
Planar Graphs

A graph G = (V, E) is planar if it can be “drawn” on
the plane without edges crossing except at endpoints
– a planar embedding or plane graph.

More precisely: there is a 1-1 function f : V → R
2

and for each e ∈ E there exists a 1-1 continuous ge :

[0,1] → R
2 such that

(a) e = xy implies f(x) = ge(0) and f(y) = ge(1).
(b) e 6= e′ implies that ge(x) 6= ge′(x

′)

for all x, x′ ∈ (0,1).

ge or its image is referred to as a curve.
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• Theorem (Fáry)
A simple planar graph has an embedding in which
all edges are straight lines.
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• Not all graphs are planar.

• Graphs can have several non-isomorphic embed-
dings.
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Faces

Given a plane graph G, a face is a maximal region S

such that x, y ∈ S implies that x, y can be joined by
a curve which does not meet any edge of the embed-
ding.
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The above embedding has 7 faces.
f0 is the outer or infinite face.

φ(G) is the number of faces of G.
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Jordan Curve Theorem

If f is a 1-1 continuous map from the circle S1 → R
2

then f partitions R
2 \ f(S1) into two disjoint con-

nected open sets Int(f), Ext(f). The former is bounded
and the latter is unbounded.

As a consequence, if x ∈ Int(f), y ∈ Ext(f) and
x, y are joined by a closed curve C in R

2 then C

meets f(S1).

4



K5 is not planar.
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v4 is inside or outside of C – assume inside.

v1v 3v4v1 etc.

define Jordan
curves.
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Now no place to put v5 – e.g. if we place v5 into C1

then the v5v3 curve crosses the boundary of C1.
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Stereographic Projection

A graph is embeddable in the plane iff it is embed-
dable on the surface of a sphere.
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f : R
2 → S2 \ {z}. f(x, y) =

(

2x
ρ

, 2y
ρ

, ρ−2
ρ

)

where

ρ = 1 + x2 + y2.

Given an embedding on the sphere we can choose z

to be any point not an edge or vertex of the embed-
ding. Thus if v is a vertex of a plane graph, G can be
embedded in the plane so that v is on the outer face.
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The boundary b(f) of face f of plane graph G is a
closed clockwise walk around the edges of the face.
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b(f0) = e1e2e3e8e9e10e11e8e4e5

b(f1) = e1e2e3e6e7e6e4e5

b(f2) = e9e10e11

b(f3) = e7
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The degree d(f) of face f is the number of edges in
b(f).

Each edge appears twice as an edge of a boundary
and so if F is the set of faces of G, then

∑

f∈F

d(f) = 2ε.

A cut edge like e6 appears twice in the boundary of a
single face.
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Dual Graphs

Let G be a plane graph. We define its dual G∗ =

(V ∗, E∗) as follows: There is a vertex f∗ correspond-
ing to each face f of G.
There is an edge e∗ corresponding to each edge e of
G.
f∗ and g∗ are joined by edge e∗ iff edge e is on the
boundary of f and g.
Cut edges yield loops.

Theorem 1
(a) G∗ is planar.
(b) G connected implies G∗∗ = G.

2
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The following is possible: start with planar graph G

and form 2 distinct embeddings G1, G2. The duals
G∗

1, G∗
2 may not be isomorphic.

1

2

G

G

G1 has a face of degree 5 and so G∗
1 has a vertex of

degree 5. G∗
2 has maximum degree 4.

Thus duality is a meaningfull notion w.r.t. plane graphs
and not planar graphs.
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φ(G) is the number of faces of plane graph G.

(a) ν(G∗) = φ(G).

(b) ε(G∗) = ε(G).

(c) dG∗(f∗) = dG(f).

Note that (c) says that the degree of f∗ in G∗ is equal
to the size of the boundary of f in G.
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Euler’s Formula

Theorem 2 Let G be a connected plane graph. Then

ν − ε + φ = 2.

