Topics on MCMC and on Counting

(a) Hardness: 71, 70, 8].
(b) Mixing: [36, 63], 6], 13], 40, 49, 68].
(c) Volume: [26], 7], 20], 50, [42], 12], 46], 48], [61], 43].
(d) Permanent: 38 .
(e) Linear Extensions of a Partial Order: [10].
(f) Contingency tables: 21, 55].
(g) Ising and Potts Models: [37, [31, [32, 60], [14].
(h) Hardness of approximation: [18, 65], 66], 56].
(i) Satisfiability: 44.
(j) Reliability: 41.
(k) Graph coloring: [35], [71], [22], [23], [24, [19], [54], 45], [34, [62], [11].
(1) Knapsack: [15], 67, [30.
(m) Deterministic Counting: [4, [72], [64, [57, [51], 47], 6], [27], [5], 52], [28].
(n) Matroids: 4], 17, [25, [29, 39, [1].
(o) Dense graphs: [2], 3], 18].
(p) Local Lemma and Counting: [33], [53].
(q) Coupling from the past: [59.
(r) Censoring Lemma: 58]

References

[1] N. Anari, S. Gharan and A. Rezaei, Monte Carlo Markov Chain Algorithms for Sampling Strongly Rayleigh Distributions and Determinantal Point Processes
[2] J.D. Annan, A Randomised Approximation Algorithm for Counting the Number of Forests in Dense Graphs, Combinatorics, Probability and Computing 3 (1994) 273-283.
[3] N. Alon, A.M. Frieze and D. Welsh, Polynomial time randomized approximation schemes for TutteGrthendieck invariants: The dense case, Random Structures and Algorithms 6 (1995) 459-478.
[4] Y. Azar, A. Broder and A.M. Frieze, On the Problem of Approximating the Number of Bases of a Matroid, Information Processing letters 50 (1994) 9-11.
[5] A. Bandyopadhyay and D. Gamarnik, Counting without sampling. New algorithms for enumeration problems using statistical physics, Random Structures and Algorithms 332008.
[6] M. Bayati, D. Gamarnik, D. Katz, C. Nair and P. Tetali, Simple deterministic approxiamtion algorithms for counting matchings, Proceedings of STOC 200%.
[7] I. Bárány and Z. Furédi, Computing the volume is difficult, Discrete and Computational geometry 2 (1987) 319-326.
[8] A. Ben-Dor and S. Halevi, Zero-One permanent is \#P-Complete, A Simpler Proof
[9] R. Bubley and M.E. Dyer, Path Coupling: a Technique for Proving Rapid Mixing in Markov Chains, FOCS 1997.
[10] R. Bubley and M.E. Dyer, Faster random generation of linear extensions Discrete Mathematics 201 (1999) 81-88.
[11] S. Chen and A. Moitra, Linear programming bounds for randomly sampling colorings
[12] B. Cousins and S. Vempala Bypassing KLS: Gaussian Cooling and $O^{*}\left(n^{3}\right)$ Algorithms for Volume and Gaussian Volume
[13] M. Chikita, A.M. Frieze and W. Pegden, Assessing significance in a Markov chain without mixing, to appear in PNAS.
[14] V. Dani, T. Hayes and C. Moore, Spatial Mixing for Independent Sets in Poisson random Trees
[15] M.E. Dyer, Approximate counting by Dynamic Programming, STOC 2003.
[16] M.E. Dyer and A.M. Frieze, Randomly colouring graphs with lower bounds on girth and maximum degree, Random Structures and Algorithms 23 (2003) 167-179.
[17] M.E. Dyer and A.M. Frieze, Random walks, totally unimodular matrices and a randomised dual simplex algorithm, Mathematical Programming 64 (1994) 1-16.
[18] M.E. Dyer, A.M. Frieze and M.R. Jerrum, On Counting Independent Sets in Sparse Graphs, SIAM Journal on Computing 31 (2002) 1527-1541.
[19] M.E. Dyer and A.M. Frieze, Computing the volume of a convex body: a case where randomness provably helps, Proceedings of AMS Symposium on Probabilistic Combinatorics and Its Applications (1991) 123-170.
