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Abstract

We develop a coupling technique for analyzing on-line models by using
off-line models. This method is especially effective for a growth-deletion
model which generalizes and includes the preferential attachment model
for generating large complex networks that simulate numerous realistic
networks. By coupling the on-line model with the off-line model for ran-
dom power law graphs, we derive strong bounds for a number of graph
properties including diameter, average distances, connected components
and spectral bounds. For example, we prove that a power law graph gen-
erated by the growth-deletion model almost surely has diameter O(log n)
and average distance O(log log n).

1 Introduction

In the past few years, it has been observed that a variety of information networks
including Internet graphs, social networks and biological networks among others
[1, 3, 4, 5, 17, 18, 20] have the so-called power law degree distribution. A graph is
called a power law graph if the fraction of vertices with degree k is proportional
to 1

kβ for some constant β > 0. There are basically two different models for
random power law graphs.

The first model is an “on-line” model that mimics the growth of a network.
Starting from a vertex (or some small initial graph), a new node and/or new
edge is added at each unit of time following the so-called preferential attachment
scheme [3, 4, 18]. The endpoint of a new edge is chosen with the probability
proportional to their (current) degrees. By using a combination of adding new
nodes and new edges with given respective probabilities, one can generate large
power law graphs with exponents β between 2 and 3 (see [3, 7] for rigorous
proofs). Since realistic networks encounter both growth and deletion of vertices
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and edges, here we consider a growth-deletion line model that generalizes and
includes the preferential attachment model. Detailed definitions will be given
in Section 3.

The second model is an “off-line” model of random graphs with given ex-
pected degrees. For a given sequence w of weights wv, a random graph in G(w)
is formed by choosing the edge between u and v with probability proportional
to the product of wu and wv. The Erdős-Rényi model G(n, p) can be viewed as
a special case of G(w) with all wi’s equal. Because of the independence in the
choices of edges, the model G(w) is amenable to a rigorous analysis of various
graph properties and structures. In a series of papers [10, 11, 12, 20], vari-
ous graph invariants have been examined and sharp bounds have been derived
for diameter, average distance, connected components and spectra for random
power law graphs and, in general, random graphs with given expected degrees.

The on-line model is obviously much harder to analyze than the off-line
model. There has been some recent work on the on-line model beyond showing
the generated graph has a power law degree distribution. Bollobás and Riordan
[7] have derived a number of graph properties for the on-line model by “coupling”
with G(n, p), namely, identifying (almost regular) subgraphs whose behavior can
be captured in a similar way as graphs from G(n, p) for some appropriate p.

In this paper, our goal is to couple the on-line model with the off-line model
of random graphs with the same power law degree distribution so that we can
apply the techniques from the off-line model to the on-line model. The basic
idea is similar to the martingale method but with substantially differences. The
main difference is that there is a fixed probability space Ω for the martingale.
Although a martingale involves a sequence of functions with consecutive func-
tions having small bounded differences, each function is defined on Ω. For the
on-line model, the probability space for the random graph generated at each
time instance is different in general. We have a sequence of probability spaces
where two consecutive ones have “small” differences. To analyze this, we need
to examine the difference and relationship of two distinct random graph models,
each of which can be viewed as a probability space. In Section 4, we will define
the dominance of one random graph model over another. Several key lemmas
for controlling the differences are also given there.

The main result of this paper is to show the following results for the random
graph G generated by the on-line model G(p1, p2, p3, p4, m) with p1 > p3, p2 >

p4, as defined in Section 5:

1. Almost surely the degree sequence of the random graph generated by
growth-deletion model G(p1, p2, p3, p4, m) follows the power law distribu-
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tion with exponent β = 2 + (p1 + p2)/(p1 + 2p2 − p3 − 2p4).

2. Suppose m > log2+ε n. For p2 < p3 + 2p4, we have 2 < β < 3. Almost
surely a random graph in G(p1, p2, p3, p4, m) has diameter Θ(log n) and
average distance O( log log n

log(1/(β−2)). We note that the average distance is
defined to be the average over all distances among pairs of vertices in the
same connected component.

3. Suppose m > log2+ε n. For p2 ≥ p3 + 2p4, we have β > 3. Almost surely
a random graph in G(p1, p2, p3, p4, m) has diameter Θ(log n) and average
distance O( log n

log d ) where d is the average degree.

4. Suppose m > log2+ε n. Almost surely a random graph in G(p1, p2, p3, p4, m)
has Cheeger constant at least 1/2 + o(1).

5. Suppose m > log2+ε n. Almost surely a random graph in G(p1, p2, p3, p4, m)
has spectral gap λ at least 1/8 + o(1).

We note that the Cheeger constant hG of a graph G which is sometimes called
the conductance is defined by

hG =
|E(A, Ā)|

min{vol(A), vol(Ā)}
where vol(A) =

∑
x∈A deg(x). The Cheeger constant is closely related to the

spectral gap λ of the Laplacian of a graph by the Cheeger inequality

2hG ≥ λ ≥ h2
G/2.

Thus both hG and λ are key invariants for controlling the rate of convergence
of random walks on G.

2 Strong properties of off-line random power

law graphs

For random graphs with given expected degree sequences satisfying a power law
distribution with exponent β, we may assume that the expected degrees are
wi = ci−

1
β−1 for i satisfying i0 ≤ i < n + i0.Here c depends on the average

degree and i0 depends on the maximum degree m, namely, c = β−2
β−1dn

1
β−1 , i0 =

n( d(β−2)
m(β−1))

β−1.
Average distance and diameter

3



Fact 1 ([11]) For a power law random graph with exponent β > 3 and av-
erage degree d strictly greater than 1, almost surely the average distance is
(1 + o(1)) log n

log d̃
and the diameter is Θ(log n).

Fact 2 ([11]) Suppose a power law random graph with exponent β has aver-
age degree d strictly greater than 1 and maximum degree m satisfying log m �
log n/ log log n. If 2 < β < 3, almost surely the diameter is Θ(log n) and the
average distance is at most (2 + o(1)) log log n

log(1/(β−2)) .
For the case of β = 3, the power law random graph has diameter almost

surely Θ(log n) and has average distance Θ(log n/ log log n).

Connected components

Fact 3 ([10]) Suppose that G is a random graph in G(w) with given expected
degree sequence w. If the expected average degree d is strictly greater than 1,
then the following holds:
(1) Almost surely G has a unique giant component. Furthermore, the volume
of the giant component is at least (1− 2√

de
+ o(1))Vol(G) if d ≥ 4

e = 1.4715 . . .,

and is at least (1 − 1+log d
d + o(1))Vol(G) if d < 2.

(2) The second largest component almost surely has size O( log n
log d ).

Spectra of the adjacency matrix and the Laplacian
The spectra of the adjacency matrix and the Laplacian of a non-regular

graph can have quite different distribution. The definition for the Laplacian
can be found in [8].

Fact 4 ([12]) 1. The largest eigenvalue of the adjacency matrix of a random
graph with a given expected degree sequence is determined by m, the max-
imum degree, and d̃, the weighted average of the squares of the expected
degrees. We show that the largest eigenvalue of the adjacency matrix is
almost surely (1 + o(1))max{d̃,

√
m} provided some minor conditions are

satisfied. In addition, suppose that the kth largest expected degree mk is
significantly larger than d̃2. Then the kth largest eigenvalue of the adja-
cency matrix is almost surely (1 + o(1))

√
mk.

