(

(

k

n

)(2α−1)θ/4−1(
5e2K2

0d

22αθ

)θ/4
)k

≤
ǫ1n
∑

k=θ

(

(

k

n

)3(2α−1)θ/16(
5e2K2

0d

22αθ

)θ/4
)k

≤
ǫ1n
∑

k=θ

(

(

k

n

)(2α−1)/4
5e2K2

0

22α

)θk/4

= o(1),

if we choose K1 ≥ 100e4K4
0 (we used the assumption k/n ≤ ǫ1 ≤ ((2α−1)θ/(K1d))2/(2α−1) ≤

(16/K1)
2/(2α−1) in the last line).

Explanation of (4): At least θk/4 of the points corresponding to vertices of S1 are to be
paired with points corresponding to vertices of S2. When pairing points, the probability
of pairing with a point corresponding to S2 is never more than D(S2)

dn−ℓ
, given up to ℓ/2− 1

previous pairings.
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In the following estimate, ℓ = ℓ(S1) is the total degree of the subgraph G[S1]. Here

θk/4 ≤ ℓ ≤ K0ǫ
α
1 dn. Now the maximum degree in S1 is at most

Dk/2

k/2
≤ K0d(2n/k)1−α and

so

Pr(E2)

≤
ǫ1n
∑

k=θ

∑

S1={i1<···<ik/2}

K0ǫα
1 dn
∑

ℓ=θk/4

∑

a1+···+ak/2=ℓ

((k/2
2 )

ℓ/2

)

(dn− ℓ)ℓ/2

k/2
∏

t=1

dat
it

(5)

a1, a2, . . . ak/2 is the degree sequence of G[S1] (more explanation below)

≤
ǫ1n
∑

k=θ

∑

S1={i1<···<ik/2}

K0ǫα
1 dn
∑

ℓ=θk/4

∑

a1+···+ak/2=ℓ

(

k2

ℓdn

)ℓ/2 k/2
∏

t=1

(K0d(2n/k)(1−α))at

≤
ǫ1n
∑

k=θ

∑

S1={i1<···<ik/2}

K0ǫα
1 dn
∑

ℓ=θk/4

∑

a1+···+ak/2=ℓ

(

16K2
0dk2α−1

θn2α−1

)ℓ/2

≤
ǫ1n
∑

k=θ

∑

S1={i1<···<ik/2}

K0ǫα
1 dn
∑

ℓ=θk/4

(

64K2
0dk2α−1

θn2α−1

)ℓ/2

≤ dn

ǫ1n
∑

k=θ

(

n

k/2

)(

64K2
0dk2α−1

θn2α−1

)θk/8

≤ dn

ǫ1n
∑

k=θ

(

2en

k

(

64K2
0dk2α−1

θn2α−1

)θ/4
)k/2

≤ dn

ǫ1n
∑

k=θ

(

212K4
0d

2k2α−1

θ2n2α−1

)θk/16

= o(1).

Here we choose K1 ≥ 210K2
0 so that 212K4

0d
2ǫ2α−1

1 < θ2/2.

Explanation of (5): Fix S1 = {i1 < · · · < ik/2}. Now fix the degrees a1, . . . , ak/2

of i1, . . . , ik/2.
((k/2

2 )
ℓ/2

)

is a crude upper bound on the number of graphs with this set of

degrees. Then we use the fact that the probability an edge exists between two vertices of
degrees dr, ds is never more than drds

dn−ℓ
, given up to ℓ/2− 1 previous pairings. 2

Now let
t1 = 1 + ⌈log3(2/ǫ1)⌉

and
It =

{

n−
n

3t
+ 1, . . . , n−

n

3t+1

}

for t = 0, 1, . . . , t1.
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Let Gt be the sub-graph of GF induced by It and for k ∈ It let d̃k be the degree of k in Gt.

