## Planar Graphs

A graph $G=(V, E)$ is planar if it can be "drawn" on the plane without edges crossing except at endpoints - a planar embedding or plane graph.

More precisely: there is a 1-1 function $f: V \rightarrow \boldsymbol{R}^{2}$ and for each $e \in E$ there exists a 1-1 continuous $g_{e}$ : $[0,1] \rightarrow \boldsymbol{R}^{2}$ such that
(a) $e=x y$ implies $f(x)=g_{e}(0)$ and $f(y)=g_{e}(1)$. (b) $e \neq e^{\prime}$ implies that $g_{e}(x) \neq g_{e^{\prime}}\left(x^{\prime}\right)$ for all $x, x^{\prime} \in(0,1)$.
$g_{e}$ or its image is referred to as a curve.


Planar


- Theorem (Fáry)

A simple planar graph has an embedding in which all edges are straight lines.


- Not all graphs are planar.
- Graphs can have several non-isomorphic embeddings.


## Faces

Given a plane graph $G$, a face is a maximal region $S$ such that $x, y \in S$ implies that $x, y$ can be joined by a curve which does not meet any edge of the embedding.


The above embedding has 7 faces. $f_{0}$ is the outer or infinite face.
$\phi(G)$ is the number of faces of $G$.

## Jordan Curve Theorem

If $f$ is a 1-1 continuous map from the circle $S^{1} \rightarrow \boldsymbol{R}^{2}$ then $f$ partitions $\boldsymbol{R}^{2} \backslash f\left(S^{1}\right)$ into two disjoint connected open sets $\operatorname{Int}(f), \operatorname{Ext}(f)$. The former is bounded and the latter is unbounded.

As a consequence, if $x \in \operatorname{Int}(f), y \in \operatorname{Ext}(f)$ and $x, y$ are joined by a closed curve $C$ in $\boldsymbol{R}^{2}$ then $C$ meets $f\left(S^{1}\right)$.
$K_{5}$ is not planar.

$v_{4}$ is inside or outside of $C$ - assume inside.
$v_{1} v_{3} v_{4} v_{1}$ etc. define Jordan curves.


Now no place to put $v_{5}-$ e.g. if we place $v_{5}$ into $C_{1}$ then the $v_{5} v_{3}$ curve crosses the boundary of $C_{1}$.

## Stereographic Projection

A graph is embeddable in the plane iff it is embeddable on the surface of a sphere.

$f: \boldsymbol{R}^{2} \rightarrow S^{2} \backslash\{z\} . f(x, y)=\left(\frac{2 x}{\rho}, \frac{2 y}{\rho}, \frac{\rho-2}{\rho}\right)$ where $\rho=1+x^{2}+y^{2}$.

Given an embedding on the sphere we can choose $z$ to be any point not an edge or vertex of the embedding. Thus if $v$ is a vertex of a plane graph, $G$ can be embedded in the plane so that $v$ is on the outer face.

The boundary $b(f)$ of face $f$ of plane graph $G$ is a closed clockwise walk around the edges of the face.


$$
\begin{aligned}
& b\left(f_{0}\right)=e_{1} e_{2} e_{3} e_{8} e_{9} e_{10} e_{11} e_{8} e_{4} e_{5} \\
& b\left(f_{1}\right)=e_{1} e_{2} e_{3} e_{6} e_{7} e_{6} e_{4} e_{5} \\
& b\left(f_{2}\right)=e_{9} e_{10} e_{11} \\
& b\left(f_{3}\right)=e_{7}
\end{aligned}
$$

The degree $d(f)$ of face $f$ is the number of edges in $b(f)$.

Each edge appears twice as an edge of a boundary and so if $F$ is the set of faces of $G$, then

$$
\sum_{f \in F} d(f)=2 \epsilon
$$

A cut edge like $e_{6}$ appears twice in the boundary of a single face.

## Dual Graphs

Let $G$ be a plane graph. We define its dual $G^{*}=$ ( $V^{*}, E^{*}$ ) as follows: There is a vertex $f^{*}$ corresponding to each face $f$ of $G$.
There is an edge $e^{*}$ corresponding to each edge $e$ of $G$.
$f^{*}$ and $g^{*}$ are joined by edge $e^{*}$ iff edge $e$ is on the boundary of $f$ and $g$.
Cut edges yield loops.

## Theorem 1

(a) $G^{*}$ is planar.
(b) $G$ connected implies $G^{* *}=G$.


The following is possible: start with planar graph $G$ and form 2 distinct embeddings $G_{1}, G_{2}$. The duals $G_{1}^{*}, G_{2}^{*}$ may not be isomorphic.

$G_{1}$

$G_{1}$ has a face of degree 5 and so $G_{1}^{*}$ has a vertex of degree 5. $G_{2}^{*}$ has maximum degree 4 .

Thus duality is a meaningfull notion w.r.t. plane graphs and not planar graphs.
$\phi(G)$ is the number of faces of plane graph $G$.
(a) $\nu\left(G^{*}\right)=\phi(G)$.
(b) $\epsilon\left(G^{*}\right)=\epsilon(G)$.
(c) $d_{G^{*}}\left(f^{*}\right)=d_{G}(f)$.

Note that (c) says that the degree of $f^{*}$ in $G^{*}$ is equal to the size of the boundary of $f$ in $G$.

