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Abstract

We study random multidimensional assignment problems where the costs decompose
into the sum of independent random variables. In particular, in three dimensions, we
assume that the costs Wi,j,k satisfy Wi,j,k = ai,j + bi,k + cj,k where the ai,j , bi,k, cj,k are
independent uniform [0, 1] random variables. Our objective is to minimize the total cost
and we show that w.h.p. a simple greedy algorithm is a (3 + o(1))-approximation. This
is in contrast to the case where the Wi,j,k are independent exponential rate 1 random
variables. Here all that is known is an no(1)-approximation, due to Frieze and Sorkin.

1 Introduction

The (planar) three dimensional assignment problem is a natural generalisation of the classical
assignment ptoblem. As an optimization problem it can be expressed as follows: we are given
real values Wi,j,k for i, j, k ∈ [n] and we are asked to

Minimize

{
n∑
i=1

Wi,σ(i),τ(i) : σ, τ are permutations of [n]

}
.
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This is an NP-hard problem and occurs for example as a practical problem [2]. In this paper
we study the following simple greedy heuristic:

Algorithm 1 Greedy(m)

1: Let B := C := [n], and T := ∅.
2: for i = 1, . . . ,m do
3: Let Wi,j,k = min {Wi,j′,k′ : j

′ ∈ B, k′ ∈ C}.
4: Add (i, j, k) to T and remove j from B and k from C.
5: Return the set of triples in T as a partial assignment.
6: Complete the assignment with one of the remaining (n−m)!2 possibilities.

Several authors have considered the average case where the Wi,j,k are random variables.
Kravtsov [3] considered the case where the Wi,j,k are chosen randomly from [1,M ] where
M = nα for some α < 1. Here the minimum is at least n and it is not difficult to show (see
Section 4 that with the choice of m = n− log n that w.h.p. (i) greedy(m) runs in polynomial
time and (ii) it outputs a solution of value n+ o(n). In this case Step 6 can be completed via
the choice of an arbitrary completion.

It is more difficult to analyse the case where L � n and the case where the Wi,j,k are inde-
pendent exponential rate 1 random variables is (essentially) a scaled version of such a case.
This case was considered by Frieze and Sorkin [1] and they proved the following theorem.

Theorem 1 (Frieze and Sorkin). Suppose that the Wi,j,k are independent EXP(1) random
variables and that Zn denote the value of the optimum. Then (a) 1

n
≤ E(Zn) = O

(
logn
n

)
and

(b) there is a polynomial time algorithm that w.h.p. finds a solution of value 1
n1−o(1) .

This is where the problem stands for such Wi,j,k and here we consider the case where

Wi,j,k = ai,j + bi,k + cj,k, 1 ≤ i, j, k ≤ n, (1)

where the ai,j, bi,k, cj,k are independent uniform [0, 1] random variables.

We note that the problem considered in [2] was of the form given in (1). We will prove the
following theorem.

Theorem 2. There exist constants c1, c2 such that (a) E(Zn) ≥ c1n
1/3 and (b) greedy(n−

n1/4) finds a solution of expected value at most c2n
1/3. In this case Step 6 can be completed

by choosing an arbitrary completion.

Before giving a proper proof, we give a heuristic argument for (a). Fix i and consider Wi,j,k.
For Wi,j,k to be of order n−α say we need each of 3 uniform [0, 1] varables to be of order n−α.
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This happens with probability O(n−3α) and there are n2 choices and 3α = 2 gives the largest
value for α. Summing over i gives (a).

We discuss the rigorous proof of Theorem 2 in Section 2 and in Section 3 we consider the
extension to higher dimensions.

1.1 Preliminaries

We sometimes refer to the Hoeffding bounds for the S = S1+S2+. . .+SN where S1, S2, . . . , SN ∈
[0, 1] are independent and E(S1) + E(S2) + · · ·+ E(SN) = Nµ:

Pr(|S −Nµ| ≥ εNµ) ≤ 2e−ε
2Nµ/3. (2)

We say that a sequence of events En occur quite surely if Pr(¬En) = O(n−K) for any constant
K > 0.