2. For a random power law graph with exponent β > 2.5, the largest eigen-
value of a random power law graph is almost surely (1+o(1))

√
m where m

is the maximum degree. Moreover, the k largest eigenvalues of a random
power law graph with exponent β have power law distribution with expo-
nent 2β − 1 if the maximum degree is sufficiently large and k is bounded
above by a function depending on β, m and d, the average degree. When
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2 < β < 2.5, the largest eigenvalue is heavily concentrated at cm3−β for
some constant c depending on β and the average degree.

3. We will show that the eigenvalues of the Laplacian satisfy the semi-circle
law under the condition that the minimum expected degree is relatively
large (� the square root of the expected average degree). This condition
contains the basic case when all degrees are equal (the Erdös-Rényi model).
If we weaken the condition on the minimum expected degree, we can still
have the following strong bound for the eigenvalues of the Laplacian which
implies strong expansion rates for rapidly mixing,

max
i6=0

|1 − λi| ≤ (1 + o(1))
4√
w̄

+
g(n) log2 n

wmin

where w̄ is the expected average degree, wmin is the minimum expected
degree and g(n) is any slow growing function of n.

3 A growth-deletion model for generating ran-
dom power law graphs

One explanation for the ubiquitous occurrence of power laws is the simple growth
rules that can result in a power law distribution (see [3, 4] ). Nevertheless,
realistic networks usually encounter both the growth and deletion of vertices
and edges. Here we consider a general on-line model that combine deletion
steps with the preferential attachment model.

Vertex-growth-step: Add a new vertex v and form a new edge from v to
an existing vertex u chosen with probability proportional to du.

Edge-growth-step: Add a new edge with endpoints to be chosen among
existing vertices with probability proportional to the degrees.

Vertex-deletion-step: Delete a vertex randomly.

Edge-deletion-step: Delete an edge randomly.

For non-negative values p1, p2, p3, p4 summing to 1, we consider the following
growth-deletion model G(p1, p2, p3, p4):
At each step, with probability p1, take a vertex-growth step;

With probability p2, take an edge-growth step;
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With probability p3, take a vertex-deletion step;
With probability p4 = 1 − p1 − p2 − p3, take an edge-deletion step.

Here we assume p3 < p1 and p4 < p2 so that the number of vertices and
edge grows as t goes to infinity. If p3 = p4 = 0, the model is just the usual
preferential attachment model which generates power law graphs with exponent
β = 2 + p1

p1+2p2
. An extensive survey on the preferential attachment model is

given in [22] and rigorous proofs can be found in [3, 13].
Previously, Bollobás considered edge deletion after the power law graph is

generated [7]. Very recently, Cooper, Frieze and Vera [14] independently con-
sider the growth-deletion model with vertex deletion only. We will show (see
Section 5) the following:

Suppose p3 < p1 and p4 < p2. Then almost surely the degree sequence of the
growth-deletion model G(p1, p2, p3, p4) follows the power law distribution with
the exponent

β = 2 +
p1 + p3

p1 + 2p2 − p3 − 2p4
.

We note that a random graph in G(p1, p2, p3, p4) almost surely has expected
average degree (p1 + p2 − p4)/(p1 + p3). For of pi’s in certain ranges, this value
can be below 1 and the random graph is not connected. To simulate graphs with
specified degrees, we consider the following modified model G(p1, p2, p3, p4, m),
for some integer m which generates random graphs with the expected degree
m(p1 + p2 − p4)/(p1 + p3).
At each step, with probability p1, add a new vertex v and form m new edges
from v to existing vertices u chosen with probability proportional to du.
With probability p2, take m edge-growth steps;

With probability p3, take a vertex-deletion step;
With probability p4 = 1 − p1 − p2 − p3, take m edge-deletion steps.

Suppose p3 < p1 and p4 < p2. Then almost surely the degree sequence
of the growth-deletion model G(p1, p2, p3, p4, m) follows the power law distri-
bution with the exponent β the same as the exponent for the model model
G(p1, p2, p3, p4).

β = 2 +
p1 + p3

p1 + 2p2 − p3 − 2p4
.

Many results for G(p1, p2, p3, p4, m) can be derived in the same fashion as for
G(p1, p2, p3, p4). Indeed, G(p1, p2, p3, p4) = G(p1, p2, p3, p4, 1) is usually the
hardest case because of the sparseness of the graphs.
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4 Comparing random graphs

In the early work of Erdős and Rényi on random graphs, they first used the
model F (n, m) that each graph on n vertices and m edges are chosen randomly
with equal probability, where n and m are given fixed numbers. This model
is apparently different from the later model G(n, p), for which a random graph
is formed by choosing independently each of the

(
n
2

)
pairs of vertices to be an

edge with probability p. Because of the simplicity and ease to use, G(n, p) is
the model for the seminar work of Erdős and Rényi. Since then, G(n, p) has
been widely used and often been referred to as the Erdős-Rényi model. For
m = p

(
n
2

)
, the two models are apparently correlated in the sense that many

graph properties that are satisfied by both random graph models. To precisely
define the relationship of two random graph models, we need some definitions.

A graph property P can be viewed as a set of graphs. We say a graph
G satisfies property P if G is a member of P . A graph property is said to
be monotone if whenever a graph H satisfies A, then any graph containing H

must also satisfy A. For example, the property A of containing a specified
subgraph, say, the Peterson graph, is a monotone property. A random graph
G is a probability distribution Prob(G = ·). Given two random graphs G1 and
G2 on n vertices, we say G1 dominates G2, if for any monotone graph property
A, the probability that a random graph from G1 satisfies A is greater than or
equal to the probability that a random graph from G2 satisfies A, i.e.,

Pr(G1 satisfies A) ≥ Pr(G2 satisfies A).

In this case, we write G1 ≥ G2 and G2 ≤ G1. For example, for any p1 ≤ p2, we
have G(n, p1) ≤ G(n, p2).

For any ε > 0, we say G1 dominates G2 with an error estimate ε, if for
any monotone graph property A, the probability that a random graph from G1

satisfies A is greater than or equal to the probability that a random graph from
G2 satisfies A up to an ε error term, i.e.,

Pr(G1 satisfies A) + ε ≥ Pr(G2 satisfies A).

If G1 dominates G2 with an error estimate ε = εn, which goes to zero as n

approaches the infinity, we say G1 is almost surely dominates G2. In this case,
we write almost surely G1 � G2 and G2 � G1.

For example, for any δ > 0, we have almost surely

G(n, (1 − δ)
m

n
) � F (n, m) � G(n, (1 + δ)

m

n
).
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We can extend the definition of domination to graphs with different sizes
in the following sense. Suppose that random graph Gi has ni vertices for i =
1, 2, and n1 < n2. By adding n2 − n1 isolated vertices, the random graph G1

is extended to the random graph G′
1 with the same size as G2. We say G2

dominates G1 if G2 dominates G′
1.

We consider random graphs that are constructed inductively by pivoting at
one edge at a time. Here we assume the number of vertices is n.
Edge-pivoting : For an edge e ∈ Kn, a probability q (0 ≤ q ≤ 1), and a
random graph G, a new random graph G′ can be constructed in the following
way. For any graph H , we define

Pr(G′ = H)

=
{

(1 − q)Pr(G = H) if e 6∈ E(H),
P r(G = H) + qPr(G = H \ {e}) if e ∈ E(H).

It is easy to check that Pr(G′ = ·) is a probability distribution. We say G′ is
constructed from G by pivoting at the edge e with probability q.