[20] M.E. Dyer, A.M. Frieze and R. Kannan, A random polynomial time algorithm for approximating the volume of convex bodies, Journal of the Association for Computing Machinery 38 (1991) 1-17.
[21] M.E. Dyer, R. Kannan and J. Mount, Sampling Contingency Tables, Random Structures and Algorithms 16 (1997) 487-506.
[22] C. Efthymiou, A simple algorithm for sampling colourings of G(n,d/n) up to Uniqueness threshold, SIAM Journal on Computing 45 (2016) 2087-2116.
[23] C. Efthymiou, MCMC sampling colourings and independent sets of $\mathrm{G}(\mathrm{n}, \mathrm{d} / \mathrm{n})$ near the uniqueness threshold, Proceedings of the 25th Symposium on Discrete Algorithms (2014) 305-316.
[24] C. Efthymiou, T. Hayes, Şefankoviç and E. Vigoda, Sampling Random Colorings of Sparse Random Graphs.
[25] F. Eisenbrand and S. Vempala, Geometric Random Edge
[26] Elekes, A geometric inequality and the complexity of computing volume, Discrete and Computational Geometry 1 (1986) 288-292.
[27] D. Gamarnik and D. Katz, Correlation decay and deterministic FPFAS for counting list-colorings of a graph, Journal of Discrete Algorithms 12 (2012) 29-47.
[28] H. Guo, C. Liao, P. Lu and C. Zhang, Counting hypergraph colorings in the local lemma regime
[29] T. Feder and M. Mihail, Balanced Matroids, Proceedings of STOC92.
[30] P. Gopalan, A. Klivans and R. Meka, Polynomial-Time Approximation Schemes for Knapsack and Related Counting Problems using Branching Programs
[31] V. Gore and M.R. Jerrum, The Swendsen-Wang process does not always mix rapidly, Journal of Statistical Physics 97 (1999) 67-86.
[32] H. Guo and M.R. Jerrum, Random cluster dynamics for the Ising model is rapidly mixing
[33] H. Guo, M.R. Jerrum and J. Liu, Uniform Sampling through the Lovász Local Lemma
[34] T. Hayes, J. vera anf E. Vigoda, Randomly coloring planar graphs with fewer colors than the maximum degree Random Structures and Algorithms 47 (2015) 731-759.
[35] M.R. Jerrum, A very simple algorithm for estimating the number of kcolorings of a low-degree graph, Random Structures and Algorithms 7 (1995) 157-165.
[36] M.R. Jerrum and A. Sinclair, Approximate Counting, Uniform Generation and Rapidly Mixing Markov Chains Information \& Computation 82 (1989) 93-133.
[37] M.R. Jerrum and A. Sinclair, Polynomial-Time Approximation Algorithms for the Ising Model SIAM Journal on Computing 22 (1993) 1087-1116.
[38] M.R. Jerrum, A. Sinclair and E. Vigoda, A polynomial-time approximation algorithm for the permanent of a matrix with non-negative entries, Journal of the Association for Computing Machinery, 51 (2004) 671-697.
[39] M.R. Jerrum and J-B. Son, Spectral gap and log-Sobolev constant for balanced matroids, Annals of Applied Probability 14 (2004).
[40] M.R. Jerrum, J-B. Son, P. Tetali and E. Vigoda, Elementary bounds on Poincaré and Log-Sobolev constants for decomposable Markov chains, Annals of Applied Probability 14 (2004) 1741-1765.
[41] D. Karger, Fast and Simpler Unbiased Estimator for Network (Un)reliability, Proceedings of the 48 th Annual Symposium on the Foundations of Computer Science, October 2016.
[42] R. Kannan, L. Lovász and M. Simonovits, RANDOM WALKS AND AN $O^{*}\left(n^{5}\right)$ VOLUME ALGORITHM FOR CONVEX BODIES,
[43] R. Kannan, L. Lovász and M. Simonovits, Isoperimetric Problems for Convex Bodies and a Localisation Lemma, Discrete ${ }^{〔}$ Computational Geometry 13 (19995) 541-559.