2 Proof of Theorem 2

We begin by analysing the distribution of the smallest weight element in Πi = {i} × [n]2.

2.1 Weights in a fixed plane

Let

Wn = min {ai + bj + ci,j : ai, bj, ci,j, i, j ∈ [n] are independent uniform [0, 1] random variables} .

Lemma 3. E(Wn) ≈ c1n
−2/3, where c1 = 61/3Γ(3/4), where Γ denotes Euler’s Gamma func-

tion.

Proof. Let

L = log n, I =

{
i : ai ≤

L

n2/3

}
, J =

{
j : bj ≤

L

n2/3

}
, X =

{
(i, j) ∈ I × J : ci,j ≤

L

n2/3

}
.

(3)
It follows from (2) that

|I, |J | ∈
[

1

2
Ln1/3,

3

2
Ln1/3

]
q.s. (4)
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Conditional on the sizes of I, J we have |X| is distributed as B(|I| · |J |, L/n2/3). It follows
from (2) that

|X| ∈
[
L3

8
, 10L3

]
q.s. (5)

Thus let EL denote the even that |X| ∈
[
L3

8
, 10L3

]
.

Let EM denote the event that the edges in X almost form a matching. By this we mean that
the graph induced by X consists of a matching M plus at most 4 extra edges Y . Then,

E(Wn | EM)Pr(EM) ≤ E(Wn) ≤ E(Wn | EM) + 3Pr(¬EM). (6)

We first deal with Pr(¬EM) by showing that.

Pr(¬EM) = O

(
L15

n

)
. (7)

Let

p =
L

n2/3
.

Condition on I, J satisfying (4). Let ΓX be the graph induced by X and note that it is
distributed as the binomial random graph G|I|,|J |,p.

Claim 1. The following holds with probability 1−O(L15/n): (i) ΓX has no component with 4
or more edges and (ii) ΓX has at most one component with 3 edges and (iii) ΓX has at most
2 components with 2 edges.

Proof of claim: Let K = |I|+ |J |.

Pr(¬(i)) = O

((
K

5

)
p4

)
= O

(
L9n5/3

n8/3

)
= O

(
L9

n

)
.

Pr(¬(ii)) = O

(((
K

4

)
p3

)2
)

= O

(
L14n8/3

n4

)
= O

(
L14

n4/3

)
.

Pr(¬(iii)) = O

(((
K

3

)
p2

)3
)

= O

(
L15n3

n4

)
= O

(
L15

n

)
.

End of proof of claim.

Now given EM we let Ŵn denote the minimum weight in M and we see that Ŵn is the minimum
of |M | independent copies of U = (U1 + U2 + U3)p where U1, U2, U3 are independent uniform
[0, 1].

4



Thus

φ(u) = Pr(U ≥ pu) = 1− 1

6

buc∑
k=0

(−1)k
(

3

k

)
(u− k)3.

It follows that

E(Ŵn | EL, EM , |M |) = p

∫ 3

u=0

Pr(Ŵn ≥ up | EL, EM , |M |)du

= p

∫ 3

u=0

φ(u)|M |du

= p(I1 + I2 + I3), (8)

where

I1 =

∫ 1

u=0

(
1− u3

6

)|M |
du (9)

=

∫ 1/L2/3

u=0

(
1− u3

6

)|M |
du+

∫ 1

u=1/L2/3

(
1− u3

6

)|M |
du (10)

=

∫ 1/|L2/3

u=0

exp
{
−|M |u3/6 +O(|M |u6)

}
du+O(e−Ω(|M |/L2))

=

(
1 +O

(
1

L2

))∫ 1/|L2/3

u=0

e−|M |u
3/6du+O(e−Ω(|M |/L2))

=

(
1 +O

(
1

L2

))∫ ∞
u=0

e−|M |u
3/6du

=
(1 +O(L−2))

|M |1/3

∫ ∞
x=0

e−x
3/6dx

=

(
61/3Γ(4/3) +O(L−2)

)
|M |1/3

.