Let

∆t =
K2d

2(2α−1)t

where K2 = 3ǫ−12(2α−1)t0 + K ′
2 + K ′′

2 where

t0 = ⌊log3 1/ǫ⌋

and K ′
2,K

′′
2 are defined below.

For 0 ≤ t ≤ t1 let Bt = {k ∈ It : d̃k ≥ ∆t}, Zt = |Bt| and Z = Z0 + · · ·+ Zt1.

Lemma 2 Z ≤ ǫ1n/2 whp.

Proof If k ∈ It, t ≤ t0, then there are at least n − |
⋃t

i=1 Ii| ≥ 3ǫn vertices of degree
at least dk, and thus dk ≤ 3ǫ−1d and so Bt = ∅, 0 ≤ t ≤ t0. For t > t0 and k ∈ It we

see that d̃k is stochastically dominated by the binomial B
(

dk,
Dn/3t

dn

)

. Furthermore, since

k ≥ n− ǫn we have

dk ≤
Dn/3t+1

n/3t+1
≤ K03

(t+1)(1−α)d (6)

and
Dn/3t

dn
≤ K03

−αt.

So, if K ′
2 = K2

0e
231−α then

Pr
(

d̃k ≥ ∆t

)

≤

(

K2
031−αe

K ′
2(3/2)(2α−1)t

)∆t

≤ e−∆t .

(We used: Pr[B(n, p) ≥ k] ≤
(

n
k

)

pk ≤
(

enp
k

)k
.)

Thus,

E(Z) ≤ n

t1
∑

t=1

3−te−∆t < ne−∆t1 .

Now,

2(2α−1)t1 ≤ 2(2α−1)(2+log3(2/ǫ)+ 2
2α−1

log3(
2K1d

(2α−1)θ )) ≤ 22+log3(2/ǫ)+ 2
2α−1

log3(2K1/(2α−1))dγ

where

γ =
1

2α + 1

ln 4

ln 3
∈

(

2

5
,
2

3

)

. (7)

So, if

K ′′
2 = d−1/322+log3(2/ǫ)+ 2

2α−1
log3(2K1/(2α−1))

(

ln 4 +
2

2α− 1
ln(K1d/(2α− 1))

)

,
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then
E(Z) < e−d2/3−γ(2/(2α−1)) ln(K1d/(2α−1))n/4 ≤ ǫ1n/4.

It is straightforward to show that Z is concentrated about its mean. A random pairing can
be obtained by choosing a random permutation ω = (w1, w2, . . . , wdn) of W and pairing
w2i−1 with w2i, for 1 ≤ i ≤ dn/2. Interchanging two elements in ω can change Z by
at most two. Lemma 11 of [11] states: Let S be a set with |S| = N . Let Ω be the set
of N ! permutations of S. Let ω be chosen uniformly from Ω. Let Z = Z(ω) be such
that |Z(ω) − Z(ω′)| ≤ 1 when ω′ is obtained from ω by interchanging two elements of the
permutation.

Pr(|Z −E(Z)| ≥ t) ≤ 2e−2t2/N . (8)

Using (8) with N = dn and t = (dn)1/2 ln n yields the lemma. 2

We now appeal to a result of Alon, Krivelevich and Sudakov [4] to show that we can colour
the graphs Γt = Gt − Bt with few colours. The main result of that paper is

Theorem 2 There exists an absolute positive constant C0 such that the following holds.
Let G be a graph with maximum degree ∆ in which the neighbourhood of any vertex v spans
at most ∆2/f edges. Then the chromatic number of G is at most C0

∆
ln f

.

We use this to prove

Lemma 3 There exists β > 0 such that

Pr

(

∃t ∈ [0, t1] : χ(Γt) ≥
C0∆t

β ln d

)

= o(1).

