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Abstract

We show that random graphs in the preferen-
tial connectivity model have constant conductance,
and hence have worst-case routing congestion that
scales logarithmically with the number of nodes. An-
other immediate implication is constant spectral gap
between the first and second eigenvalues of the ran-
dom walk matrix associated with these graphs. We
also show that the expected frugality (overpayment
in the Vickrey-Clarke-Groves mechanism for short-
est paths) of a random graph is bounded by a small
constant.

1. Introduction

The Internet is a computational system of immense
complexity that was not designed by a single entity, but
emerged from the ad hoc interactions of many entities
on the basis of ground rules that were deliberately open
and minimally restrictive. As a result, it is the first com-
putational artifact that must be studied by observation,
measurement, and the developmentand validation of hy-
potheses, models and falsifiable theories —in a manner
not unlike the one in which other sciences approach the
universe, the brain, the cell, and the market. This paper
aims to contribute to the growing corpus of mathemati-
cal results and techniques that are pertinent to this novel,
within Computer Science, research mode.

Since connectivity is a network’s raison d” &tre, it is
no surprise that various aspects of the Internet’s connec-
tivity (such as degrees, diameter, cuts, and tolerance to
element failures) have been the subject of intense study,
measurement, and speculation, see e.g. [6, 24, 46, 14,
10, 4, 30]. In this paper we address two sophisticated as-
pects of connectivity that are particularly relevant to the
Internet, namely conductance and frugality.

As the Internet grows, extensive measurements show
a clear congestion increase in the core and relate this
to network performance (e.g. see [4, 29, 30, 44, 27]).
Therefore, one of the most crucial questions one can ask
is, how does the congestion at the Internet’s core scale
with the number of nodes? In other words, if we assume
unit traffic between all nodes (more accurately, traffic
weighted by some measure of the size of each node, typ-
ically captured by its degree), how do the loads on the
edges balance? Since the Internet is a very sparse graph
(average degree between 3 and 4 [38, 34]), there are two
extremes to consider here: In constant degree trees one
expects that congestion (traffic in the worst edge) grows
as n2 with the nodes, while in constant-degree expanders
this growth is close to the theoretical minimum, n log n.

The observation in [24] that the degree distribution
of the Internet has heavy tails, or is “scale-free” (has
deviations from the mean that decrease only polynomi-
ally, forming a straight line in log-log plot) has brought
center-stage several models of random graphs that ex-
hibit such degree distributions; it is thus compelling to
estimate the asymptotic growth of congestion in scale-
free random graph models. In this paper we consider the
model of growth with preferential attachment in which
an arriving node connects with d edges to previously ar-
rived nodes chosen with probability proportional to the
degrees of the latter [6, 32, 3, 11, 19]. We show that, for
d > 2, almost all scale-free graphs in this model have
constant conductance; as a corollary, approximate mul-
ticommaodity flow algorithms imply routing with con-
gestion O(nlogn). An immediate additional implica-
tion is constant spectral gap between the first and sec-
ond eigenvalues of the stochastic normalization of the
adjacency matrix of the graph. This is also in accor-
dance with measurement: [26] found the second eigen-
value of the Internet topology between .8 and .9 (and of
its core between .6 and .7) for snapshots between 1997
and 2002 during which the network has grown by a fac-



tor of 20. Elsewhere, [7] measure a gap for the (sym-
metrized, degree-homogenized) graph of the world-wide
web, again over a long period of observations.

A persistent technical difficulty in treating graphs
grown with preferential connectivity arises from
the inhomogeneity and dependencies between
edges [32, 10, 11, 23]. The crux of our proof is in
establishing a bound that is invariant of time (shift-
ing argument in Lemma 2.2). Prior to our work, [27]
and [18] had shown conductance and spectral gap
Q(1/logn) and Q(1/poly log n) respectively, for struc-
tural scale-free random graph models (Erd8s-Renyi
adaptations for skewed degree sequences). Struc-
tural scale-free random graph models avoid all de-
pendencies between vertices, and are hence easier
to analyze [2, 17, 36, 18]. However, in those mod-
els certain bad events occur almost surely and inverse
logarithmic factors appear unavoidable. More rel-
evant to this paper, [20] had shown conductance
Q(1/logn) for the growth with preferential connec-
tivity model considered here, and for constant d much
larger than 2. In view of the above, our result (Theo-
rem 2.1) is the first constant characterization of these
fundamental measures.