Now because φ(u) dereases monotonically with u we have

I2 =

∫ 2

u=1

φ(u)|M |du ≤
(

5

6

)|M |
and I3 =

∫ 3

u=2

φ(u)|M |du ≤
(

5

6

)|M |
.

Thus,

E(Ŵn | EL, EM , |M |) =

(
61/3Γ(4/3) +O(L−2)

)
|M |1/3

p. (11)

Integrating |M | from (11) we obtain

E(Ŵn | EL, EM) =
(
61/3Γ(4/3) +O(L−2)

)
× E((Bin(|I| · |J |, p)−O(1))−1/3)× p. (12)
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Given EL we see that the binomial is q.s. much greater than 4. Now, for Nq large, we have,
from (2), that for ε > 0,

E((Bin(N, q)−O(1))−1/3) =
N∑
k=5

(
n

k

)
qk(1− q)N−k(k −O(1))−1/3

=

(1+ε)Nq∑
k=(1−ε)Nq

(
n

k

)
qk(1− q)N−k(k −O(1))−1/3 + 2e−ε

2Nq/3

=
1 +O(ε)

(Nq)1/3
+O(e−ε

2Nq/3), (13)

provided ε2Nq � logNq.

It then follows from (12) that

E(Ŵn | EL, EM) ≈ 61/3Γ(4/3)p

(|I| · |J | · p)1/3
(14)

Arguing as for (13) and using the independence and concentration of |I|, |J | around Ln1/3, we
see that

E(Ŵn | EM) ≈ 61/3Γ(4/3)

n2/3
. (15)

We now have to deal with the at most 4 edges in Y , since Wn = min
{
Ŵn, Z

}
where Z

is the minimum of at most 4 copies of (U1 + U2 + U3)p, where U1, U2, U3 are i.i.d. U [0, 1].

Clearly E(Wn) ≤ E(Ŵn) and we need to argue that it is not much smaller. So, let A ={
Ŵn ≤ pL−1/2 ≤ Z

}
. Now we have Pr(A) = 1 − O(L−1/2) and E(Wn) ≥ E(Ŵn | A)Pr(A)

and so we only have to verify now that E(Ŵn | A) is asymptotically equal to E(Ŵn). Now

because Ŵn and Z are independent, we have, given |M |,

E(Ŵn | A) = E(Ŵn | Ŵn ≤ pL−1/2) =
1

Pr(Ŵn ≤ pL−1/2)

∫ pL−1/2

u=0

Pr(pL−1/2 ≥ Ŵn ≥ u)du

=
1

Pr(Ŵn ≤ pL−1/2)

∫ pL−1/2

u=0

Pr(Ŵn ≥ u)du− pL−1/2 Pr(Ŵn > pL−1/2)

Pr(Ŵn ≤ pL−1/2)
. (16)

Now

Pr(Ŵn > pL−1/2) =

(
1− (L−1/2)3

6

)|M |
≤ e−|M |L

−1/6/6.

Furthermore,

Pr(Ŵn ≥ u) ≥
(

1− u3

6

)|M |
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and so integral in the first term of (16) is at least

p

∫ L−1/2

p=0

(
1− u3

6

)|M |
du.

Thus

E(Ŵn | A) ≥ (1− o(1))p

∫ L−1/2

p=0

(
1− u3

6

)|M |
du− e−|M |L−1/6/6

and we can proceed as for our estimation of I1.

The lemma now follows after applying (6) and (7).

This proves Part (a) of Theorem 2, since clearly, E(Zn) ≥ nE(Wn).