[44] R. Karp, M. Luby and N. Madras, Monte-Carlo Approximation Algorithms for Enumeration Problems, Journal of Algorithms 10 (1989) 429-448.
[45] L. Lau and M. Molloy, Randomly colouring graphs with girth five and large maximum degree. Proceedings of LATIN 2006.
[46] Y. Lee and S. Vempala, Edan's Stochastic Localisation and the KLS Hyperplane Conjecture: An Improved Lower Bound for Expansion
[47] J. Liu, A. Sinclair and P. Srivastava, The Ising partition function: Zeros and deterministic approximation.
[48] L. Lovász and S. Vempala, Simulated Annealing in Convex Bodies and an $O^{*}\left(n^{4}\right)$ Volume Algorithm, Journal of Computer and System Sciences 72 (2006) 392-417.
[49] D. Levin, Y. Peres and E. Wilmer, Markov Chans and Mixing Times, AMS, 2009.
[50] L. Lovász and M. Simonovits, Random walks in a convexx body and an improved volume algorithm, Random Structures and Algorithms 4 (1993) 359-412.
[51] P. Lu and Y. Lin, Improved PTAS for Multi-Spin systems.
[52] M. Mihalaák, R. Šrámek and P. Widmayer, Counting approximatelyshortest paths in directed acyclic graphs
[53] A. Moitra, Approximate Counting, the Lovássz Local Lemma and Inference in Graphical Models,
[54] M. Molloy, The Glauber dynamics on colourings of a graph with high girth and maximum degree, SIAM Journal on Computing 33 (2004) 721-737.
[55] B. Morris, Improved bounds for sampling conmtingency tables, Random Structures and Algorithms 21 (2002) 135-146.
[56] E. Mossel, D. Weitz and N. Wormald, On the hardness of sampling independent sets beyond the tree threshold, Probability Theory and Related Fields 143 (2009), 401-439.
[57] V. Patel and G. Regts, Deterministic polynomial-time approximation algorithms for partition functions and graph polynomials
[58] Y. Peres and P. Winkler, Can extra updates delay mixing?.
[59] J. Propp and D. Wilson, Exact Sampling with Coupled Markov Chains and Appplications to Statistical Mechanics, Random Structures and Algorithms 9 (1996) 223-252.
[60] R. Restrepo, J. Shin, P. Tetali, E. Vigoda and L. Yang, Improved Mixing Condition on the Grid for Counting and Sampling Independent Sets.
[61] M. Rudelson, Random vectors in the isotropic position, Journal of Functional Analysis 164 (1999) 60-72.
[62] S. Vardi, Randomly coloring graphs of bounded treewidth
[63] A. Sinclair, Improved Bounds for Mixing Rates of Markov Chains and Multicommodity Flow Combinatorics, Probability and Computing 1 (1992) 351-370
[64] A. Sinclair, P. Srivastava and M. Thurley, Approximation algorithms for two-state anti-ferromagnetic spin systems on bounded degree graphs.
[65] A. Sly, Computational Transition at the Uniqueness Threshold, FOCS 2010.
[66] A. Sly and N. Sun, The computational hardness of counting in two-spin models on d-regular graphs, FOCS 2012.
[67] D. Stefankovic, S. Vempala and E. Vigoda, A Deterministic Polynomialtime Approximation Scheme for Counting Knapsack Solutions, SIAM Journal on Computing 41 (2012) 356-366.
[68] D. Stefankovic, S. Vempala and E. Vigoda, Adaptive Simulated Annealing: A Near-optimal Connection between Sampling and Counting, JACM (2009).
[69] L. Valiant, The complexity of computing the permanent, Theoretical Computer Science 8 (1979) 189-201.
[70] L. Valiant, The complexity of enumeration and reliability problems, SIAM Journal on Computing 8 (1979) 410-421.
[71] E. Vigoda, Improved Bounds for Sampling Colorings, Proceedings of the 40th IEEE Symposium on Foundations of Computer Science (FOCS) (1999) 51-59.
[72] D. Weitz, Counting independent sets up to the tree threshold, Proceedings of the thirty-eighth annual ACM symposium on Theory of computing (2006) 140-149.