For any graph property A, we define the set Ae to be

Ae = {H ∪ {e}|H ∈ A.}

Further, we define the set Aē to be

Aē = {H \ {e}|H ∈ A.}

In other words, Ae consists of the graphs obtained by adding the edge e to the
graphs in A; Aē consists of the graphs obtained by deleting the edge e from the
graphs in A. We have the following useful lemma.

Lemma 1 Suppose G′ is constructed from G by pivoting at the edge e with
probability q. Then for any property A, we have

Pr(G′ ∈ A) = Pr(G ∈ A) + q[Pr((A ∩ Ae)e) − Pr(A ∩ Aē)].

In particular, if A is a monotone property, we have

Pr(G′ ∈ A) ≥ Pr(G ∈ A).

Thus, G′ dominates G.

Proof: The set associated with a property A can be partitioned into the fol-
lowing subsets. Let A1 = A∩Ae be the graphs of A containing the edge e, and
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A2 = A ∩ Aē be the graphs of A not containing the edge e. We have

Pr(G′ ∈ A)

= Pr(G′ ∈ A1) + Pr(G′ ∈ A2)

=
∑

H∈A1

Pr(G′ = H) +
∑

H∈A2

Pr(G′ = H)

=
∑

H∈A1

(Pr(G = H) + qPr(G = H \ {e}))

+
∑

H∈A2

(1 − q)Pr(G = H)

= Pr(G ∈ A1) + Pr(G ∈ A2) + qPr(G ∈ (A1)ē)

−qPr(A2)

= Pr(G ∈ A) + q[Pr((A ∩ Ae)ē) − Pr(A ∩ Aē)].

If A is monotone, we have A2 ⊂ (A1)e. Thus,

Pr(G′ ∈ A) ≥ Pr(G ∈ A).

Lemma 1 is proved. �

Lemma 2 Suppose G′
i is constructed from Gi by pivoting the edge e with prob-

ability qi, for i = 1, 2. If q1 ≥ q2 and G1 dominates G2, then G′
1 dominates

G′
2.

Proof: Following the definitions of A, and letting A1 and A2 be as in the proof
of Lemma 1, we have

Pr(G′
2 ∈ A)

= Pr(G2 ∈ A) + q2[Pr(G2 ∈ (A1)ē) − Pr(G2 ∈ A2)]

= Pr(G2 ∈ A) + q2Pr(G2 ∈ ((A1)ē \ A2))

≥ Pr(G1 ∈ A) + q1Pr(G1 ∈ ((A1)ē \ A2))

= Pr(G1 ∈ A) + q1[Pr(G1 ∈ (A1)ē) − Pr(G1 ∈ A2)]

= Pr(G′
1 ∈ A).

The proof of Lemma 4.2 is complete. �
Let G1 and G2 be the random graphs on n vertices. We define G1 ∪ G2 to

be the random graph as follows:

Pr(G1 ∪ G2 = H) =
∑

H1∪H2=H

Pr(G1 = H1)Pr(G2 = H2)
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where H1, H2 range over all possible pairs of subgraphs that are not necessarily
disjoint.

The following Lemma is a generalization of Lemma 2.

Lemma 3 If G1 dominates G3 with an error estimate ε1 and G2 dominates
G4 with an error estimate ε2, then G1 ∪ G2 dominates G3 ∪ G4 with an error
estimate ε1 + ε2 .

Proof: For any monotone property A and any graph H , we define the set
f(A, H) to be

f(A, H) = {G|G ∪ H ∈ A}.
We observe that f(A, H) is also a monotone property. Therefore,

Pr(G1 ∪ G2 ∈ A)

=
∑
H∈A

∑
H1∪H2=H

Pr(G1 = H1)Pr(G2 = H2)

=
∑
H1

Pr(G1 = H1)Pr(G2 ∈ f(A, H1))

≥
∑
H1

Pr(G1 = H1)(Pr(G4 ∈ f(A, H1)) − ε2)

≥ Pr(G1 ∪ G4 ∈ A) − ε2.

Similarly, we have

Pr(G1 ∪ G4 ∈ A) ≥ Pr(G3 ∪ G4 ∈ A) − ε1.

Thus, we get

Pr(G1 ∪ G2 ∈ A) ≥ Pr(G3 ∪ G4 ∈ A) − (ε1 + ε2),

as desired. �.
Suppose φ is a sequence of random graphs φG1 , φG2 , . . . , where the indices

of φ range over all graphs on n vertices. Recall that a random graph G is a
probability distribution Prob(G = ·) over the space of all graphs on n vertices.
For any random graph G, we define φ(G) to be the random graph defined as
follows:

Pr(φ(G) = H) =
∑

H1∪H2=H

Pr(G = H1)Pr(φH1 = H2).

We have
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Lemma 4 Let φ1 and φ2 be two sequences of random graphs where the indices
of φ1 and φ2 range over all graphs on n vertices. Let G be any random graph.
If

Pr(G ∈ {H |φ1(H)dominates φ2(H)with an error

estimate ε1}) ≥ 1 − ε2,

then φ1(G) dominates φ2(G) with an error estimate ε1 + ε2.

Proof: For any monotone property A and any graph H , we have

Pr(φ1(G) ∈ A)

=
∑
H∈A

∑
H1∪H2=H

Pr(G = H1)Pr(φ1(H1) = H2)

=
∑
H1

Pr(G = H1)Pr(φ1(H1) ∈ f(A, H1))

≥
∑
H1

Pr(G = H1)Pr(φ2(H1) ∈ f(A, H1)) − ε1 − ε2

≥ Pr(φ2(G) ∈ A) − (ε1 + ε2),

as desired, since f(A, H) = {G|G ∪ H ∈ A} is also a monotone property. �.
Let G1 and G2 be the random graphs on n vertices. We define G1 \ G2 to

be the random graph as follows:

Pr(G1 \ G2 = H) =
∑

H1\H2=H

Pr(G1 = H1)Pr(G2 = H2)

where H1, H2 range over all pairs of graphs.

Lemma 5 If G1 dominates G3 with an error estimate ε1 and G2 is dominated
by G4 with an error estimate ε2, then G1 \G2 dominates G3 \G4 with an error
estimate ε1 + ε2 .

Proof: For any monotone property A and any graph H , we define the set
φ(A, H) to be

φ(A, H) = {G|G \ H ∈ A}.
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We observe that φ(A, H) is also a monotone property. Therefore,

Pr(G1 \ G2 ∈ A)

=
∑
H∈A

∑
H1\H2=H

Pr(G1 = H1)Pr(G2 = H2)

=
∑
H2

Pr(G2 = H2)Pr(G1 ∈ φ(A, H2))

≥
∑
H2

Pr(G2 = H2)(Pr(G3 ∈ φ(A, H2)) − ε1)

≥ Pr(G3 \ G2 ∈ A) − ε1.

Similary, we define the set θ(A, H) to be

θ(A, H) = {G|H \ G ∈ A}.

We observe that the complement of the set θ(A, H) is a monotone property. We
have

Pr(G3 \ G2 ∈ A)

=
∑
H∈A

∑
H1\H2=H

Pr(G3 = H1)Pr(G2 = H2)

=
∑
H1

Pr(G3 = H1)Pr(G2 ∈ θ(A, H1))

≥
∑
H1

Pr(G3 = H1)(Pr(G4 ∈ θ(A, H1)) − ε2)

≥ Pr(G3 \ G4 ∈ A) − ε2.