Proof Fix t and v ∈ It and condition on the neighbours of v in GF so that v /∈ Bt. In
so doing we fix at most ∆ pairs of the configuration. With this conditioning the number
of edges ξv in the Γt-neighbourhood of v is stochastically dominated by the Binomial
B(∆2

t/2, ∆/(dn− 2∆). So, if β = 4/3− 2γ > 0 (γ as in (7)) then

Pr

(

ξv ≥
∆2

t

dβ

)

≤

(

∆2
t/2

∆2
t/d

β

)(

2∆

dn

)∆2
t /dβ

≤

(

e∆

d1−βn

)∆2
t /dβ

.

But ∆ ≤ n1/3 and ∆2
t /d

β ≥ 10 for sufficiently large K1 and so

Pr

(

ξv ≥
∆2

t

dβ

)

= o(1/n).

Applying Theorem 2 with ∆ = ∆t and f = dβ yields the lemma. 2

Lemma 4 If F is chosen uniformly from the set Ω of pairings then whp

χ(GF ) ≤ b1
d

ln d
.

9



Proof Let Bt, Gt, Γt , t ∈ [0, t1], be as defined above. It follows from Lemma 3 that
whp the number of colours needed to colour

⋃t1
t=0 Γt is at most

t1
∑

t=0

C0K2d

2(2α−1)tβ ln d
= O

(

d

ln d

)

.

Finally note that the number of vertices in B =
⋃t1

t=0 Bt ∪{i ≥ n− n
3t1+1} is whp less than

ǫn and then, by Lemma 1, the graph induced by B is θ = d2/(2α+1)-degenerate and so can
be coloured with at most θ + 1 = O(d/ ln d) colours. 2

3.2 From configurations to graphs

It is at this point that we appeal to some results from Mckay and Wormald [15]. Where
possible, we will use the terminology and notation of that paper. A loop of a pairing F is a
pair {u, v} such that φ(u) = φ(v). A double pair of F is a pair {u1, v1} , {u2, v2} ∈ F such
that φ(u1) = φ(u2) and φ(v1) = φ(v2). A double loop of F is a pair of pairs {u1, v1} , {u2, v2}
such that φ(u1) = φ(v1) = φ(u2) = φ(v2). A triple pair is a triple of pairs {ui, vi} , i = 1, 2, 3
such that φ(u1) = φ(u2) = φ(u3) and φ(v1) = φ(v2) = φ(v3).

In the lemmas that follow, we will assume always that Condition (b) of Theorem 1 holds.

Lemma 5 (Lemma 2 of [15])
The probability that F contains at least one triple pair is O(∆2M 2

2 /M 3
1 ) = o(1) and the

probability of at least one double loop is O(∆2M2/M
2
1 ) = o(1).

Let now l denote the number of loops and r denote the number of double pairs in F .

Lemma 6 (Lemma 3 of [15])
If λ(n)→∞ then whp

l ≤ 2∆ + λ and r ≤ ∆2 + λ. (9)

We define the following two operations on a pairing: If φ(u) = i then we say that u is in
cell i.

I l-switching.

Take pairs {p1, p6} , {p2, p3} , {p4, p5} where {p2, p3} is a loop, and p1, . . . , p6 are in five
different cells. Replace these pairs by {p1, p2} , {p3, p4} , {p5, p6}. In this operation,
none of the pairs created or destroyed is permitted to be part of a double pair. (See
Figure 1).

10



p2 p3

p5p6

p4

p2 p3

p1
p4

p5p6

p1

Figure 1:

II r-switching.

Take pairs {p1, p5} , {p2, p6} , {p3, p7} , {p4, p8} where φ(p2) = φ(p3) and φ(p6) = φ(p7),
but the cells containing p1, p2, p4, p5, p6, p8 are all distinct. Replace these pairs by
{p1, p2} , {p3, p4} , {p5, p6} , {p7, p8}. In this operation, none of the pairs created or
destroyed (other than the pairs {p2, p6} , {p3, p7}) is permitted to be part of a multiple
pair. (See Figure 2).

A forward l-switching is an l-switching as described, and a backward l-switching is the
reverse operation. We use the same convention for r-switchings. Note that a forward l-
switching always reduces the number of loops by one and does not create or destroy double
pairs. Similarly, a forward r-switching reduces the number of double pairs by one and
neither creates nor destroys loops.