## Euler's Formula

Theorem 2 Let $G$ be a connected plane graph. Then

$$
\nu-\epsilon+\phi=2 .
$$

Proof By induction on $\nu$.
If $\nu=1$ then $G$ is a collection of loops.


If $\nu>1$ there must be an edge $e$ which is not a loop. Contract $e$ to get $G \cdot e$. $G \cdot e$ is connected.

$$
\begin{aligned}
\phi(G \cdot e) & =\phi(G) \\
\nu(G \cdot e) & =\nu(G)-1 \\
\epsilon(G \cdot e) & =\epsilon(G)-1
\end{aligned}
$$

But then

$$
\begin{aligned}
\nu(G)-\phi(G)+\epsilon(G) & =\nu(G \cdot e)-\phi(G \cdot e)+\epsilon(G \cdot e) \\
& =2
\end{aligned}
$$

by induction.

Corollary 1 All plane embeddings of a planar graph $G$ have the same number $\epsilon-\nu+2$ faces.

Corollary 2 If $G$ is a simple plane graph with $\nu \geq 3$ then

$$
\epsilon \leq 3 \nu-6
$$

Proof Every face has at least 3 edges. Thus

$$
\begin{equation*}
2 \epsilon=\sum_{f \in F} d(f) \geq 3 \phi \tag{1}
\end{equation*}
$$

Thus by Euler's formula,

$$
\nu-\epsilon+\frac{2}{3} \epsilon \geq 2
$$

It follows from the above proof that if $\epsilon=3 \nu-6$ then there is equality in (1) and so every face of $G$ is a triangle.

Corollary 3 If $G$ is a planar graph then $\delta(G) \leq 5$.

Proof

$$
\nu \delta \leq 2 \epsilon \leq 6 \nu-12
$$

Corollary 4 If $G$ is a planar graph then $\chi(G) \leq 6$.

Proof Since each subgraph $H$ of $G$ is planar we see that the colouring number $\delta^{*}(G) \leq 5$.

Corollary $5 K_{5}$ is non-planar.

Proof

$$
\epsilon\left(K_{5}\right)=10>3 \nu\left(K_{5}\right)-6=9 .
$$

## Corollary $6 K_{3,3}$ is non-planar.

Proof $\quad K_{3,3}$ has no odd cycles and so if it could be embedded in the plane, every face would be of size at least 4. In which case

$$
4 \phi \leq \sum_{f \in F} d(f)=2 \epsilon=18
$$

and so $\phi \leq 4$.

But then from Euler's formula,

$$
2=6-9+\phi \leq 1,
$$

contradiction.

## Kuratowski's Theorem

A sub-division of a graph $G$ is one which is obtained by replacing edges by (vertex disjoint) paths.


Clearly, if $G$ is planar then any sub-division of $G$ is also planar.

Theorem 3 A graph is non-planar iff it contains a subdivision of $K_{3,3}$ or $K_{5}$.

Theorem 4 If $G$ is planar then $\chi(G) \leq 5$.
By induction on $\nu$. Trivial for $\nu=1$.

Suppose $G$ has $\nu>1$ vertices and the result is true for all graphs with fewer vertices. $G$ has a vertex $v$ of degree at most 5. $H=G-v$ can be properly 5-coloured, induction.

If $d_{G}(v) \leq 4$ then we can colour $v$ with a colour not used by one of its neighbours.

Suppose $d_{G}(v)=5$. Take some planar embedding.

$H=G-v$ can be 5 -coloured. We can assume that $c\left(v_{i}\right) \neq c\left(v_{j}\right)$ for $i \neq j$ else we can extend the colouring $c$ to $v$ as previously. We can also assume that $c\left(v_{i}\right)=i$ for $1 \leq i \leq 5$.

$$
\begin{aligned}
& \text { Let } K_{i}=\{u \in V-v: c(u)=i \text { for } 1 \leq i \leq 5 \text { and } \\
& \text { let } H_{i, j}=H\left[K_{i} \cup K_{j}\right] \text { for } 1 \leq i<j \leq 5 .
\end{aligned}
$$

First consider $H_{1,3}$. If $v_{1}$ and $v_{3}$ belong to different components $C_{1}, C_{3}$ of $H_{1,3}$ then we can interchange the colours 1 and 3 in $C_{1}$ to get a new proper colouring $c^{\prime}$ of $H$ with $c^{\prime}\left(v_{1}\right)=c^{\prime}\left(v_{3}\right)=3$ which can then be extended to $v$.

So assume that there is a path $P_{1,3}$ from $v_{1}$ to $v_{3}$ which only uses vertices from $K_{1} \cup K_{3}$. Assume w.l.o.g. that $v_{2}$ is inside the cycle ( $v_{1}, v, v_{3}, P_{1,3}, v_{1}$ ),


Now consider $H_{2,4}$. We claim that $v_{2}$ and $v_{4}$ are in different components $C_{2}, C_{4}$, in which case we can interchange the colours 2 and 4 in $C_{2}$ to get a new colouring $c^{\prime \prime}$ with $c^{\prime \prime}\left(v_{2}\right)=c^{\prime \prime}\left(v_{4}\right)$.

If $v_{2}$ and $v_{4}$ are in the same component of $H_{2,4}$ then there is a path $P_{2,4}$ from $v_{2}$ to $v_{4}$ which only uses vertices of colour 2 or 4 . But this path would have to cross $P_{1,3}$ which only uses vertices of colour 1 and 3 - contradiction.