Thus, we get

Pr(G1 ∪ G2 ∈ A) ≥ Pr(G3 ∪ G4 ∈ A) − (ε1 + ε2),

as desired.
A random graph G is called edge-independent (or independent, for short) if

there is an edge-weighted function p : E(Kn) → [0, 1] satisfying

Pr(G = H) =
∏
e∈H

pe ×
∏
e6∈H

(1 − pe).

For example, a random graph with a given expected degree sequence is edge-
independent. Edge-independent random graphs have many nice properties, sev-
eral of which we derive here.
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Lemma 6 Suppose that G and G′ are independent random graph with edge-
weighted functions p and p′, then G ∪ G′ is edge-independent with the edge-
weighted function p′′ satisfying

p′′e = pe + p′e − pep
′
e.

Proof: For any graph H , we have

Pr(G ∪ G′ = H) =
∑

H1∪H2=H

Pr(G = H1)Pr(G′ = H2)

=
∑

H1∪H2=H

∏
e1∈H1

pe1

∏
e2∈H2

p′e2

∏
e3 6∈H1

(1 − pe3)
∏

e4 6∈H2

(1 − p′e4
)

=
∏
e6∈H

(1 − pe)(1 − p′e)
∏
e∈H

(pe(1 − p′e) + (1 − pe)p′e + pep
′
e)

=
∏
e∈H

p′′e ×
∏
e6∈H

(1 − p′′e ).

�

Lemma 7 Suppose that G and G′ are independent random graph with edge-
weighted functions p and p′, then G \ G′ is independent with the edge-weighted
function p′′ satisfying

p′′e = pe(1 − p′e).

Proof: For any graph H , we have

Pr(G \ G′ = H) =
∑

H1\H2=H

Pr(G = H1)Pr(G′ = H2)

=
∑

H1\H2=H

∏
e1∈H1

pe1

∏
e2∈H2

p′e2

∏
e3 6∈H1

(1 − pe3)
∏

e4 6∈H2

(1 − p′e4
)

=
∏
e∈H

(pe(1 − p′e))
∏
e6∈H

(1 − pe − pep
′
e)

=
∏
e∈H

p′′e ×
∏
e6∈H

(1 − p′′e ).

�
Let {pe}e∈E(Kn) be a probability distribution over all pairs of vertices. Let

G1 be the random graph of one edge, where a pair e of vertices is chosen with
probability pe. Inductively, we can define the random graph Gm by adding one
more random edge to Gm−1, where a pair e of vertices is chosen (as the new
edge) with probability pe. (There is a small probability to have the same edges
chosen more than once. In such case, we will keep on sampling until we have
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exactly m different edges.) Hence, Gm has exactly m edges. The probability
that Gm has edges e1, . . . , em is proportional to pe1pe2 · · · pem . The following
lemma states that Gm can be sanwitched by two independent random graphs
with exponentially small errors if m is large enough.

Lemma 8 Assume pe = o( 1
m ) for all e ∈ E(Kn). Let G′ be the independent

random graph with edge-weighted function p′e = (1 − δ)mpe. Let G′′ be the
independent random graph with edge-weighted function p′′e = (1 + δ)mpe. Then
Gm dominates G′ with error e−δ2m/4, and Gm is also dominated by G′′ within
an error estimate e−δ2m/4.

Proof: For any Graph H , we define

f(H) =
∏
e∈H

pe

For any graph property B, we define

f(B) =
∑
H∈B

f(H).

Let Ck be the set of all graphs with exact k edges.
Claim : For a graph monotone property A and an integer k, we have

f(A ∩ Ck)
f(Ck)

≤ f(A ∩ Ck+1)
f(Ck+1)

.

Proof: Both f(A∩Ck)f(Ck+1) and f(A∩Ck+1)f(Ck) are homogenous polyni-
mals on {pe} of degree 2k+1. We compare the coefficients of a general monomial

p2
e1
· · · p2

er
per+1 · · · pe2k−r+1

in f(A ∩ Ck)f(Ck+1) and f(A ∩ Ck+1)f(Ck). The coefficient c1 of the mono-
mial in f(A∩Ck)f(Ck+1) is the number of (k− r)-subset {ei1 , ei2 , · · · , eik−r

} of
er+1, . . . , e2k−r+1 satisfying that the graph with edges {e1, . . . , er, ei1 , ei2 , · · · , eik−r

}
belongs to Ak. The coefficient c2 of the monomial in f(A ∩ Ck)f(Ck+1) is the
number of (k − r + 1)-subset {ei1 , ei2 , · · · , eik−r+1} of er+1, . . . , e2k−r+1 satisfy-
ing that the graph with edges {e1, . . . , er, ei1 , ei2 , · · · , eik−r+1} belongs to Ak+1.
Since A is monotone, if the graph with edges {e1, . . . , er, ei1 , ei2 , · · · , eik−r

} be-
longs to Ak then the graph with edges {e1, . . . , er, ei1 , ei2 , · · · , eik−r+1} must
belong to Ak+1. Hence c1 is always less than or equal to c2. Thus, we have

f(A ∩ Ck)f(Ck+1) ≤ f(A ∩ Ck+1)f(Ck).
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The claim is proved.
Now let p′e = (1−δ)mpe

1+(1−δ)mpe
= (1 + o(1))(1 − δ)mpe. In other words, p′

e

1−p′
e

=
(1 − δ)mpe.

Pr(G′ ∈ A) =
n∑

k=0

Pr(G′ ∈ A ∩ Ck)

≤
m∑

k=0

Pr(G′ ∈ A ∩ Ck) +
n∑

k=m+1

Pr(G′ ∈ Ck)

=
∏
e

(1 − p′e)
m∑

k=0

((1 − δ)m)kf(A ∩ Ck) + Pr(G′ has more than m edges)

≤
∏
e

(1 − p′e)
m∑

k=0

((1 − δ)m)kf(Ck)
f(A ∩ Cm)

f(Cm)
+ Pr(G′ has more than m edges)

≤ f(A ∩ Cm)
f(Cm)

∏
e

(1 − p′e)
m∑

k=0

((1 − δ)m)kf(Ck) + Pr(G′ has more than m edges)

=
f(A ∩ Cm)

f(Cm)

m∑
k=0

Pr(G′ ∈ Ck) + Pr(G′ has more than m edges)

≤ f(A ∩ Cm)
f(Cm)

+ Pr(G′ has more than m edges)

= Pr(Gm ∈ A) + Pr(G′ has more than m edges)

Now we estimate the probability that G′ has more than m edges. Let Xe be
the 0-1 random variable with Pr(Xe = 1) = p′e. Let X =

∑
e Xe. Then E(X) =

(1 + o(1))m(1 − δ). Now we apply the following large deviation inequality.

Pr(X − E(X) > a) ≤ e−
a2

2(E(X)+a/3) .

We have

Pr(X > m) = Pr(X − E(X) > (1 + o(1))δm)

≤ e−(1+o(1)) δ2m2
2(1−δ)m+δm/3

≤ e−δ2m2/2.

For the other direction, let p′′e = (1+δ)mpe

1+(1+δ)mpe
= (1 + o(1))(1 + δ)mpe, which

implies p′′
e

1−p′′
e

= (1 + δ)mpe.