The graph of the Internet autonomous systems (AS’s)
is formed as these entities enter into service or peering
agreements seeking to ensure good connectivity for their
customers. The incentive structure of the situation has
been the subject of much study, speculation, and mys-
tification. On the other hand, recently we have seen the
development of a novel research corpus in the interface
between Algorithms and Game Theory, aiming exactly
at understanding such incentive issues in connection to
the Internet [39, 41, 42]. Already in the pioneering pa-
per by Nisan and Ronen [39], the shortest path problem
in a network was studied as an interesting application of
mechanism design, and it was shown that the Vickrey-
Clarke-Groves (VCG) mechanism [35] indeed yields an
incentive-compatible mechanism for routing (roughly
speaking, a protocol in which nodes with private cost in-
formation are willing to reveal their true costs). This was
taken one step further in [25], where it was shown that
such mechanisms can in fact be implemented with mini-
mum overhead and disruption on BGP, the currently pre-
dominant interdomain routing protocol [28]. On the neg-
ative side, it has been observed [5] that the VCG mech-
anism, as well as any other “reasonable” mechanism,
leads to very significant overpayments in the worst case
—an unbounded multiplicative factor above the origi-
nal cost of the shortest path. (The VCG overpayment
of an edge on the shortest path is the amount by which

the cost of the shortest path is increased when this edge
is deleted, if this amount is finite, and is defined to be
zero otherwise. The term “frugality” has been used —
as it turns out, a little too optimistically— to denote this
quantity.) Very recently, [22] established that this is in-
herent in any incentive-compatible protocol for finding
shortest paths in graphs. Despite these negative worst-
case results, however, [25] measure the VCG overpay-
ment in the Internet graph, assuming unit costs, and ob-
serve that it is very modest (about .3, or 30%, compared
to the unbounded factors predicted in the literature). As
the frugality of a network is a compelling metaphor for
the “competitiveness” implicit in its topology, the is-
sue is of some importance. Are there any mathemati-
cal reasons to expect that frugality is small on the aver-
age in random graphs? Or is the low-overpayment phe-
nomenon observed in [25] evidence of strategic evasion
of monopolistic situations by AS’s in the Internet?

In Section 3 of this paper we provide an answer, es-
tablishing that, with high probability, the expected VCG
overpayment, over all origin-destination pairs and all
edges in the shortest path, is bounded both from above
and below by a non-increasing function of the expected
degree (we conjecture that it grows as the inverse of the
expected degree). We show this in the G, , model, first
when np = w(logn), by a careful analysis of the short-
est and second shortest paths in a random graph. We then
extend it down to constant np by a technique that bounds
the size of “long” breadth-first neighborhoods in ran-
dom graphs. These results can be extended routinely to
the d-regular model. As for the “scale-free” models, us-
ing results from [17] it is easy to show that the frugality
of random graphs with specified power law degree se-
quences have O(loglogn) VCG overpayment. We con-
jecture that constant upper and lower bounds hold in
suitably defined scale-free models.

2. On the Conductance of Scale Free
Graphs

In this section we use the notation G4, to denote
graphs grown with preferential attachment. We will use
the following definitions for these random graph pro-
cesses. Gy, =T}, is a tree grown in n time steps, one
vertex at each time step. Its vertices are called mini-
vertices and they are named after the time that they ar-
rive. At time 1 the tree consists of a single mini-vertex
with a self loop. At time ¢, 2 < t < n, mini-vertex ¢ ar-
rives and attaches with a single edge to a mini-vertex ¢',
t' < t, chosen among all mini-vertices with probabil-



ity proportional to their degrees at time t—1. We call the
mini-vertex ¢' to which mini-vertex ¢ attached the father
of ¢ (let the father of 1 be 1, by convention). For d > 2,
the graph G, is generated by first growing a tree Ty,
and then, for 1 < 7 < n, contracting mini-vertices dr—i,
for 0 < i < d—1. Self-loops and multiple edges are pre-
served. We call the vertex of G4 ,, that resulted by con-
tracting mini-vertices dr—i, 0 < i < d—1, vertex 7.
Thus, for every S C [n], we may associate a subset of
vertices of the graph G4, and a subset of mini-vertices
of the tree Ty, in the natural way: mini-vertex dr — i,
0 <i < d-—1,isassociated with S ifand only if 7 € S.