2.2 Analysis of Greedy

Let now Wm denote the the weight of the triple (i, j, k) added in the mth round of greedy.

Lemma 4. If m ≤ n− n1/4 then

E(Wm) . c1(n−m+ 1)−2/3. (17)

Proof. We let Im, Jm be as defined in (3), where we replace n in the definition by νm = n−m+1.
We keep L as log n though and replace p by pm = L

νm
. The values am,j, bm,k are independent

of the first m− 1 rounds of greedy. Now |I|m, |Jm| are distributed as Bin(νm, Lν
−2/3
m ) and

equation (2) implies that (4) holds q.s. with n replaced by νm. Next define Xm iteratively via
X0 = ∅ and

Xm =

{
(i, j) ∈ (Im × Jm) \

⋃
l<m

Xl, ci,j ≤
L

ν
2/3
m

}
.

We will show below that

Pr

(∣∣∣∣∣(Im × Jm) ∩
⋃
l<m

Xl

∣∣∣∣∣ ≥ 400Lν1/3
m

)
= o(n−3). (18)

Observe that ci,j for (i, j) ∈ Xm is unconditioned by the history of greedy to this point. In-
deed, we will not have needed to expose its value in order to compute the sequence W1,W2, . . . ,
Wm−1. But if (18) holds then the analysis of Section 2.1 implies that

E(Wm) ≈ c1ν
−2/3
m .
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Indeed, going back to (12) we

replace E(Bin(|I| · |J |, p)−1/3) by E((Bin(|Im| · |Jm| − 400Lν1/3
m , pm))−1/3)

and continue as before.

It remains to verify (18). Thus let Ym = (Im×Jm)∩
⋃
l<mXl and Z = |Ym|. Now the sequence

of choices I`, J`, ` ≤ m are independent and then for (x, y) ∈ Im × Jm and ` < m we have

Pr((x, y) ∈ I` × J` | (`, x, y) not added to T in Step 4) ≤
Pr((x, y) ∈ I` × J`)

Pr((`, x, y) not added to T in Step 4)
≤ ν

−4/3
`

1− o(ν−2
` )

. (19)

It follows (using (4)) that

E(Z) ≤ 4L2ν2/3
m

m−1∑
`=1

1

ν
4/3
`

≤ 13L2ν1/3
m . (20)

Unfortunately, this is not good enough to prove (18). Instead, suppose that S = {(xi, yi), i ∈ [s]} ⊆
Im × Jm where s = O(1) and S is a matching. Then,

Pr(S ⊆ Ym) ≤
∑

i1≤···≤is

Pr

(
s⋂
t=1

{(xt, yt) ∈ Xit}

)
=

∑
i1≤···≤is

s∏
t=1

Pr

(
(xt, yt) ∈ Xit

∣∣∣∣ t−1⋂
τ=1

{(xτ , yτ ) ∈ Xiτ}

)
≤

∑
i1≤···≤is

s∏
t=1

((1 + o(1))ν
−4/3
it

)

≤
s∏
t=1

m∑
l=1

1 + o(1)

(n− l + 1)4/3
≤
(

4

(n−m)1/3

)s
.

Thus,

Pr(∃ matching S, |S| = s | (4)) ≤
(

10L3

s

)(
4

n1/12

)s
= o(n−3) (21)

if s = 40. Finally observe that if the maximum size of S = s ≤ 40 and |Im|, |Jm| ≤ 10Lν
1/3
m

then |Ym| ≤ s(|Im|+ |Jm|) ≤ 10sLν
1/3
m and the condition in (18) holds.

Given Lemma 4 we see that the expected cost of the assignment produced by greedy is at
most

(c1 + o(1))
n−n1/4∑
m=1

1

(n−m+ 1)2/3
+ n1/4 ≈ 3c1n

1/3. (22)

The final n− n1/4 steps cost at most 3 per step and this completes the proof of Theorem 2.
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3 Higher Dimensions

Consider for example 4 dimensions. Here we have two reasonable options.