15



Pr(G′′ ∈ A) =
n∑

k=0

Pr(G′′ ∈ A ∩ Ck)

≥
n∑

k=m

Pr(G′ ∈ A ∩ Ck)

=
∏
e

(1 − p′′e )
n∑

k=m

((1 + δ)m)kf(A ∩ Ck)

≥
∏
e

(1 − p′e)
n∑

k=m

((1 + δ)m)kf(Ck)
f(A ∩ Cm)

f(Cm)

≥ f(A ∩ Cm)
f(Cm)

∏
e

(1 − p′e)
n∑

k=m

((1 + δ)m)kf(Ck)

=
f(A ∩ Cm)

f(Cm)
(1 −

m−1∑
k=0

Pr(G′ ∈ Ck))

≥ f(A ∩ Cm)
f(Cm)

− Pr(G′′ has less than m edges)

= Pr(Gm ∈ A) − Pr(G′′ has less than m edges)

Now we estimate the probability that G′′ has less than m edges. Let Xe be
the 0-1 random variable with Pr(Xe = 1) = p′′e . Let X =

∑
e Xe. Then E(X) =

(1 + o(1))m(1 + δ). Now we apply the following large deviation inequality.

Pr(X − E(X) < a) ≤ e−
a2

2E(X) ,

We have

Pr(X < m) = Pr(X − E(X) < (1 + o(1))δm)

≤ e−(1+o(1)) δ2m2
2(1+δ)m

≤ e−δ2m2/3.

The proof of Lemma is completed. �

5 The coupling of the growth deletion model

We will prove the following:

Theorem 1 Suppose p3 < p1 and p4 < p2. Then

16



1. Almost surely the degree sequence of the growth-deletion model G(p1, p2, p3, p4, m)
follows the power law distribution with the exponent

β = 2 +
p1 + p3

p1 + 2p2 − p3 − 2p4
.

2. Suppose m > log2+ε n. Let S1 be the set of vertices i satisfying t1/2 ≤ i ≤
t. Almost surely the induced graph of G(p1, p2, p3, p4, m) on S1 dominates
an (off-line) random graph G1 (also on S1) with expected degree sequence
wi = (1 − o(1))m( t

i )
p1/(p1−p3)(β−1) (for i ∈ S1).

3. Suppose m > log2+ε n. Let S2 be the set of vertices i satisfying t1/2 ≤
i ≤ t. Almost surely the induced graph of G(p1, p2, p3, p4, m) on S2 is
dominated by an (off-line) random graph G2 (also on S2)) with expected
degree sequence wi = (1 + o(1))m( t

i )
p1/(p1−p3)(β−1) (for i ∈ S2).

Let nt (or τt) be the number of vertices (or edges) at time t. We first establish
the following lemmas on the number of vertices and the number of edges.

Lemma 9 For any k and t, in G(p1, p2, p3, p4), the number nt of vertices at
time t satisfies

(p1 − p3)t −
√

2kt log t ≤ nt ≤ (p1 − p3)t +
√

2kt log t. (1)

with probability at least 1 − 2
tk .

Proof: The expected number of vertices nt satisfies the following recurrence
relation:

E(nt+1) = E(nt) + p1 − p3

Hence, E(nt+1) = (p1−p3)t. Since we assume p3 < p1, the graph grows as time
t increases. By Azuma’s martingale inequality, we have

Pr(|nt − E(nt)| > a) ≤ 2e
a2
2t .

By choosing a =
√

2kt log t, with probability at least 1 − 2
tk+1 , we have

(p1 − p3)t −
√

2kt log t ≤ nt ≤ (p1 − p3)t +
√

2kt log t. (2)

�

Lemma 10 For any ε and k, in G(p1, p2, p3, p4), the number τt of edges at time
t satisfies

|E(τt) − m
(p1 + p2 − p4)(p1 − p3)

p1 + p3
t| ≤ 4√

ε
t

1+ε
2 ,

with probability at least 1 − 2
k t−kε, if t ≥ (k log k)

1
ε (2p3(p1+p2−p4)

p2
1−p2

3
)2/ε

17



Proof:
The expected number of edges satisfies

E(τt+1) = E(τt) + mp1 + mp2 − p3E(
2τt

nt
) − mp4.

Let τ = m (p1+p2−p4)(p1−p3)
p1+p3

.

Claim 1: For any s >
2k log kp2

3(p1+p2−p4)2

(p2
1−p2

3)2
, with probability at least 1 −∑t

i=s+1
2

tk+1 , we have

|E(τt) − τt| < 4m

√
s

log s

√
t log t. (3)

We will prove Claim 1 by induction on t. Let Cs = 4
√

s
log s . For t ≤ s, the

total number of edges is at most 2t. We have

|E(τt) − τt| ≤ 2mt

≤ 4m

√
s

log s

√
t log t

≤ Cs

√
t log t

Now we assume that τt − τt ≤ Cs

√
t log t holds with probability at least 1 −∑t

i=s+1
2

ik+1 . For t + 1, we have

|E(τt+1) − τ(t + 1)|
= |E(τt) + mp1 + mp2 − p3E(

2τt

nt
) − mp4 − m(t + 1)|

= |E(τt) − τt − 2p3(E(
τt

nt
) − τ

p1 − p3
)|

= |(1 − 2p3

(p1 − p3)t
)(E(τt) − mt) − 2p3(E(

τt

nt
) − τt

(p1 − p3)t
)|

≤ |E(τt) − τt| + 2p3|E(τt)|| 1
(p1 − p3)t −

√
2kt log t

− 1
(p1 − p3)t

|

≤ Cs

√
t log t + (2p3τ + Cs

√
log t

t
)(

√
2k

(p1 − p3)2

√
log t

t
+ O(

log t

t
))

≤ Cs

√
t log t +

2m
√

2kp3(p1 + p2 − p4)
p2
1 − p2

3

√
log t

t
+ O(

log t

t
)

≤ Cs

√
(t + 1) log(t + 1) + O(

log t

t
).

Here we apply the inequality (1). The inequality fails with probability at most

t∑
i=s+1

2
ik+1

+
2

(t + 1)k+1
=

t+1∑
i=s+1

2
ik+1

.
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We have proved Claim 1. The proof of Lemma 10 follows by choosing s = tε. �
Lemma 10 can be further strengthened as follows:

Lemma 11 In G(p1, p2, p3, p4, m), with probability at least 1−O(t−k), the total
number of edges is

τt =
(p1 + p2 − p4)(p1 − p3)

p1 + p3
mt + O(kmt

1− p1
4(p1+p2) log2 t).

Proof: We claim that

di(t) = O(km(
t

i
)1−

p1
2(p1+p2) log2 t) (4)

holds with probability at least 1 − O( 1
tk ). (This will be proved later.)

For any s ≤ t, let Ds(t) = maxs≤i≤t di(t) and τs(t) = {ij ∈ E(Gt)|s ≤ i, j ≤
t}. Inequality (7) implies with probability at least 1 − O( 1

tk−1 ), we have

τt − τs(t) ≤
∑
i≤s

Di(t)

≤
∑
i≤s

C

(
t

i

)1− p1
2(p1+p2)

mk log2 t

≤ C
p1

2(p1+p2)

mkt log2 t

(
t

s

)− p1
2(p1+p2)

.