Let G(V, E) be an undirected multigraph with self-
loops. The degree of a vertex v € V is denoted by
dg(u), where each self-loop contributes 1 to the degree.
For SCV, the volume of S'is volg(S) = 3¢5 da (u).
For S C V, the cutset of S, C(S,.S), is the multiset of
edges with one endpoint in S and the other endpoint is
S. The edge expansion pg and the conductance ®¢ of
the graph G are

pG = min W
SCV,|S|<|V]|/2 |S|

and

P = |CG (S: S)'
G = PG\ P)1

ScVvolg(S)<volg(V)/2 volg(S)

In Theorem 2.1 we establish constant conductance.
Immediate implications for routing congestion and spec-
tral gap are in Corollaries 2.3 and 2.4. The key technical
ingredient in the proof of Theorem 2.1 is the bound of
Lemma 2.2, which is time-invariant. This Lemma is es-
tablished by a careful shifting argument that makes full
use of the structure of the underlying evolutionary pro-
Cess.

Theorem 2.1 There is a positive constant a such that,
for any constant d > 2, the random graph Gg4,,, has
edge expansion « and conductance ¥, almost surely.
In particular, for any non-negative constant ¢ < 2(d—

1)—4a-1
Pr [pa,.,. <a] <o(n™°)

and

Pr [@Gd,n < ] <o(n=° .

d+a
Proof: Let us first bound conductance in terms of edge
expansion. Let S C [n] be aset with volg, , (S) < dn/2.
Since, by construction, every vertex associated with .S
contributes d to the total degree of S, we have d|S| <

vol(S) < d|S|+ Ca,.,. (S, S). The left hand side of this
inequality implies |S| < n/2. Now the right hand side
can be used to bound conductance by

& . CGd n (Sa g)
un = min —r
Ga, Scv volg, . (S)
volg, . (S) < dn/2
. CGd,n (Sa S)
> min T TRE—
Scv d|S| + Cay,,
volg, . (S) < dn/2
> P
— d+p

Now let us bound edge expansion. We will use a
counting argument. Say that a set S C [n] is BAD if
ICa. .(S,5)| < a|S|. Now let us fix k& < n/2 and let
us fix a set S C [n] with |S| = k. Let Ty, be the tree
from which G, 4 was generated. Say that a mini-vertex
t, 1 <t < dn is BAD if and only if either ¢ is associ-
ated with S and the father of ¢ is associated with S, or
t is associated with S and the father of ¢ is associated
with S. Say that a mini-vertex is Goob if and only if it
is not BAD. Realize that mini-vertex 1 is BAD, by con-
vention. Realize also that if 1 belongs to S (resp. S) then
the first mini-vertex in S (resp. S) is always Goob, by
construction. Now let us fix the set A C [dn] of GooD
mini-vertices, so that |A| < ak. By Lemma 2.2

()
Pr & .
LA o)
tg A

tis BaD] <

There are (}) choices for S. Once S is fixed, there
are at most ak(??) choices for A. Finally, because of
the way we construct the graph we do not need to ar-
gue about singletons, therefore we need to consider 2 <
k < n/2. The above imply

Pr[3aBAD SET S] < "z/é (n> ak (dn) )
To\k) T \ak) (o)
using (7) ({4=n=28) < (dn=2p),
n/2 -1
dn\ (dk\ ((d—1)n — ak
< k; ak (M) <ak> ((d — k- ak)

n/2

L@ )



using the bound (%)k <M< (en)k

n/2 20k (d—1)k—ak
n\ ok (ed k
< 2ok (%) z) (a)
n/2

ed 20k k (d—1)k—2ak
< k{— — .
<2+ ()