Proof By induction on ν.
If ν = 1 then G is a collection of loops.

φ = ε + 1.
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If ν > 1 there must be an edge e which is not a loop.
Contract e to get G · e.
G · e is connected.

φ(G · e) = φ(G)

ν(G · e) = ν(G) − 1

ε(G · e) = ε(G) − 1

But then

ν(G) − φ(G) + ε(G) = ν(G · e) − φ(G · e) + ε(G · e)

= 2

by induction. 2
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Corollary 1 All plane embeddings of a planar graph
G have the same number ε − ν + 2 faces.

Corollary 2 If G is a simple plane graph with ν ≥ 3

then

ε ≤ 3ν − 6.

Proof Every face has at least 3 edges. Thus

2ε =
∑

f∈F

d(f) ≥ 3φ. (1)

Thus by Euler’s formula,

ν − ε +
2

3
ε ≥ 2.

2

It follows from the above proof that if ε = 3ν − 6 then
there is equality in (1) and so every face of G is a
triangle.
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Corollary 3 If G is a planar graph then δ(G) ≤ 5.

Proof

νδ ≤ 2ε ≤ 6ν − 12.

2

Corollary 4 If G is a planar graph then χ(G) ≤ 6.

Proof Since each subgraph H of G is planar we
see that the colouring number δ∗(G) ≤ 5. 2

Corollary 5 K5 is non-planar.

Proof

ε(K5) = 10 > 3ν(K5) − 6 = 9.

2
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Corollary 6 K3,3 is non-planar.

Proof K3,3 has no odd cycles and so if it could be
embedded in the plane, every face would be of size at
least 4. In which case

4φ ≤
∑

f∈F

d(f) = 2ε = 18

and so φ ≤ 4.

But then from Euler’s formula,

2 = 6 − 9 + φ ≤ 1,

contradiction. 2
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Kuratowski’s Theorem

A sub-division of a graph G is one which is obtained
by replacing edges by (vertex disjoint) paths.

Clearly, if G is planar then any sub-division of G is
also planar.

Theorem 3 A graph is non-planar iff it contains a sub-
division of K3,3 or K5.
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Theorem 4 If G is planar then χ(G) ≤ 5.

By induction on ν. Trivial for ν = 1.

Suppose G has ν > 1 vertices and the result is true
for all graphs with fewer vertices. G has a vertex v

of degree at most 5. H = G − v can be properly
5-coloured, induction.

If dG(v) ≤ 4 then we can colour v with a colour not
used by one of its neighbours.
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Suppose dG(v) = 5. Take some planar embedding.
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H = G − v can be 5-coloured. We can assume
that c(vi) 6= c(vj) for i 6= j else we can extend the
colouring c to v as previously. We can also assume
that c(vi) = i for 1 ≤ i ≤ 5.
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Let Ki = {u ∈ V − v : c(u) = i for 1 ≤ i ≤ 5 and
let Hi,j = H[Ki ∪ Kj] for 1 ≤ i < j ≤ 5.

First consider H1,3. If v1 and v3 belong to different
components C1, C3 of H1,3 then we can interchange
the colours 1 and 3 in C1 to get a new proper colour-
ing c′ of H with c′(v1) = c′(v3) = 3 which can then
be extended to v.

So assume that there is a path P1,3 from v1 to v3

which only uses vertices from K1 ∪ K3. Assume
w.l.o.g. that v2 is inside the cycle (v1, v, v3, P1,3, v1),
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Now consider H2,4. We claim that v2 and v4 are in
different components C2, C4, in which case we can
interchange the colours 2 and 4 in C2 to get a new
colouring c′′ with c′′(v2) = c′′(v4).

If v2 and v4 are in the same component of H2,4 then
there is a path P2,4 from v2 to v4 which only uses
vertices of colour 2 or 4. But this path would have to
cross P1,3 which only uses vertices of colour 1 and 3
– contradiction. 2
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