Now let Cl,r denote the set of pairings F with l loops, r double pairs and no triple pairs or
double loops.

Lemma 7 (Lemma 4 of [15])
Denote an operation taking an element of Ci,j to an element Ck,l by Ci,j → Ck,l. For each of
the following operations, we bound the number, m, of ways of applying the operation to a
fixed F .
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p1 p5

p6

p7

p8p4

p3

p2

p1

p2

p3

p4 p8

p7

p6

p5

Figure 2:

(1) Forward l-switching Cl,r → Cl−1,r:

2lM 2
1 ≥ m ≥ 2lM 2

1

(

1−O

(

∆2 + l + r

M1

))

.

(2) Backward l-switching Cl−1,r → Cl,r:

M1M2 ≥ m ≥M1M2

(

1−
∆(6(l + 2r) + ∆l)

M2
−

2∆(∆ + 2)

M1

)

.

(3) Forward r-switching C0,r → C0,r−1:

4rM 2
1 ≥ m ≥ 4rM 2

1

(

1−O

(

∆2 + r

M1

))

.

(4) Backward r-switching C0,r−1 → C0,r:

M 2
2 ≥ m ≥M 2

2

(

1−
∆(16r + 9∆ + 3 + ∆2)

M2

)

.

Now consider the following algorithm for generating a member of Gn,d:

1. Generate a random pairing F .

2. If there is a double loop or a triple pair, output ⊥ – construed as failure.
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3. If the number of loops l ≥ 2∆ + log n or the number of double pairs r ≥ ∆2 + log n,
output ⊥ – construed as failure.

4. F0 ← F .

5. For i = 1 to l choose a random forward l-switching on Fi−1, creating Fi ∈ Cl−i,r.

6. For i = l + 1 to l + r choose a random forward r-switching on Fi−1, creating Fi ∈
C0,r−(i−l).

7. Output G∗ = GFl+r
∈ Gn,d.

For each l, r satisfying (9), with λ = log n, and G ∈ Gn,d, there are by Lemma 7(2),(4)

(M1M2)
lM r

2

(

1 + O

(

∆l(∆l + r)

M2

+
∆2l

M1

+
∆r(∆2 + r)

M2

))

sequences of switchings which yield G. Each of these has probability

((2M 2
1 )ll!(4M 2

1 )rr!)−1

(

1 + O

(

l(∆2 + l + r)

M1

+
r(∆2 + r)

M1

))

of being followed by the algorithm, given l, r.

Thus if Condition (b) holds, then whp the algorithm outputs a graph in Gn,d and

Pr(G∗ = G) = (1 + o(1))

2∆+log n
∑

l=0

∆2+log n
∑

r=0

M l
1M

r+l
2

2lM
2(l+r)
1 l!r!

Pr(l loops, r double pairs)

and so for G1, G2 ∈ Gn,d

Pr(G∗ = G1) = (1 + o(1))Pr(G∗ = G2).

Given this, we only have to show that whp χ(G∗) = O(χ(GF )). Thus let H be the graph
induced by the edges that are added by the switchings. We will show that whp

∆(H) ≤ 5. (10)

Since χ(G∗) ≤ χ(H)χ(GF ) ≤ (∆(H) + 1)χ(GF ), this will complete the proof of our upper
bound.

Now every edge at distance ≥ 2 from the loop or double edge can be used as one of the
two edges destroyed by the two types of switching. Thus, vertex i has probability

O

(

di

M1 −∆2

)

= O

(

∆

M1

)
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of having an H-edge created in any switching, regardless of the history of the switchings
to this point.

Thus, for some constant c > 0, assuming due to Lemma 6 that G∗ satisfies (9):

Pr(∆(H) ≥ 5) ≤ n

(

∆2 + 2∆ + 2 log n

5

)(

c∆

M1

)5

≤ nM
5/2−15/4
1 = o(1)

and this completes the proof of the upper bound in Theorem 1.