By choosing s =
√

t, we have

τt = τs(t) + O(kmt
1− p1

4(p1+p2) log2 t). (5)

Since τt − τs(t) = o(t), it suffices to estimate τs(t) instead of m(t).
We define a different random process G′

t, which is exactly the same as
Gt(p1, p2, p3, p4) upto t ≤ s. For t ≥ s, G′

t differs from Gt(p1, p2, p3, p4) only
at the vertex-deletion step in the following way. Suppose a vertex i is cho-
sen to be deleted at Gt(p1, p2, p3, p4). We check the degree di(t). If i ≤ s or
di(t) < Ckm( t

i )
1− p1

2(p1+p2) log2 t, (where C is the hidden constant in equation
(4), vertex i is deleted in the same way as Gt(p1, p2, p3, p4). Otherwise the
vertex i is kept. Let τ ′

s(t) be {ij ∈ E(G′
t)|s ≤ i, j ≤ t}. We have

Pr(τs(t) 6= τ ′
s(t)) ≤

t∑
l=s

O(l−k) = O(s−k+1). (6)

We note that τ ′
s(t + 1) − τ ′

s(t) is always bounded by Ckm( t
s)1−

p1
2(p1+p2) log2 t

(denoted by Ct, for short). We apply the martingale inequality to τ ′
s(t). We
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have

Pr(|τ ′
s(t) − E(τ ′

s(t))| > a)

≤ 2e
− a2
Pt

l=s
C2

l

≤ 2e

− a2

Pt
l=s

(Ckm( l
s
)
1− p1

2(p1+p2) log2 l)2

≤ 2e
− a2

C′C2t
3− p1

p1+p2 s
−2+

p1
p1+p2 m2k2 log4 t .

We choose s =
√

t and a =
√

C′Ct
1− p1

4(p1+p2) mk3/2 log5/2 t. With probability
at least 1 − O(t−k/2+1), we have

|τ ′
s(t) − E(τ ′

s(t))| = O(t1−
p1

4(p1+p2) mk3/2 log5/2 t).

We note that τs(t) is always less than 2mt. By equation (6), we have

E(τs(t)) − E(τ ′
s(t)) ≤ 4mtO(t−k/2+1/2) = O(mt−k/2+3/2).

Hence with probability at least 1−O(t−k/2+1)−O(t−k/2+1/2) = 1−O(t−k/2+1),
we have

|τs(t) − E(τs(t))| ≤
|τ ′

s(t) − E(τ ′
s(t))| + E(τs(t)) − E(τ ′

s(t))

= O(t1−
p1

4(p1+p2) mk3/2 log5/2 t) + O(mt−k/2+3/2)

= O(t1−
p1

4(p1+p2) mk3/2 log5/2 t)

Combining with inequality (5), with probability 1 − O(t−k/2+1),

|τt − E(τt)|
≤ |τt − τs(t)| + |E(τt) − E(τs(t))| + |τs(t) − E(τs(t))|
≤ O(mkt

1− p1
4(p1+p4) log2 t) + O(mkt

1− p1
4(p1+p4) log2 t)

+O(mkt
1− p1

4(p1+p4) log2 t)

= O(mkt
1− p1

4(p1+p4) log2 t)

It remains to prove inequality (4).
We compare G(p1, p2, p3, p4, m) with the following preferential model G(p1, p2, m)

without deletion. At each step, with probability p1, take a vertex-growth step
and add m edges from the new vertex to the current graph;

With probability p2, take an edge-growth step and m edges are added into
the current graph;

With probability 1 − p1 − p2, do nothing.
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We claim that the degree du(t) in the model G(p1, p2, p3, p4, m) (with dele-
tion) is stochastically dominated by the degree sequence du(t) in the model
G(p1, p2, m) (without deletion). This can be shown by the following balls-and-
bins argument. The number of balls in the first bin (denoted by a1) represents
the degree of u while the number of balls in the other bin (denoted by a1) rep-
resents the sum of degrees of the vertices other than u. When an edge incident
to u is added to the graph G(p1, p2, p3, p4, m), it increases both a1 and a2 by 1.
When an edge not incident to u is added into the graph, a2 increases by 2 while
a1 remains the same. Without loss of generality, we can assume a1 is less than
a2 in the initial graph. If an edge uv, which is incident to u, is deleted later,
we delay adding this edge until the very moment the edge is to be deleted. At
the moment of adding the edge uv, two bins have a1 and a2 balls respectively.
When we delay adding the edge uv, the number of balls in two bins are still a1

and a2 comparing with a1 + 1 and a2 + 1 in the original random process. Since
a1 < a2, the random process with delay dominates the original random process.
If an edge vw which is not incident to u is deleted, we also delay adding this
edge until the very moment the edge is to be deleted. Equivalently, we compare
the process of a1 and a2 balls in bins to the process with a1 and a2 + 2 balls.
The random process without delay dominates the one with delay. Therefore,
for any u, the degrees of u in the model without deletion dominates the degrees
in the model with deletion.

It remains to obtain an appropriate upper bound of du(t) for model G(p1, p2, m).
If a vertex u is added at time i, we label it by i. Let us remove the idle steps
and re-parameterize the time. Let α = p1

p1+p2
. We observe that the model

G(p1, p2, m) = G(α, 1−α, 0, 0, m). The claim is true by using the upper bound
for the degrees of G(α, 1 − α, 0, 0, m) as proved in Lemma 13 in the appendix.

The proof of Lemma 13 is complete. �.
We have the following result on the degrees of the model G(p1, p2, p3, p4, m).

Lemma 12 If the vertex i (i ≥ √
t) survives up to time t, then, with probability

at least 1 − O(t−k), the degree di(t) of the model G(p1, p2, p3, p4) satisfies

di(t) ≤ (
t

i
)

p1(p1+2p2−p3−2p4)
2(p1+p2−p3−p4)(p1−p3) (m + C log2 t).

If m > log2+ε n, then with probability at least 1− t−k (any constant k), we have

di(t) ≥ (1 − o(1))m(
t

i
)

p1(p1+2p2−p3−2p4)
2(p1+p2−p3−p4)(p1−p3) .
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Proof: Let η = p1 − p3 and τ = (p1+p2−p4)(p1−p3)
p1+p3

m. By lemma 11, with
probability at least 1 − O(t−k), the total number of edges is

τt = τt + O(kmt
1− p1

4(p1+p2) log2 t).

By lemma 9, the number nt of vertices at time t satisfies

nt = ηt + O(
√

2kt log t),

with probability at least 1 − 2
tk .

Let Cl be the event that either

|τl − (p1 + p2 − p4)(p1 − p3)
p1 + p3

mt| > Ckml
1− p1

4(p1+p2) log2 l,

or |nt − ηt| > C
√

2kt log t.
The probability that one of Cl (i ≤ l ≤ t) occurs is at most

t∑
l=i

O(t−k) = O(i−k+1) = O(t−k/2+1).