There are O(n) terms in the above summation. So we
can bound the sum by o(n~¢), if we bound the lead-
ing term by o(n=(¢*1)_ It can be seen that, for a small
enough, all terms are smaller than the term for k = 2,
provided d—1-2a > 0, which is true for o small enough
and d > 2. Hence we need to bound n—(24-1—42) Thjs
can be bounded by n—(¢*1) for ¢ as in the statement of
the theorem. O

Lemma 2.2 For a fixed subset S C [n], |S| =k, and for
a fixed subset A C [dn], |A| < ak, the probability that
all mini-vertices associated with [dn] \ A are BAD in

Gan is atmost (o) / (G=ak):

Proof: Let A; be the mini-vertices in A associated with
S and A, be the mini-vertices in A associated with S.
Let |A1| =k and |A2| = ko, with ki+ky = |A| Let
T < T3 < ... < Zgk_k, be the mini-vertices asso-
ciated with S that do not belong to A. We may write
x; = y; + z; + 1, where y; is the total number of mini-
vertices that arrived prior to 2; and belong to A and z; is
the total number of mini-vertices that arrived prior to z;
and belong to [dn] \ A. LetZ1 < &2 < ... < Tag—k, bE
the mini-vertices associated with S that do not belong to
A. We may write z; = y; + 2z; + 1, where y; is the to-
tal number of mini-vertices that arrived prior to z; and
belong to A and z; is the total number of mini-vertices
that arrived prior to z; and belong to [dn] \ L. The cru-
cial observation is that

dk—k1 dn—dk—ka
U {=tu U {&} =ldn—dk] (1)
i=1 i=1

We now bound the probability that all mini-vertices
associated with [dn] \ A are BAD, given that all mini-
vertices in A are GooD. Note that the first mini-vertex 1
is not associated with A, since, by definition, 1 is BAD.
Assume, without loss of generality, that 1 ¢ S, oth-
erwise rename S and S (this lemma does not require
k < n/2). Hence, by connectivity, the first mini-vertex
in S is necessarily Goob and we may assume that that
mini-vertex belongs to A. Realize that the total volume
of the graph when mini-vertex ¢ arrives is

2t-1)—-1, for t>2.

If t = x; (resp. t = Z;), we can write this as

When z; arrives, the total volume of S is contributed
by: (a)All BAD mini-vertices that arrived prior to z;
and are associated with S, where each such mini-vertex
contributes degree 2 and there are ¢ — 1 such mini-
vertices. (b)All Goob mini-vertices that arrived prior to
x;, where each such mini-vertex contributes 1 to the de-
gree and there are y; such mini-vertices; notice y; > 1
since we argued above that the first mini-vertex in S be-
longs to A. This gives that the total degree of S when z;
arrives is

2(i = 1) +y ®)

Now (2) and (3) bound the probability that z; attaches to
S and is hence BAD, given that all mini-verties that ar-
rived prior to z; and belong to A are Goob, while those
belonging to A are BAD by

2(i—1)+y;
2(z,-)+2y,-—1

2(i—1)+y:
2(zi—1)+yi

IN

since y; > 1

2(i—1)+|A|
2(zi—1)+]A]

IN

(i=1)+[A]/2
(z:i—1)+|A]/2

i+|A|
zi+| Al

(4)
When z; arrives, the total volume of S is contributed
by: (a)All BAD mini-vertices that arrived prior to z;
and are associated with S, where there are i — 1 such
mini-vertices and each one contributes degree 2to S, ex-
cept for mini-vertex 1 which contributes degree 1. (b)All
GooD mini-vertices that arrived prior to Z;, where each
such mini-vertex contributes 1 to the degree and there
are g; such mini-vertices. This gives that the total de-
gree of S when z; arrives is

2(i—1) + g ()

Now (2) and (5) bound the probability that z; attaches to
S and is hence BAD, given that all mini-verties that ar-
rived prior to Z; and belong to A are Goob, while those
belonging to A are BAD by

2(i-1)—1+7;
2(2{—1)—1—‘,—217,’ —

2(i-1)—1+7;
2(2,' —1)—1—‘,—@,’

2(+—1)—14+|A
e )
< i+|A|

Zl+|A|



Now (4) and (6) imply that the probability that all mini-
vertices not belonging to .S are BAD is at most

dk—|A| dn—dn—|A|

i +|A|
H Zi+|A| 11;[1

i=1

i+ |A|
Zi + |A|

Which is clearly
(dk)! (dn — dk)!

n—Aprgay e
(dk — |A])! (dn — dk)! (dk)!
(dn — [A]) (AN (@ — 4]

_ (dk\ (dn—|A]) !

