Vertex Colourings

We assume in this chapter that G is simple.

A k - colouring of (the vertices of) G is a mapping $c: V \rightarrow \{1, 2, \dots, k\}.$

c(v) is the colour of vertex v.

 $K_i = \{v \in V : c(v) = i\}$ is the set of vertices with colour *i*.

c is *proper* if K_1, K_2, \ldots, K_k are independent sets i.e. adjacent vertices v, w have $c(v) \neq c(w)$.

G is k - colourable if it has a proper *k*- colouring. A graph is *k*-colourable iff it is *k*-partite. The *Chromatic Number*

 $\chi(G) = \min\{k : G \text{ is } k \text{-colourable}\}.$

Lemma 1

$$\chi(G) \ge \max\{cl(G), \nu/\alpha(G)\}$$

where cl(G) is the size of the largest clique n G.

Proof If *C* is a clique of *G* then every vertex of *C* must have a different colour in a proper colouring of G.

If K_1, K_2, \ldots, K_k defines a proper k-colouring then

$$\nu = \sum_{i=1}^{k} |K_i| \le k\alpha(G).$$

2

Greedy Colouring Algorithm

Let $V = \{v_1, v_2, \dots, v_n\}$ and $V_i = \{v_1, v_2, \dots, v_i\}$ for $i = 1, 2, \dots, n$.

begin

for i = 1 to n do begin $c(v_i) := \min\{j : \not\exists w \in N_G(v_i) \cap V_{i-1} \text{ with} c(w) = j\}$

end

end

Theorem 1

$\chi(G) \le \Delta(G) + 1.$

The Greedy Colouring algorithm produces a proper k-colouring for some $k \leq \Delta + 1$ where

$$k \leq 1 + \max_{i} |N_G(v_i) \cap V_{i-1}|.$$
 (1)

(a) The colouring is proper: Suppose $v_r v_s \in E$ and r < s. $c(v_r) \neq c(v_s)$ since $c(v_s)$ is the lowest numbered colour that is not used by a neighbour of v_s in $\{v_1, v_2, \ldots, v_{s-1}\},\$

(b) At most $\Delta + 1$ colours are used: $|N_G(v_i)| \leq \Delta$ and so the minimum above is never more than $\Delta + 1$.

If G is a complete graph or an odd cycle then $\chi(G) = \Delta + 1$.

Colouring Number

Let

$$\delta^*(G) = \max_{S \subseteq V} \delta(G[S])$$

(the maximum over the vertex induced subgraphs of their minimum degrees.)

 $\delta(G) = 2$ and $\delta^*(G) = 3$.

Theorem 2

$$\chi(G) \le \delta^*(G) + 1.$$

Proof Let $V = \{v_1, v_2, \dots, v_n\}$ where

 v_i is a minimum degree vertex of $G[V_i]$.

Run the greedy colouring algorithm with this vertex order.

$$|N_G(v_i) \cap V_{i-1}| = \delta(G[V_i]) \le \delta^*.$$

The theorem follows from (1).

Brook's Theorem

Theorem 3 If *G* is a connected graph which is not a complete graph or an odd cycle then $\chi(G) \leq \Delta(G)$.

Proof We shall prove this by induction on the number of vertices in *G*.

Assume that G is connected but not a complete graph or an odd cycle.

If G has a cutpoint v let G - v have components C_1, C_2, \ldots, C_p and let $W_i = C_i + v$ for $i = 1, 2, \ldots, p$. Let $k_i = \chi(G[W_i])$ and properly k_i -colour the vertices of each W_i so that v has colour 1 in each.

This induces a proper k-colouring of G where $k = \max\{k_1, k_2, \ldots, k_p\}$.

We argue that $k \leq \Delta$. If say $k_1 = \Delta + 1$ then (by induction) either W_1 is an odd cycle or a complete graph on k_1 vertices..

If W_1 is an odd cycle then $k_1 = 3$ and $\Delta = 2$ but now $d_G(v) \ge 3$ — contradiction.

If W_1 is a complete graph on k_1 vertices then $\Delta \ge d_G(v) \ge k_1$ — contradiction.

Suppose next that G contains a vertex v with $d_G(v) \le \Delta - 1$. Let H = G - v.

If *H* is an odd cycle then $\Delta(G) = 3$. We can 3-colour *H* and then colour *v* with a colour not used by one of its ≤ 2 neighbours. Thus $\chi(G) = 3$ as required.

If *H* is a *k*-clique then $\Delta(G) = k$. We *k*-colour *H* and extend the colouring to *v* as *v* has less than *k* neighbours in *H*.

If *H* is is neither a clique or an odd cycle then we can Δ -colour it. We can extend this colouring to *v* by using one of the colours not used so far in $N_G(v)$.

We can therefore assume that G is Δ -regular and 2connected with $\Delta \geq 3$. We now consider 2-vertex cutsets. Suppose first that G contains vertices u, v such that $uv \in E$ and u is a cut point of H = G - v.

Let C_1, C_2, \ldots, C_k be the components of H-v. Each C_i contains at least one neighbour x_i of v, else u is a cutpoint of G.

Take a Δ -colouring of H. Assume first that all neighbours of u have different colours. Interchange colours c_1, c_2 of x_1, x_2 within C_2 only.

Because u does not have colour c_1 or c_2 and C_1 has no neighbours other than u we see that this yields a new proper colouring of H, but now x_1 and x_2 have the same colour c_1 .

