Homework 5: Solutions

6.7.4 Applying Hall’s theorem and defining L = [2logn],
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Now if & = (1 — €)n then we have (k/n)F=2 < e=¢(E=2) < g=3+o(l) if
€ > 3/L. We deduce from this that
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So we need to be more careful for & > ng. If there is a set of size k on one
side of the partition with at most k& — 1 neighbors, then there is a set X
of size £ =n — k4 1 on the other side of the partition with at most £ — 1
neighbors. We estimate this by
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We choose X in (,",) ways and then 1 — (1 — %)L lower bounds the
probability that a vertex chooses a neighbor in X.

Summing over £ < £y =n — ng + 1, this is at most
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Explanation for (2): the binomial probability in (1) is dominated by
the £ — 1 term, leading to the factor 2.



6.7.9 Following the hint we partition [n] into 3 sets A, B, C of size n/3. The
bipiartite graph H induced by A, B is distributed as G,,/3 /3, and since
5p > log 5 this graph has a perfect matching w.h.p. Fix a perfect match-
ing M of H and define another random bipartite graph K with vertices
M,C and an edge (e, z) for each e = {u,v} € M,z € C such that the
edges {z,u},{z,v} both exist. The random graph K is distributed as
Grn/3,n/3,p2 and since %pQ > log 3 this graph has a perfect matching
w.h.p. This perfect matching corresponds to n/3 vertex disjoint triangles.

6.7.10 Arguing as in the proof of Theorem 6.1 we see that
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The only change here is that we can only guarantee that S has at least
k(3n/4 — k) neighbors not in 7. Continuing,
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if K > 4.