Let Xt be the truncated degree of i at time t as follows. Xt = di(t) if none
of events Cl (i ≤ l ≤ t) occurs, 0 otherwise. At t+1, with probability of 1− 1

nt
,

the vertex i survives at time t + 1. Condition on this probability, we have

E(eλXt+1 |Gt; Xt = x) ≤ eλx 1
1 − 1

nt

(p1(1 − x

2τt
+

x

2τt
eλ)m

+p2(1 − x

τt
+

x

τt
eλ)m

+p3(1 − x

nt
+

x

nt
e−λ)

+p4(1 − x

τt
+

x

τt
e−λ)m)

+O(i−k+1)

For any δ = o(1), we can choose λ small enough so that eλ ≤ 1 + λ(1 + δ)
and e−λ ≤ 1 − λ(1 − δ) hold. We have

E(eλXt+1 |Gt; Xt = x) ≤ eλx 1
1 − 1

nt

(p1e
x

2τt
λm(1+δ) + p2e

x
τt

λm(1+δ)

+p3e
x

nt
λm(−1+δ) + p4e

x
2τt

λ(−1+δ)) + O(i−k+1)

≤ eλx(1+
p1m(1+δ)

2τt
+

p2m(1+δ)
τt

+
p3m(−1+δ)

nt
+

p4m(−1+δ)
τt

)e1/nt + O(i−k+1)

≤ e
λx(1+

p1(p1+2p2−p3−2p4+O(δ))
2(p1+p2−p4)(p1−p3)t +o(t−1−ε))

e−1/nt + O(i−k+1)
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Let λt+1 = (1 + p1+2p2−p3−2p4+O(δ)
2(p1+p2−p4)t + o(t−1−ε))λt, for t ≥ i + 1. We have

λt = λl+1

t−1∏
l=i+1

(1 +
p1(p1 + 2p2 − p3 − 2p4 + O(δ))

2(p1 + p2 − p4)(p1 − p3)l
+ o(l−1−ε))λl

≈ λi+1e
Pt−1

l=i+1
p1+2p2−p3−2p4+O(δ)

2(p1+p2−p4)l +o(l−1−ε)

≈ λl+1e
p1(p1+2p2−p3−2p4+O(δ))

2(p1+p2−p4)(p1−p3)l log t
i +o(1)

≈ λl+1

(
t

i

) p1(p1+2p2−p3−2p4)+O(δ)
2(p1+p2−p4)(p1−p3)

By choosing δ = O( 1
log t ) and λt = O(δ), we have

λi+1 =
1

log t

(
i

t

) p1(p1+2p2−p3−2p4)
2(p1+p2−p4)(p1−p3)

.

Hence
E(eλlXl) ≤ E(eλl−1Xl−1)e1/(ηl+O(

√
2kl log l)) + O(i−k+1).

E(eλtXt) ≤ E(eλt−1Xt−1)e1/(ηt+O(
√

2kt log t)) + O(i−k+1)

≤ · · ·

≤ (1 + o(1))E(eλi+1Xi+1)
t−1∏

l=i+1

e1/(ηl+O(
√

2kl log l))

≈ (1 + o(1))
(

t

i

)p1−p3

.

Let a = (m + Ck log2 t)
(

i
t

) p1+2p2−p3−2p4
2(p1+p2−p4) for some absolute constant C. We

have

Pr(Xt > a) ≤ e−λtaE(eλtXt) ≤ e−k log t.

Thus, we have

Pr(di(t) > a) ≤ Pr(Xt > a) + O(i−k+1) ≤ t−k + t−k/2+1.

as desired.
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E(e−λXt+1 |Gt; Xt = x)

≤ e−λx 1
1 − 1

nt

(p1e
− x

2τt
λm(1−δ) + p2e

− x
τt

λm(1−δ)

+p3e
x

nt
λm(1+δ) + p4e

x
2τt

λ(1+δ)) + O(i−k+1)

≤ e−λx(1−p1m(1−δ)
2τt

+
p2m(1−δ)

τt
+

p3m(1+δ)
nt

+
p4m(1+δ)

τt
) + O(i−k+1)

≤ e
−λx(1−p1(p1+2p2−p3−2p4)−O(δ)

2(p1+p2−p4)(p1−p3)t +o(t−1−ε))+ 1
nt + O(i−k+1).

Let λt+1 = (1 − p1(p1+2p2−p3−2p4)−O(δ)
2(p1+p2−p4)(p1−p3)t

+ o(t−1−ε))λt, for t ≥ i + 1. We have

λt = λl+1

t−1∏
l=i+1

(1 − p1(p1 + 2p2 − p3 − 2p4) − O(δ)
2(p1 + p2 − p4)(p1 − p3)l

+ o(l−1−ε))λl

≈ λl+1e
−Pt−1

l=i+1
p1(p1+2p2−p3−2p4)−O(δ)

2(p1+p2−p4)(p1−p3)l +o(l−1−ε)

≈ λl+1e
− p1+2p2−p3−2p4+O(δ)

2(p1+p2−p4)l log t
i +o(1)

≈ λl+1

(
t

i

)− p1(p1+2p2−p3−2p4)+O(δ)
2(p1+p2−p4)(p1−p3)

We choose δ = 1
log( 1+ε/2)t

and λi+1 = k log t
4m = O(δ). Then,

λi+1 = (1 + o(1))λt

(
i

t

) p1(p1+2p2−p3−2p4)
2(p1+p2−p4)(p1−p3)

.

Let a = (1 − o(1))m
(

t
i

) p1(p1+2p2−p3−2p4)
2(p1+p2−p4)(p1−p3) . We have

Pr(Xt < a) ≤ eλtaE(e−λtXt)

≤ eλtaE(e−λi+1Xi+1)e
Pt−1

l=i+1 1/nl + teλtae
Pt−1

l=i+1 1/nl i−k+1

≤ e−λi+1m+λta+(p1−p3) log t
i + teλta(

t

i
)(p1−p3)i−k+1

≤ e−λi+1(m−a(1+o(1))( i
t)

p1(p1+2p2−p3−2p4)
2(p1+p2−p4)(p1−p3) ) + O(t−k/4+3)

≤ O(t−k/4+3).

Thus, we have

Pr(di(t) < a) ≤ Pr(Xt < a) ≤ O(t−k/4+3).

as desired.
�
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Proof of main theorem: The probability that a vertex i survives up to the
time t is

t∏
l=i+1

(1 − p3

nl
) ≈ e

Pt
l=i+1 − p3

(p1−p3)t ≈ (
i

t
)

p3
p1−p3 .

Suppose i survives at the time t. Let α = p1(p1+2p2−p3−2p4)
2(p1+p2−p4)(p1−p3)

. By Lemma 12,
with high probability, we have

di(t) = (1 + o(1))m(
i

t
)α.

The number of vertices with degree between x1 and x2 is given by
∑

(1+o(1))(
x2
m )−1/αt≤i≤(1+o(1))(

x1
m )−1/αt

(
i

t
)

p3
p1−p3

≈ ((
x1

m
)

−p1
α(p1−p3) − (

x1

m
)

−p1
α(p1−p3) )t

≈ ((
x1

m
)β+1 − x2

m
)−β+1).

Here we apply the following equality:

−p1

α(p1 − p3)
= − 2(p1 + p2 − p4)

p1 + 2p2 − p3 − 2p4
= −β + 1.

The number of vertices with degree between x and x + ∆x is

(1 + o(1))((
x

m
)−β+1 − x + ∆x

m
)−β+1) ≈ βmβ−1

xβ
∆x,

Hence, G(p1, p2, p3, p4, m) is a power law graph with exponent β = 2+ p1+p3
p1+2p2−p3−2p4

.

To item (2), we consider wl
i = (1 − o(1))m( l

i)
α for t ≥ l ≥ i ≥ √

t, and
τl = (1 + o(1))m (p1+p2−p4)(p1−p3)

p1+p3
l. For l = b√tc, . . . , t, we will construct an

edge-independent random graph Gl as follows. At l = b√tc, Gl is an empty
graph initially. Inductively, we assume an edge-independent random graph Gj

has been constructed, for j ≤ l.
If step l + 1 is a vertex-growth-step in Gl+1(p1, p2, p3, p4, m), we add a new

vertex labelled by l + 1 to Gl. Let H l
v be the edge-independent random graph

with

pi,l+1 = m(1 − o(1))
wl

i

2τ l
.

