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Although discovered some 30 years ago, the Heapsort algorithm is still not
completely understood. Here we investigate the best case of Heapsort. Contrary to

Ž .claims made by some authors that its time complexity is O n , i.e., linear in the
Ž .number of items, we prove that it is actually O n log n and is, in fact, approxi-

mately half that of the worst case. Our proof contains a construction for an
asymptotically best-case heap. In addition, the proof and construction provide the
worst-case time complexity and an asymptotically worst-case example for Bottom-up
versions of Heapsort. Q 1996 Academic Press, Inc.

1. INTRODUCTION

ŽIn spite of its age, there are still some aspects of Heapsort discovered
w x.by Williams 11 which have not been completely sorted out. Its worst-case

performance is reasonably well understood, but the average-case perfor-
Ž w xmance remains a mystery see Knuth 7, pp. 156]157 for some empirical
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.data on this subject . In this paper, we examine another aspect of Heapsort
which has no obvious answer, i.e., the best case. We prove an asymptoti-
cally tight bound on the minimum number of operations taken by this

w xalgorithm. Some authors, e.g., Lorin 8 , have claimed erroneously that it is
w xlinear, and Wirth 12 makes the comment that Heapsort seems to ‘‘like’’

sequences which are in inverse sorted order. As we will see, the best case
of the algorithm is rather more complicated than this. Note that we are
restricting our attention to the case in which all of the elements are
distinct}otherwise, it is easy to see that the best case is when all the
elements are identical, and then Heapsort runs in linear time.
ŽWe mention in passing that heap building has attracted some attention

w x w x w xlately, e.g., Bollobas and Simon 1 , Frieze 3 , Gonnet and Munroe 4 ,´
w x w x .Hayward and McDiarmid 5 , and McDiarmid and Reed 9 .

Ž . w xWe now establish our notation. A max heap is an array H 1..n of
w x w? @xintegers satisfying H i - H ir2 for 1 - i F n. We will for simplicity

assume that n s 2 k y 1 for some positive integer k, although our results
can be generalized to arbitrary n. As usual, we imagine H as representing
Ž .a complete binary tree T in which position i is the parent of positions 2 in

and 2 i q 1. In order to be precise, we will give a description of Heapsort.

ALGORITHM HEAPSORT.

begin
BUILDHEAP;
for i [ n step -1 until 2 do
begin

w x w xA: interchange H 1 and H i ;
Ž .B: HEAPIFY i y 1

end
end

Ž .PROCEDURE HEAPIFY w .
begin

i [ 1;
while i F wr2 do
begin

w x � w x � 44let H j s max H ll : ll F w and ll g 2 i, 2 i q 1 ;
w x w xif H i - H j then

begin
w x w xC: interchange H i and H j ;

i [ j
end

else i [ w
end

end
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Ž . w xSince BUILDHEAP can be implemented to run in O n time 7, p. 145 ,
we will not need to dwell on this aspect of the algorithm. We will measure
the execution time on a particular instance by the number of executions of
Statement C. As stated, this seems to be about half of the number of
comparisons needed, because it is necessary to make two comparisons
prior to each interchange at Statement C. There are, however, versions of
HEAPIFY which attempt to make the number of comparisons roughly
equal to the number of executions of Statement C, assuming that the

winserted element goes down to near the level of the leaves; see Knuth 7, p.
x w x w x158, ex. 18 , also Carlsson 2 , and McDiarmid and Reed 9 . It appears that

w xthe inserted element usually does this in the ‘‘average case.’’ Wegener 10
discusses one such version which he calls Bottom-up-Heapsort. Our exam-
ple in Section 3 provides an asymptotically worst-case example for this and
similar versions of the algorithm.

The basic idea is to assume that the inserted element will become a leaf
and identify where it would be inserted, moving the larger child up at each

Ž .level as before. This takes one interchange and only one instead of two
comparisons per level. The actual final position of the element will be
somewhere on the path from this leaf to the root. Finding this position and
inserting the element there is accomplished by linear search up this path
from the leaf. This takes one comparison and one interchange per level
from the leaf to the final position. The final position is the same for both
versions; if this is at level d and k is as defined in the following theorem,
then the numbers of comparisons and interchanges to insert the element
are approximately 2 d and d for the standard algorithm, whereas both are
2k y d for the modified version. Thus minimizing d is best-case and
worst-case, respectively.

Ž .Let a H denote the number of executions of Statement C, starting
Ž . Ž .with heap H, and let m n denote the minimum of a H over all heaps of

size n. Our main result is:

THEOREM 1. If n s 2 k y 1 for some integer k then

1
m n s n lg n q O n lg lg nŽ . Ž .