= () (1)

- (dk) (dn - ak) -1

= ak /) \dk — ak ’
O

We may now quote approximation techniques for
multicommaodity flow [33, 45] and claim:

Corollary 2.3 Let Gg4,, be a random graph as in The-
orem 2.1. There is a polynomial time algorithm that
routes dg, , (u) - da, ., (v) units of flow between every
pair of vertices « and v, with maximum link congestion
O(nlogn).

The reason that we insist of dg,, ,, (u) - da, ,, (v) units
of flow is that, in general (e.g. for large d), the random
graph may model the core of the entire network. In that
case, every node in the core has to serve a number of cus-
tomers that tends to be proportional to its degree in the
core, hence the demand between two nodes in the core
becomes proportional to the product of their degrees (we
refer the reader to [27] for further explanation of the as-
sumptions on uniform demand and capacities, and the
implications of Corollary 2.3 in routing congestion on
the Internet).

Most of the routing on the Internet is done along inte-
gral shortest paths [28]. Leighton and Rao have already
observed that randomized rounding applies to their al-
gorithm, hence Corollary 2.3 can be restated for inte-
gral paths. We can also apply the techniques of dis-
joint paths for constant-degree expanders (e.g. [12]) and
for routing along short paths [31] through the follow-
ing simple construction: Every vertex u in G 4,5, of de-
gree dg, , (u) is replaced with dg, , (u) mini-vertices.
Each mini-vertex is connected to the corresponding edge
of G 4,, and within the dg, , (u) mini-vertices we put a
constant-degree expander. It can be argued routinely that
the resulting graph is a constant degree expander.

Another notable implication of Theorem 2.1 con-
cerns the spectral gap of the stochastic normalization of

the adjacency matrix of the graph®. In particular, since
we know that A, < 1 — %2 (e.g. see [43], page 53), we
get:

Corollary 2.4 Let Gg4,, be a random graph as in The-
orem 2.1. Let A be the adjacency matrix of Gg,,. Let
P be the stochastic matrix corresponding to a random
walk in G4 ,,. The largest eigenvalue of P is A\; = 1. Let
A2 be the second largest eigenvalue. Then, for some pos-
itive constant ¢, the second eigenvalue A, < 1 — ¢, al-
most surely.

It is known that the cover time of a graph is bounded
by 0(’;1_°—§2") —e.g. see [13]. Then Corollary 2.4 gives
cover time O(nlogn). We note that the cover time
of scale free graphs has been associated with crawl-
ing and searching on the world-wide web and P2P net-
works [20, 19, 1].

Constant-degree expander graphs have played a cen-
tral role in algorithms and complexity over the last thirty
years [37, 43, 15, 45, 40]. In a rather strong sense, The-
orem 2.1 and Corollary 2.4 suggest analogies between
constant-degree constant expanders and constant aver-
age degree scale free graphs. It is reasonable to expect
that analogies will find many further applications.

3. OntheFrugality of Random Graphs

For any graph G and vertices s and ¢, consider the
shortest path P from s to ¢ (assumed to be unique,
with ties broken lexicographically). For each edge e
on this path we define the Vickrey—Clarke-Groves (or
VCG) overpayment of e with respect to s and ¢, denoted
v(e, s,t), to be the increase in the length of the shortest
path from s to ¢ if edge e were deleted. If e is a bridge
disconnecting s from ¢, v(e, s,t) = 0.

Our nonstandard way of dealing with bridges in our
definition needs some explanation. It allows us to an-
alyze with respect to this metric the standard random
graph models in which bridges and small components
are present with some probability even in reasonably
dense graphs. Besides, our definition is compatible with
the premises of the experimental result that we are seek-
ing to explain: In [25] it was pointed out that, in the
graph of the Internet’s autonomous systems, v(e, s, t)
is between 0.3 and 0.4 on the average if restricted to

1 Thisisnot to be confused with the spectrum of the adjacency ma-
trix prior to stochastic normalization, considered elsewhere [24,
36, 18]. The eigenvalues of the matrix prior to normalization are a
restatement of skewed statistics in the large degrees, and are hence
of no particular content or agorithmic signifi cance [36].



the biconnected core of the Internet graph. (That exper-
iment considered vertices as the costly elements, while
we count the number of edges; our results are trivially
translatable to the vertex case.)