We define Gl+1 = Gl ∪ H l
v.

If step l + 1 is an edge-growth-step in Gl+1(p1, p2, p3, p4, m), Let H l
e be the

edge-independent random graph with

pi,j = m(1 − o(1))
wl

iw
l
j

4τ2
l

,
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for all pairs of vertices (i, j) in Gl. We define Gl+1 = Gl ∪ H l
e.

If step l +1 is a vertex-deletion-step in Gl+1(p1, p2, p3, p4, m), We delete the
same vertex from Gl and call the resulted graph Gl+1.

If step l + 1 is a edge-deletion-step in Gl+1(p1, p2, p3, p4, m), Let H l
d be the

random graph with uniform probability p = m
τl

. We define Gl+1 = Gl \ H l
d.

Clearly, Gl+1 is also edge-independent if Gl is edge-independent.
For any two vertices i and j (i < j) in Gl, the edge probability pl

ij satisfies
the following recurrence formula.

pl
ij =




m(1 − o(1)) wj
i

2τj
if l = j

pl−1
ij with probability p1 + p3.

pl−1
ij (1 − m(1 − o(1))

wl
iw

l
j

4τ2
l

) + m(1 − δ)
wl

iw
l
j

4τ2
l

with probability p2

pl−1
ij (1 − m

2τl
) with probability p4

0 if either i and j is deleted, or l < j

We have

E(pl
ij) ≈ E(pl−1

ij ) + p2m(1 − δ) − p4
m

2τl
E(pl−1

ij ).

By solving this recurrence formula, we have

E(pl
ij) = (1 − o(1))

wl
iw

l
j

2τl
= (1 − o(1))

(p1 + p3)
2m(p1 + p2 − p4)(p1 − p3)

l2α−1

iαjα
.

When l � j, pl
ij concentrates on its expected value. In particular, if i ≤ j ≤

t−√
t, we have pl

ij ≈ (1 − o(1)) (p1+p3)
2m(p1+p2−p4)(p1−p3)

l2α−1

iαjα . When j > t−√
t, we

have

pj
ij = m(1 − o(1))

wj
i

2τj
= (1 − o(1))

(p1 + p3)
2m(p1 + p2 − p4)(p1 − p3)

l2α−1

iαjα
.

If j > t −√
t, we have

pt
ij ≥ pjij(1 − m

2τj
)t−j = (1 − o(1))pjij.

Hence, we have

pt
ij = (1 − o(1))

(p1 + p3)
2m(p1 + p2 − p4)(p1 − p3)

l2α−1

iαjα
= (1 − o(1))wt

iw
t
j

1
2τt

,

for all
√

t ≤ i < j ≤ t. Thus, Gt is the random graph with expected degree
sequnence wi = wt

i .
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Now we prove inductively that Gl(p1, p2, p3, p4, m) dominates Gl within error
estimate o(t−K) (for any constant K.)

For l =
√

t, the statement is trivial since Gl is an empty graph. We now
assume that Gl(p1, p2, p3, p4, m) dominates Gl within error estimate o(t−K) (for
any constant K.)

If step l + 1 takes a vertex-growth-step, we define the random graph φ(H)
to be the graph consisting m random edges from the new vertex. The other
end point of those edges are chosen with probability proportional to their de-
grees of H . We note that Gl+1(p1, p2, p3, p4) = φ(Gl(p1, p2, p3, p4)). Since
Gl(p1, p2, p3, p4, m) dominates Gl within error estimate o(t−K). Hence, Gl+1(p1, p2, p3, p4)
dominates φ(Gl), which dominates Gl ∪ H l

v = Gl+1 with an assorciated error
term.

If step l + 1 takes a edge-growth-step, we define the random graph φ(H) to
be the graph consisting m random edges on the vertices of H . The end points of
those edges are chosen with probability proportional to their degrees of H . We
note that Gl+1(p1, p2, p3, p4) = φ(Gl(p1, p2, p3, p4)). Since Gl(p1, p2, p3, p4, m)
dominates Gl within error estimate o(t−K). Hence, Gl+1(p1, p2, p3, p4) domi-
nates φ(Gl), which dominates Gl ∪ H l

e = Gl+1 with an assorciated error term.
If step l + 1 takes a vertex-deletion-step. It is clear Gl+1(p1, p2, p3, p4) dom-

inates Gl+1 within the same error estimate as in step l.
If step l + 1 takes a edge-deletion-step, we note that Gl+1(p1, p2, p3, p4) =

Gl(p1, p2, p3, p4) \ H l
d. Since Gl(p1, p2, p3, p4, m) dominates Gl with an error

estimate o(t−K). Hence, Gl+1(p1, p2, p3, p4) dominates Gl \ H l
e = Gl+1.

The total error bound is less that t times the maximum error within each
step. Hence the error is o(t−K) for any constant K. The proof of item (2) is
finished. The proof of item (3) is very similar except that it use the opposite
dirction of the domination, and will be omitted here. The theorem is proved. �
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Appendix
We consider the preferential attachment model G(α) = G(α, 1−α, 0, 0). We

assume that G(α) starts at time t = 1 with an initial graph with only one edge.
Since the number of edge increases by 1 at a time. The total number of edges
at time t is just t.

We label the vertex u by i if u is generated at time i. Let di(t) denote the
degree of the vertex i at time t. We have the following lemma.

Lemma 13 There exists a constant C satisfying

Pr(di(t) > 2Ck

(
t

i

)1−α
2

log2 t) = O(
1
tk

) (7)

for any k, i and t ≥ t0.

Proof: Let Xt = di(t). We have Xi = 0 and Xi+1 = 1.
For t ≥ i + 1, we have

E(eλXt+1 |Xt = x)

= eλx(1 − (2 − α)x
2t

+ (
(2 − α)x

2t
− x2

4t2
)eλ +

x2

4t2
e2λ)

≤ eλx(1 − (2 − α)x
2t

+
(2 − α)x

2t
eλ.

We choose λ = O(δ) satisfying eλ ≤ 1 + λ(1 + δ). We have

E(eλXt+1 |Xt = x) ≤ eλx(1 − (2 − α)x
2t

+
(2 − α)x

2t
eλ)

≤ eλx− (2−α)x
2t + (2−α)x

2t eλ

≤ e(1+ (2−α)(1+δ)
2t )λx

Let λt+1 = (1 + (2−α)(1+δ)
2t )λt, for t ≥ i + 1. We have

λt = λl+1

t−1∏
l=i+1

(1 +
(2 − α)(1 + δ)

2l
)

≈ λl+1e
Pt−1

l=i+1
(2−α)(1+δ)

2l

≈ λl+1e
(1−α/2)(1+δ) log t

i

≈ λl+1

(
t

i

)(1−α/2)(1+δ)

We choose δ = O( 1
log t ) and λt = O(δ). We have

λi+1 = O(δ
(

t

i

)−(1−α/2)(1+δ)

) = O(
1

log t

(
i

t

)1−α/2

.

30



Hence
E(eλtXt ≤ · · · ≤ E(eλi+1Xi+1) = 1 − o(1).

Let a = Ck
(

i
t

)1−α/2
log2 t for some absolute constant C. We have

Pr(Xt > a) ≤ e−λtaE(eλtXt) = e−k log t

The lemma is proved.
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