Thus we can assume that we have a Δ -colouring of H in which 2 neighbours of v have the same colour. This colouring can be extended to v since fewer than Δ colours are being used by neighbours of v. Suppose then that there are no two neighbours which form a 2-vertex cut set. We prove the existence of vertices a, b, c such that

 $ab, ac \in E \text{ and } bc \notin E \text{ and } G - \{b, c\} \text{ is connected.}$ (2)

Choose $y \in V$ and let x be at distance 2 from x. y cannot be a neighbour of every other vertex else G is $(\Delta + 1)$ -clique. Let x be the middle vertex of a path from x to y of length 2. Then $xy, xz \in E$ and $yz \notin E$.

If $G - \{yz\}$ is connected then let a, b, c = x, y, z.

Otherwise let $G - \{yz\}$ have components C_1, C_2, \ldots, C_k . y has a neighbour $\alpha \neq x$ in C_1 else x is of degree 2 or is a neighbour of z which is a cutpoint of G - z. Similarly, y has a neighbour $\beta \neq x$ in C_2 .

We claim that $H = G - \{\alpha, \beta\}$ is connected and so we can take $a, b, c = y, \alpha, \beta$.

Suppose $C_2 - \beta$ has components D_1, D_2, \ldots . Then z is adjacent to D_1 else β is a cutpoint of G - y. Similarly, z is adjacent to all components of $C_1 - \alpha$ and $C_2 - \beta$. Now H contains the path x, y, z and every other component C_3, \ldots, C_k is connected to y, z and so H is connected.

Suppose that (2) holds. We run the Greedy colouring algorithm with

$$v_1 = b, v_2 = c, v_3, \dots, v_{n-1}, v_n = a$$

The sequence $v_3, \ldots, v_{n-1}, v_n$ is obtained by doing BFS from a in $G - \{b, c\}$.

The important thing is that for $3 \le i \le n-1$

 $\exists j > i \text{ such that } v_j \text{ is a neighbour of } v_i.$ (3)

Greedy uses at most \triangle colours.

 v_1 and v_2 both get colour 1.

For $3 \le i \le n - 1$, (3) implies that at most $\Delta - 1$ of v_i 's neighbours have already been coloured when we come to colour v - i.

Finally, $v_n = a$ has at least 2 neighbours, b, c using the same colour and so at most $\Delta - 1$ colours have been used so far in *a*'s neighbourhood.

Chromatic Polynomial

 $\pi_k(G)$ is the number of distinct proper *k*-colourings of *G*.

Theorem 4 Let e = uv be an edge of G. Then

$$\pi_k(G) = \pi_k(G - e) - \pi_k(G \cdot e).$$

Proof $\pi_k(G)$ = the number of *k*-colourings of G - e in which u, v have different colours. $\pi_k(G \cdot e)$ = the number of *k*-colourings of G - e in which u, v have the same colour. **Theorem 5** $\pi_k(G)$ is a polynomial of degree ν in k with integer coefficients, leading term k^{ν} and constant term zero. The coefficients alternate in sign.

Proof By induction on |E|. If $E = \emptyset$ then $\pi_k(G) = k^{\nu}$.

Assume true for all graphs with < m edges and let G be a graph with m edges. Then by induction

$$\pi_k(G-e) = k^{\nu} + \sum_{i=1}^{\nu-1} (-1)^{\nu-i} a_i k^i$$

$$\pi_k(G \cdot e) = k^{\nu-1} + \sum_{i=1}^{\nu-2} (-1)^{\nu-1-i} b_i k^i$$

where $a_1, \ldots, a_{\nu-1}, b_1, \ldots, b_{\nu-2}$ are non-negative integers. Then

$$\pi_k(G) = k^{\nu} - (a_{\nu-1} + 1)k^{\nu-1} + \sum_{i=1}^{\nu-2} (-1)^{\nu-i} (a_i + b_i)k^i.$$

Triangle free graphs with high chromatic number

Theorem 6 For any positive integer k, there exists a triangle-free graph with chromatic number k.

Proof For k = 1, 2 we use K_1, K_2 respectively.

For larger k we use induction on k. Suppose we have a triangle-free graph $G_k = (V_k, E_k)$ of chromatic number k. Let $V_k = \{v_1, v_2, \dots, v_n\}$. Form G_k as follows:

Add vertices $\{v\} \cup U = \{u_1, u_2, \dots, u_n\}$ to G_k . Join u_i to v and the neighbours of v_i in G_k , for $1 \le i \le n$.

(a) G_{k+1} has no triangles.

U is an independent set and so any triangle will have at most one vertex from *U*. Thus there are no triangles involving *v*. Finally, if u_i, v_j, v_k is a triangle then v_i, v_j, v_k is a triangle of G_k .

(b) G_{k+1} does not have a proper k-colouring. Suppose there was one c^* . We can assume that $c^*(v) = k$ and then U is coloured from $\{1, 2, ..., k-1\}$. But now we can define a proper (k-1)-colouring c of G_k by

$$c(v_i) = \begin{cases} c^*(v_i) & \text{if } c^*(v_i) \neq k \\ c^*(u_i) & \text{if } c^*(v_i) = k \end{cases}$$

This is a proper colouring of G_k since if $v_i v_j$ is an edge of G_k with $c(v_i) = c(v_j)$ then exactly one of $c(v_i) \neq c^*(v_i)$ or $c(v_j) \neq c^*(v_j)$ holds. Assume the former. Then $c^*(v_i) = k$ and $c(v_i) = c^*(u_i) \neq c^*(v_j) = c(v_j)$. Thus G_{k+1} is k-colourable implies G_k is (k-1)-colourable, which it isn't.

(c) G_{k+1} has a proper (k+1)-colouring.

Let c be a proper k-colouring of G_k . Extend this to U by putting $c(u_i) = c(v_i)$ and then let c(v) = k + 1. Note that u_i and v_i have the same colour and the same neighbours in V_k and so the colouring remains proper.