2

Ž .lg denotes logarithm to the base 2 .

Ž w x. Ž .It is well known see Knuth 7, p. 149 that the maximum of a H over
Ž .all heaps of size n is n lg n q O n .
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Ž .2. A LOWER BOUND ON m n

The lower bound of our theorem, although easy to prove, does not seem
to be well known. This was discovered by the authors, and essentially the

w xsame result was obtained independently by Wegener 10 . We give a proof
here for completeness.

When we execute Statement A, the largest element of the heap is put
w xinto its final position. We will refer to this as the value in H 1 being

deleted from the heap and the heap decreasing in size by one.
Ž .Round i removes the k y i q 1 th level from the heap. Thus, for

Ž .example, the n q 1 r2 largest elements are deleted in Round 1. We will
show that

Round i requires at least 2 ky iy1 k y i y 3 executions of Statement C. 1Ž . Ž .

Hence, for k G 4,

ky4
jq2m n G j2Ž . Ý

js1

s k y 5 2 ky1 q 8Ž .
1 5

G n lg n y n. 2Ž .
2 2

Ž . w xClearly, we need only prove 1 for i s 1. Assume now, w.l.o.g., that H 1 ,
w x w x w x � 4H 2 , . . . , H n is a permutation of n s 1, 2, . . . , n . We say that i is

Ž .small if i - n q 1 r2 and large otherwise.
Let now

n q 1 n q 1
w xL s t : t - , H t G½ 52 2

� 4s positions of large elements in levels 1, 2, . . . , k y 1 ;

i.e., L is the set of positions of large elements which are not leaves.
We will also say that a node in the tree is large when it contains a large

w xelement. Now the elements which are initially placed in H t for t g L are
large, so they are deleted in Round 1. To accomplish this they must be
brought to the top of the heap by interchanges at Statement C. Hence the
number of exchanges in Round 1 is at least

depth t ,Ž .Ý
tgL

Ž .where depth t s the number of arcs in the path from t to the root of H.
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Observe next that the positions corresponding to L correspond to a
subtree rooted at 1, since i g L implies that the parent of i is in L. Thus

w xfrom Knuth 6, pp. 399]400 , it is easy to show that

< < < < < <depth t G L lg L y 2 L .Ž .Ý
tgL

Ž . Ž .Thus 1 and 2 follow once we have shown that

< < ky2L G 2 . 3Ž .

Ž . Ž . Ž .To do this let p 1 , p 2 , . . . , p n be the sequence of nodes visited in an
Ž w x.in-order traversal of T see Knuth 6, pp. 316]321 .n

Ž . Ž .Note that if p j , j G 2, is a leaf of T then p j y 1 is not. Inn
Ž . Ž .particular, if p j is a large leaf then p j y 1 g L. Thus the number of

< < Ž .large leaves cannot exceed L q 1, even if p 1 is a large leaf. Since the
ky1 Ž .total number of large elements is 2 , inequality 3 now follows.

Ž .3. AN UPPER BOUND ON m n

ŽWe will now describe an example where the number of exchanges at
1. Ž .Statement C in Round 1 f n lg n, and then inductively the number of4

1 1 1Ž .exchanges overall f q q ??? n lg n s n lg n. Since the number of4 8 2
1exchanges involving elements in positions in L is already f n lg n, we4

must find an example where most of the large elements of the lowest level
do not ‘‘fall very far’’ after they are placed at the top of the heap in
Statement A. Note that BUILDHEAP will generally do nothing if the
initial permutation is in heaporder; so any particular heap can be con-
structed by BUILDHEAP.

Consider Fig. 1, which gives some idea of the initial heap. Here p s
u v10 lg lg n . We assume the element positions are numbered from left to
right and we imagine the bottom p q 1 levels of T divided into 2 kypy1

n
kypy1 Ž .subtrees t , t , . . . , t , M s 2 where t is the rightmost subtree ,1 2 M 1

each subtree having 2 pq1 y 1 elements of which 2 p are leaves. So the
leaves of t are first placed at the top of the heap in Statement A, then1
those of t , etc.2

The labels L or S inside each triangle indicate that the corresponding
Ž . Ž .subtree is filled with mostly large or all small elements. The subtrees t ,1

Ž .t , t , . . . , t are alternately mostly filled with large or filled with small2 3 2 m
elements, where

ky1 kypy12 y 2 q 1
m s .pq12 y 1
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FIG. 1. Initial heap.

The remaining subtrees t , . . . , t can be filled arbitrarily in a2 mq1 M
heap-consistent fashion. We further assume that all of the 2 kypy1 y 1
elements in the first k y p y 1 levels of the tree are large.