Note that we cannot immediately use the stronger result of [13]. This is because in that
paper Lemma 7(4) is replaced by an average bound.

4 Lower bound

We will work with the configuration model.

We first observe that
Pr(GF is simple) ≥ e−∆2

. (11)

This follows directly from the formula for the asymptotic number of labelled graphs with
a degree sequence in which ∆ = o(M

1/4
1 ), see [13].

Let

t = b2
d

ln d
,

where b2 > 0 is a sufficiently small constant. Fix a partition (V1, . . . , Vt) of the vertex set
of GF into t parts. We will show:

Pr((V1, . . . , Vt) is a proper colouring of GF ) ≤ t−2n .

This will be enough to beat both the union bound for the number of t-partitions (which is
≤ tn) and the inverse probability that GF is simple (which is ≤ e∆2

– see (11)).

Observe first that

Pr(Vi is independent in GF ) ≤

(

1−
D(Vi)/2−∆

dn

)D(Vi)/2

.

Explanation: Match the first D(Vi)/2 points of Vi in the configuration model. When
matching a point, it should be matched either to a point belonging to a vertex outside of
Vi, or to a point of the same vertex.

Now, if in the partition (V1, . . . , Vt) one of the sets Vi satisfies D(Vi) ≥ nd/4, by the above
argument we get (taking b2 small enough if necessary):

Pr((V1, . . . , Vt) is a t-colouring) ≤ Pr(Vi is independent) ≤ e−(1−o(1))nd/64 ≪ t−2n.
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Assume therefore that |Vi| ≤ dn/4 for all 1 ≤ i ≤ t. Assume w.l.o.g. that D(V1) ≤ D(V2) ≤
· · · ≤ D(Vt). Choose 1 ≤ k ≤ t so that

dn

4
≤

k
∑

i=1

D(Vi) ≤
dn

2
;

such a k exists as D(Vi) ≤ nd/4 for all i.

We will estimate from above the probability that all of the sets Vi, i = 1, . . . , k, are in-
dependent. In order to do this, we will expose the pairings of the points of Vi, each time
choosing a set Vi that has at least half of its points unpaired, for as long as possible. Let
σ describe the order in which the sets V1, . . . , Vk are exposed. Observe that

Pr(Vσ(i) is independent|Vσ(1), . . . , Vσ(i−1) are independent)

≤

(

1−
D(Vσ(i))/4−∆

dn

)D(Vσ(i))/4

≤ e−
D(Vσ(i))

2
−4∆D(Vσ(i))

16dn

(match the first half of yet unmatched points of Vσ(i)).

Suppose that we have in this way exposed the pairings of sets Vσ(1), . . . , Vσ(l). If

l
∑

i=1

D(Vσ(i)) ≤
dn

16
,

then at this moment the number of paired points does not exceed dn/8, and therefore at
least one of the unexposed sets Vi, i 6∈ {σ(1), . . . , σ(l)}, has at least a half of its points
unpaired, and we can proceed. Thus, if by the end of the process we have exposed pairings
of sets Vσ(1), . . . , Vσ(l∗), it follows that

∑l∗

i=1 D(Vσ(i)) ≥ dn/16 and therefore

l∗
∑

i=1

(D(Vσ(i))
2 − 4∆D(Vσ(i))) ≥

(1− o(1))d2n2

256l∗
≥

(1− o(1))d2n2

256t
.

Hence

Pr((Vσ(1), . . . , Vσ(l∗) are independent)

≤ exp

{

−

∑l∗

i=1(D(Vσ(i))
2 − 4∆D(Vσ(i)))

16dn

}

≤ exp

{

−
dn

4100t

}

.

Recalling the expression for t and choosing the constant b2 there to be small enough, we
get the desired estimate.

This completes the proof of Theorem 1. 2

Acknowledgement: We thank Paul Horn for pointing out an error in an earlier draft of
the paper.
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