It is reasonable to consider the VCG overpayment as
a parameter that somehow reflects the degree to which
a network is “monopolistic”. (The bridges, which we
ignore in our calculation, also exist in the Internet, as
deliberate decisions of autonomous systems to depend
on a single provider, and it is reasonable to consider
them a phenomenon quite distinct from large imbal-
ances in path lengths.) A variety of recent negative re-
sults, reviewed in the introduction, establish that bicon-
nected graphs can have terribly high overpayments even
in much more relaxed models than VCG. For the case
of VCG, it is easy to see that the overpayment can be as
high as a factor of k for a cycle of length k. We can show
the following:

Theorem 3.1 For G € G, (the Erd6s-Renyi random
graph model with n nodes and edge probability p) with
np = w(logn), with probability O(n~°) for some ¢ >
0, the average v(e, s, t) over all vertices s, ¢ and edge e
on the shortest path between s and ¢ is O(1) and Q(nlp).

Proof: Let P be the set of edges in the shortest path
and P, be the set of edges of any other path connect-
ing s and t, i.e. P # P,. For all edges in P\ P,
v(e,s,t) < |Py| — |P|. For an edge e € P, N P,
v(e, s,t) < diameter(G \ e). So we have

ZeEP U(e3 S, t)
|P|

|P N Pyl
1P|
U]
Since both | P| and diameter(G\e) are ©(logn/ log np)
with probability 1 —o(1/n), we must find a P, for which
| P N P,| is bounded from above by a constant in expec-
tation.

Consider the sequence of breadth-first search fron-
tiers (sets of unexpanded nodes) I';(s) = {v € V(G) :
distance(v,s) = i} and Ni(s) = Uj—oT;(s). By
Lemma ([9], Lemma 10.7), for every s and any § > 0,
with probability 1 — O(n=%) we have

< |Py|—|P|+diameter(G\e)

ITi(s)| = (pn)°| < (pn)". ®)

We can define T';(¢t) and N;(¢) similarly. The fron-
tiers T';(s) and T';(¢) meet for the first time at ¢ =
L(|P| + 1)/2] (ignoring an additive constant of 1, for a
moment). We will continue growing these frontiers un-
til they meet again. Let P»(s) be the path defined by our

breadth first search connecting this second meeting point
to s. Define P (t) similarly and let P, = P5(s) U Py(t).

It is easy to see that [P N P»(s)| > ¢ implies that P
and P, go through the same vertex of I';(s) for some
J > 4. But since the vertices of I'; (s) through which ei-
ther P or P, pass can be viewed as independent uniform
draws, the probability that they are the same in I';(s)
is precisely 1/|T;(s)|. Therefore, E(|P2(s) N P|) <
E(3",;>11/|Ti(s)|). Using the same argument for Px(t)
and equation (8) we have with high probability

E(P 0 P)) < B(Y. 2/ITi()]) = O(—).

n
i>1 p

In order to bound |Py| — |P|, let k& be the small-
est ¢ such that |T';(s)| > +/n (where y/n comes from
the birthday paradox). It suffices to consider the case
in which |P,| > 2k and |P| < 2k, and calculate
and add the expectations of the deviations from these
bounds. For P,, consider the set T’y ;(s), and Ty 4;(t),
i = 0,1,...,n, and calculate the probability that they
intersect in fewer than two points. For all but a frac-
tion of O(n=%) of all graphs, these sets have at least
g = 34/n(pn)’ elements, and hence, in these graphs,
the probability that the sets intersect in fewer than two
points is at most g(1 — g/n)9~! < e=®*’* Thus, the
ex(pe)ctation of |Py| — 2k isatmost2 3", o e P/3 =
0(1).