ŽWe now come to the purpose of the subtree labeled W the waiting
. Ž .room . The leaves of the subtrees t , t , t , . . . , t are almost all1 3 5 2 my1

large. The leaves of the trees t , t , . . . , t are, of course, all small. We2 4 2 m
Ž .will show how to design a heap such that in essence in Round 1

large elements contained in the lea¨es of t 1 F i F m , drop into W 4Ž .2 iy1,

and

the lea¨es of t drop into the first p le¨els of t 1 F i F m. 5Ž .2 i 2 iy1,

This implies that no leaf of t , 1 F j F 2m, will interfere with or displacej
any leaf in a subtree to the left of itself.

Given this, we see that no matter what happens to the remaining leaves,
we will have achieved the objective of making most of the large elements
at the lowest level fall a short distance only.
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We do not need to give a complete description of the initial heap. It will
Ž .suffice for us to give enough information about its structure to verify 4

Ž .and 5 .
w x y � q 0 y 4We use a partition of n into sets M , M , M , M , i s 1, 2, . . . , m ,0 i i i

q wŽ . xM , which contain the large elements, and S s n y 1 r2 , whichmq 1
contains the small elements. All we need to specify is that

U a � 4x g M , y g M , ), a g y, 0, q implies x ) y , 6Ž .i iq1

x g Mq , y g M 0 , z g Myimplies x ) y ) z . 7Ž .i i i

We now fill in more details in Fig. 1 in order to give Fig. 2. First of all,
observe the contents of t , i s 1, 2, . . . , m; except for the bottom level,2 iy1

Ž .FIG. 2. Initial heap more detailed .
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these are all in Mq ; the contents of the bottom levels are revealed ini
Fig. 3b below. The other trees t , . . . , t are filled with elements from2 mq1 M

q y w i x yS and M . The contents of W are in M , which implies H 2 g Mmq 1 0 0
for i s 0, 1, . . . , 2 p y 1, as well. Notice that x s k q p y 4 of the bottom1
positions are not considered to be part of W. For any position t in the

w x qremainder of the tree we specify that H t g M where j is as large asj
w x q w x qpossible consistent with heap order. Thus H 3 g M , H 5 g M ,1 Mr4q1

w x q w x qH 6 g M , H 7 g M , etc. Notice that this determines the subsetsMr8q1 1
of our partition. We do not need to be more specific about the actual
contents, of say t , other than requiring that consistency with heap order is1
maintained.

Having described the initial position, we now describe the ith position,
Ž .i s 1, 2, . . . , m i s 1 is the initial position . Figure 3 deals with i odd and

Fig. 4 deals with i even.
The first thing to be checked is that Fig. 3a with i s 1 is consistent with

Ž .Fig. 2. Note that q s 1.1
Assume inductively that Fig. 3 correctly represents the state of the heap

Ž . pafter 2 i y 1 2 executions of Statements A, B of Heapsort, where i is
odd.

Consider the insertion of the next 2 p elements at the top of the heap
Ž .see Fig. 3b ; these are the leaves of t .2 iy1

It should be clear that

Ž . 0i The first k y p y q y g y 2 elements in M will fall all of thei i i
way into t and then all the elements on the path XY will be in Mq. If2 iy1 i
any element in M 0 falls to the bottom level then the element it is swappedi
with must also be in M 0 so this does not affect the partition in Fig. 3b.i

Ž . p yii The next 2 y x q 2 p y q y 1 elements in M will fall intoi i i
W and fill it along with the path QR.

Ž . 0iii The next q q g elements in M will fall down into t and,i i i 2 iy1
afterwards, the path from t to the root will contain elements in Mq

2 iy1 i
only.

At this point all of the elements in M 0 and My have been deletediy1 iy1
Žfrom the heap. We see that the purpose of the x ‘‘missing’’ elements in Wi

Ž . Ž . .is to make room for steps i and iii above.
Ž . piv Then the 2 small elements in the bottom level of t will fall2 i

down into t and make all of its elements small, along with the element2 iy1
in position P.

The state of the heap is now as in Fig. 4, with i increased to i q 1. We
now consider what happens when i is even. It is, in fact, very similar to the
previous case. The only difference is that we insert h small elements intoi
the bottom row of t . Their purpose is to make sure that the path UV is2 iy1
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Ž . Ž .FIG. 3. a Odd i; b contents of the bottom level of t , i odd.2 iy1
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Ž . Ž .FIG. 4. a Even i; b contents of the bottom level of t , i even.2 iy1
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filled with small elements after the bottom levels of t , t have been2 iy1 2 i
inserted. By arranging the Mq elements of t with the larger ones toi 2 iy1
the right, we can assume that any small element that falls to the bottom
level will always be swapped with another small element.