1. Wi,j,k,l = ai,j + bi,k + ci,l + dj,k + ej,l + fk,l.

2. Wi,j,k,l = ai,j,k + bi,j,l + ci,k,l + dj,k,l.

We have not considered the first option. The second option is a strightforward generalisation
of what we have done so far. Here we will sketch a proof as a series of bullet points that
the optimum and the greedy solution for the d-dimensional problem grow at rate n1/d in
expectation. By the d-dimensional problem we mean

Minimize

{
n∑
i=1

Wi,σ1(i),...,σd−1(i) : σ1, . . . , , σd−1 are permutations of [n]

}
.

where

Wi1,...,id =
d∑
j=1

A
(j)
i1,...,ij−1,ij+1,...,id

is the sum of independent uniform [0, 1] random variables.

We claim that Theorem 2 can be generalised to

Theorem 5. Suppose that d ≥ 3. Then there exist constants cd, Cd such that (a) E(Zn) ≥
cdn

1/d and (b) greedy(n1/(d+1)) finds a solution of expected value at most Cdn
1/d. In this

case Step 6 can be completed by choosing an arbitrary completion.

Proof Sketch:
We can follow the argument in Lemma 3 essentially replacing n1/3 by n1/d and n2/3 by n(d−1)/d.
In effect, we make the following replacements:

(a): p becomes L/n(d−1)/d.

(b): I, J will be replaced by I1, . . . , Id−1 of expected size np.

(c): In which case X becomes {j ∈ (I1 × · · · × Id−1) : Wi,j ≤ p}.

(d): (5) becomes |X| = Θ(Ld).

(e): A matching now means a matching in a (d − 1)-uniform hypergraph H induced by
I1×· · ·× Id−1. In the proof of Claim 1, we now let K = |I1|+ · · ·+ |Id−2|. We now claim
that with probability 1

n1−o(1) there are at most d
`−1

components of H with ` ≤ d+ 1 edges
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and no components with d + 2 or more edges. Indeed, the probability that there are a
components of H with ` edges can be bounded by((

K

`+ 1 + `(d− 3)

)
p`
)a

= O

(
L1+(d−1)`

n(`−1)/d

)a
.

This verifies the claim and shows that if EM is the event that X defines a matching plus
O(1) edges, then ¬EM is unlikely enough so that we can use (6).

(f): The sum p(I1 + I2 + I3) becomes p(I1 + · · ·+ Id) which is dominated by pI1 where

I1 =

∫ 1

u=0

(
1− ud

d!

)|X|
du ≈ 1

|X|1/d

∫ ∞
x=0

e−x
d/d!dx =

(d!)1/dΓ(1 + 1/d)

|X|1/d
.

(g): After this we find that (14) becomes

E(Wn | EL, EM) ≈ (d!)1/dΓ(1 + 1/d)p

(|I1| · · · |Id−1| · p)1/d

(h): Because the |Ij| are strongly concentrated about their means, this results in replacing
(15) by

E(Wn | EM) ≈ (d!)1/dΓ(1 + 1/d)

n(d−1)/d
.

Multiplying by n gives us part (a) of Theorem 5 with cd = (d!)1/dΓ(1 + 1/d).

(i): The essential part of (b) is the inequality (21). For this, where S = {xil : l = 1, 2, . . . , s}
is a matching in H and m ≥ n− n1/(d+1), we use

Pr(S ⊆ Ym) ≤
∑

i1≤···≤is

Pr

(
s⋂
t=1

{xit ∈ Xit}

)
=

∑
i1≤···≤is

s∏
t=1

Pr

(
xit ∈ Xit

∣∣∣∣ t−1⋂
τ=1

{xτ ∈ Xiτ}

)
≤

∑
i1≤···≤is

s∏
t=1

((1 + o(1))ν
−(d−1)2/d
it

)

≤
s∏
t=1

n−m+1∑
l=1

1 + o(1)

(n− l + 1)(d−1)2/d
≤ O

(
1

n(d−1)2/(d(d+1))

)s
= O(n−3),

for s ≥ 3d(d+ 1)/(d− 1)2.