Now, in order to bound the expectation of 2k — |P|,
consider the sets Ty, ;(s),Tx_4(¢),4 = 1,...,k, of car-
dinality at most & = 2./n/(np)*~*. The probability that
these sets intersect is at most 1 — (1 — h/n)"* < 1 —
e=1/2m)” ™ < max{1, (np)2~2}. Hence, the expec-
tation of k— |P|isatmost 2 )", max{1, (np)*~ %} =
O(1), which completes the proof of the upper bound.

For the lower bound, it suffices to notice that the ex-
pectation of k— | P| is Q(1/np), and that indeed | P| < k
and |P»| > k with some non-vanishing probability. O

We believe that with more careful calculations the
upper bound can be made asymptotically equal to the
present lower bound, and with constants for both that
are quite small and close to each other. The inaccuracies
of our present calculation stem from (a) the slight un-
certainty in the size of T';, and (b) round-off problems in
defining k, and appear to be susceptible to a better anal-
ysis.



Extensions

We would like to extend this result to less restrictive
and more “Internet-like” random graph models. By rou-
tine techniques (see, for example [8]), a similar result
can be shown for the random d-regular graph model.

We next focus on its extension to the case of con-

stant expected degree. One first obstacle is that there is
no known equivalent of [9]’s Lemma 10.7 in this case,
since for constant expected degree one cannot use Cher-
noff bounds at each step of the breadth-first search. In
fact, the breadth-first search tree can be skinny with
quite high probability. The following Lemma is useful
in this direction (and possibly in others, see [16] for a
related result).
Lemma 3.2 There is a constant D < 96 In 2 such that
forany1/2 > € > 0 and p > D/n for all but a frac-
tion of O(n—®) for some a > 0 of graphs in G,,, and
vertices s there is a k < helogn/log(np/2) for some
h > 2 such that, conditioned on T', # @, |T'y| > n°.
Proof: Assume without loss of generality that np = D
and k = helogn/logd where d = D/2. Consider the
sequence T'y,T'y,...Tx and call ¢ < k a small step if
ITs|/|T-1] < d.

We have:

P[T4| <n <

(since, in order for this to happen, and since no
T'; is empty, there must be a small step in the last
elogn/logd steps)

Plthere is a small step in the last e logn/ log d steps] <

(by breaking the steps before the last small one into runs
of m > 0 non-small steps of lengths L; adding to at
least k' = k(h — 1)/h, and then taking Chernoff bounds

of the form P[|z — u| > au] < e~ #/12 on the small
steps)

k

> (:1) ilf[le:cp{—(D - d/D)2%dLi} <

m=1

(by observing that each product is maximized by letting
all L;’s be equal to k' /m)

K k
Z ( >6$p{— dlc /m} < 2k —kD/96
m=1 m

which is small for the values of D and & given in the
statement. O

Notice that our rough calculation above only guaran-
tees exponentially growing breadth-first search for quite
large constant degree; a more careful calculation may
bring down this constant considerably. To conclude the
argument for constant expected degree we need the fol-
lowing:

Lemma3.3 If [ is the biggest number for Which
|Ni(s)] < n?/3, the expected value of "
bounded from above by a constant.

Proof: |T';(s)| dominates a random variable with bino-
mial distribution B(m, p), where m = |I';_1(s)|(n —
n~—2/3). Now, using equation 1.14 in [9], for A = mp
and some constants ¢ and ¢», we have

i=1 T ()] (S)I

(A*+k%) }/\k

1 exp{—\ —
E B(m,p) >0) <
(B(m,p) [B(m,p) > 0) I;) k- k!
< ce Pl < c < Co
DY prert (k+1)! = X~ |Tiz1(s)|np

Now
l

2
ZE(er s)| >0) <

i=1

||M?r

O

We can now proceed as in the proof of Theorem 3.1
to show:

Corollary 3.4 The expected v(e, s,t) is O(1) in the gi-
ant component of G, for np > 96 In 2.

Finally, we would very much like to show small con-
stant upper bounds for the expected VCG overcharge in
the preferential attachment and the prescribed power-
law distributed degree models; for the power-law dis-
tributed expected degree model, it follows rather eas-
ily from the results in [17] that the expected VCG over-
charge is O(log log n).
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