
Homework 5: Solutions

6.7.4 Applying Hall’s theorem and defining L = ⌈2 log n⌉,
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Now if k = (1 − ϵ)n then we have (k/n)L−2 ≤ e−ϵ(L−2) ≤ e−3+o(1) if
ϵ ≥ 3/L. We deduce from this that
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So we need to be more careful for k > n0. If there is a set of size k on one
side of the partition with at most k − 1 neighbors, then there is a set X
of size ℓ = n− k + 1 on the other side of the partition with at most ℓ− 1
neighbors. We estimate this by(
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probability that a vertex chooses a neighbor in X.

Summing over ℓ ≤ ℓ0 = n− n0 + 1, this is at most
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Explanation for (2): the binomial probability in (1) is dominated by
the ℓ− 1 term, leading to the factor 2.
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6.7.9 Following the hint we partition [n] into 3 sets A,B,C of size n/3. The
bipiartite graph H induced by A,B is distributed as Gn/3,n/3,p and since
n
3 p ≫ log n

3 this graph has a perfect matching w.h.p. Fix a perfect match-
ing M of H and define another random bipartite graph K with vertices
M,C and an edge (e, x) for each e = {u, v} ∈ M,x ∈ C such that the
edges {x, u} , {x, v} both exist. The random graph K is distributed as
Gn/3,n/3,p2 and since n

3 p
2 ≫ log n

3 this graph has a perfect matching
w.h.p. This perfect matching corresponds to n/3 vertex disjoint triangles.

6.7.10 Arguing as in the proof of Theorem 6.1 we see that
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The only change here is that we can only guarantee that S has at least
k(3n/4− k) neighbors not in T . Continuing,
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if K ≥ 4.
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