The next point to consider is what happens at those points at which qi
increases by 1, i.e., when q s q q 1. In this case, h s k y p y q y 2iq1 i i i
and g s k y p y q y 2, so the rightmost blocks of M 0 in Figs. 4biq1 iq1 i
and 3b, for i and i q 1, respectively, will be empty. Increasing q alsoi
causes x to decrease by 1, i.e., x s x y 1. This can be achieved byi iq1 i
letting one of the x ‘‘missing’’ elements in Fig. 4a be of size My instead ofi i
small.

Observe that if i F m then q - 2 p so that the node R is always abovei
W.

The final point to consider in the insertion of level k is what happens to
the elements in t , . . . , t . Basically, we handle these in a worst-casemq 1 M
scenario as they only contribute to the error term.

Now let n s the number of executions of Statement C caused by level k.
Then

n F m2 p3 p q 2 ky1yp y m 2 pk q mk 2 .Ž .
kypy2 ky2 py3 Ž ky3 p.However, m s 2 y 2 q O 2 and so

n F np q 2 ky1 y 2 ky2 q O k2 kyp kŽ .Ž .
1 2yps n lg n q np q O 2 n lg n .Ž .Ž .4

We have said nothing yet about the disposition of the small elements. At
first sight, it would seem that, since we have ignored the relationship
between them, we can assume that after the first round the heap looks like
a slightly smaller version of what has been described and that we can

Žproceed inductively indeed, we proceeded under this delusion until it was
.time to write the paper . As it turns out, Heapsort is just a little bit more

complicated. Even though we would like to ignore it, we have, in fact,
learned something about the small elements. We know for example that
the small elements that were leaves of subtree t are smaller ‘‘on average’’i
than the nonleaves of t , but they have been placed ‘‘to the right’’ in thei
next subtree. This is not how we would like the heap to be.

To fix this we will have to assume that after Round 1 the heap looks as
in Fig. 1 except that the labels L and S in the trees t , i s 1, 2, ..., M arei
interchanged and that p is replaced by p y 1 and k is replaced by k y 1.
Of course L and S now refer to those elements which leave the heap in
Round 2 and those which do not. The reader should convince himrherself
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that such a structure is consistent with what we have assumed about
Round 1. In the ith step of the analysis of Round 2 we will concentrate on
t and t . This does not include t . Now we have not made any2 i 2 iq1 1
assumptions about the small elements that were in t at the start ofM
Round 1. It will be convenient now to assume that they were, in fact, the
largest of the small elements, and it is possible to arrange that at the start
of Round 2 the 2 py1 largest elements lie on the leftmost path of the heap
and in the leftmost part of t . Then during the first 2 py1 insertions ofM
Round 2 the elements in the leaves of t will drop down the left-hand side1
of the heap. We can assume that after these elements have been inserted
that the heap looks as in Fig. 2, except that inside the triangles represent-
ing t , i s 1, 2, ..., M we have S in t , Mq in t , S in t , Mq in t , etc.i 1 1 2 3 2 4
The partition into Mq, M 0, My, etc., has the same intent as that of Roundi i i
1, but of course the elements are smaller than in the previous partition.

Ž .The elements in the smaller waiting room come from the left-hand side
of the original heap. This is consistent with what we have assumed about
the left-hand side of the original heap. Things will now work out much as
before. The important thing is that the elements in t are larger than2 i
those in t . Round 2 progresses in an almost identical manner to2 iq1
Round 1, the contents of the bottom rows of the t ’s being as in Figs. 3bi
and 4b but with p, k replaced by p y 1, k y 1.

The next question is what about Round 3? Fortunately this is identical
to Round 1. This is because there is nothing to stop us making this
assumption about the small elements of Round 2. Let us, for example,
compare the contents of what remains of t , t . The contents of t come1 2 2
from what were the leaves of t in Round 2. There is nothing to stop us3
assuming that they are all smaller than those left in t . There is also no1
reason why we cannot assume that what is now in t is greater than t ,1 j
j G 2. The elements of t that caused the complication for Round 2 have2
now all gone.

The above analysis can be made to hold for the first, say pr2, levels.
Ž .After which there are only o nrlg n elements left and these can be

treated in a worst-case manner. Consequently,

` 1 2yp ypr2m n F n lg n q 2np q O 2 n lg n q O 2 n lg nŽ . Ž . Ž .Ž .Ý i2is2

1
s n lg n q O n lg lg n ,Ž .

2

as claimed.
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