We deduce from this that we can replace (22) by

(cd + o(1))
n−n1/(d+1)∑

m=1

1

(n−m+ 1)(d−1)/d
+ n1/(d+1) = O(n1/d).

The final n − n1/(d+1) steps cost at most d per step and this completes our sketch proof of
Theorem 5.
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4 Greedy for small L

When Wi,j,k is chosen uniformly from [1,M = nα], 0 < α < 1 we

(a): Let Zm denote the cost of the mth triple. Then for 1 ≤ m ≤ n and a ≥ 1,

Pr(∃m : Zm ≥ a) ≤ n
(

1− a

M

)(n−m+1)2

≤ n exp

{
−a(n−m+ 1)2

M

}
≤ n−2,

if

a ≥ 3M log n

(n−m+ 1)2
. (23)

Putting m0 = n− (3M log n)1/2 we see that a satisfies (23) for

a =

{
1 m ≤ m0.⌈

3M logn
(n−m+1)2

⌉
m > m0.

It follows that w.h.p. and in expectation that if m1 = n− log n, then

n∑
m=1

Zm ≤ m0 +

m1∑
m=m0+1

3M log n

(n−m+ 1)2
+M(n−m1) = n+ o(n),

5 Greedy versus Greedy

There is another version of the greedy algorithm where at each step we choose the “tple” of
minimum weight that can be added to the current choice. Let E(λ) denote the exponential
rate k random variable i.e. Pr(E(λ) ≥ u) = e−λu. We consider the d-dimensional case and
argue next that if the weights Wi1,...,id are independent E(1) then the value of the solution
given by the two algorithms is the same in distribution. So let Gn,1 be the value returned by
the algorithm described above and let Gn,2 be the value returned by algorithm described in
this section. We claim that Gn,1 and Gn,2 have the same distribution.

The distribution of Gn,1 is E(nd−1) + Gn−1,1 and the distribution of Gn,2 is E(nd)(1 + (n −
1)) + Gn−1,2. The term E(nd)(n − 1) is a result of the fact that conditioning an exponential
to be greater than x is equivalent to adding x to a copy of that variable. Then observe that
E(nd−1) = nE(nd). The claim follows by induction.

Note that coincidentally, when d = 3, E(Gn,1) is equal to the expected optimum value for the
d = 2 case, see [4] and [5]. This does not generalise.
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6 Final Comments

We have analysed a random multi-dimensional assignment problem with a particular form of
objective fucntion. We have shown that w.h.p. there is a simple greedy algorithm that is a
(3 + o(1)-approximation to the minimum. It is possible to replace the 3 here by 3 − ε, by
arguing that w.h.p. the optimum solution must use the (at least) second smallest j, k (when
d = 3) for Ω(n) values of i. We omit the details as the real aim is to replace 3 by 1.

References

[1] A.M. Frieze and G. Sorkin, Efficient algorithms for three-dimensional axial and planar
random assignment problems, Random Structures and Algorithms 46 (2015) 160-196.

[2] A.M. Frieze and J. Yadegar, An algorithm for solving 3-dimensional assignment problems
with application to scheduling a teaching practice, Journal of the Operational Research
Society 32 (1981) 989-995.

[3] V. Kravtsov, Polynomial algorithms for finding the asymptotically optimal plan of the
multiindex assignment problem, Cybernetics and Systems Analysis 41 (2005) 940-944.

[4] C. Nair, B. Prabhakar and M. Sharma, Proofs of the Parisi and Coppersmith-Sorkin
random assignment conjectures, Random Structures and Algorithms 27 (2005) 413-444.
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