
Vertex Colourings

We assume in this chapter that G is simple.

A k − colouring of (the vertices of) G is a mapping

c : V → {1,2, . . . , k}.

c(v) is the colour of vertex v.

Ki = {v ∈ V : c(v) = i} is the set of vertices with
colour i.
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c is proper if K1, K2, . . . , Kk are independent sets
i.e. adjacent vertices v, w have c(v) 6= c(w).
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G is k − colourable if it has a proper k- colouring.
A graph is k-colourable iff it is k-partite.
The Chromatic Number

χ(G) = min{k : G is k-colourable}.

Lemma 1

χ(G) ≥ max{cl(G), ν/α(G)}

where cl(G) is the size of the largest clique n G.

Proof If C is a clique of G then every vertex of C

must have a different colour in a proper colouring of
G.

If K1, K2, . . . , Kk defines a proper k-colouring then

ν =
k

∑

i=1

|Ki| ≤ kα(G).
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Greedy Colouring Algorithm

Let V = {v1, v2, . . . , vn} and Vi = {v1, v2, . . . , vi}

for i = 1,2, . . . , n.

begin
for i = 1 to n do
begin
c(vi) := min{j :6 ∃w ∈ NG(vi) ∩ Vi−1 with

c(w) = j}

end
end
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Theorem 1

χ(G) ≤ ∆(G) + 1.

The Greedy Colouring algorithm produces a proper
k-colouring for some k ≤ ∆ + 1 where

k ≤ 1 + max
i

|NG(vi) ∩ Vi−1|. (1)

(a) The colouring is proper: Suppose vrvs ∈ E and
r < s. c(vr) 6= c(vs) since c(vs) is the lowest num-
bered colour that is not used by a neighbour of vs in
{v1, v2, . . . , vs−1},

(b) At most ∆ + 1 colours are used: |NG(vi)| ≤ ∆

and so the minimum above is never more than ∆+1.
2

If G is a complete graph or an odd cycle then χ(G) =

∆ + 1.
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Colouring Number

Let

δ∗(G) = max
S⊆V

δ(G[S])

(the maximum over the vertex induced subgraphs of
their minimum degrees.)

G

δ(G) = 2 and δ∗(G) = 3.
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Theorem 2

χ(G) ≤ δ∗(G) + 1.

Proof Let V = {v1, v2, . . . , vn} where

vi is a minimum degree vertex of G[Vi].
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Run the greedy colouring algorithm with this vertex
order.

|NG(vi) ∩ Vi−1| = δ(G[Vi]) ≤ δ∗.

The theorem follows from (1). 2
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Brook’s Theorem

Theorem 3 If G is a connected graph which is not a
complete graph or an odd cycle then χ(G) ≤ ∆(G).

Proof We shall prove this by induction on the num-
ber of vertices in G.

Assume that G is connected but not a complete graph
or an odd cycle.

If G has a cutpoint v let G − v have components
C1, C2, . . . , Cp and let Wi = Ci+v for i = 1,2, . . . , p.
Let ki = χ(G[Wi]) and properly ki-colour the ver-
tices of each Wi so that v has colour 1 in each.
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This induces a proper k-colouring of G where k =

max{k1, k2, . . . , kp}.
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We argue that k ≤ ∆. If say k1 = ∆ + 1 then (by
induction) either W1 is an odd cycle or a complete
graph on k1 vertices..
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If W1 is an odd cycle then k1 = 3 and ∆ = 2 but
now dG(v) ≥ 3 — contradiction.

If W1 is a complete graph on k1 vertices then ∆ ≥

dG(v) ≥ k1 — contradiction.

Suppose next that G contains a vertex v with dG(v) ≤

∆ − 1. Let H = G − v.
If H is an odd cycle then ∆(G) = 3. We can 3-colour
H and then colour v with a colour not used by one of
its ≤ 2 neighbours. Thus χ(G) = 3 as required.
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If H is a k-clique then ∆(G) = k. We k-colour H

and extend the colouring to v as v has less than k

neighbours in H.
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If H is is neither a clique or an odd cycle then we
can ∆-colour it. We can extend this colouring to v by
using one of the colours not used so far in NG(v).

We can therefore assume that G is ∆-regular and 2-
connected with ∆ ≥ 3.
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We now consider 2-vertex cutsets. Suppse first that
G contains vertices u, v such that uv ∈ E and u is a
cut point of H = G − v.
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Let C1, C2, . . . , Ck be the components of H−v. Each
Ci contains at least one neighbour xi of v, else u is a
cutpoint of G.

Take a ∆-colouring of H. Assume first that all neigh-
bours of u have different colours. Interchange colours
c1, c2 of x1, x2 within C2 only.
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Because u does not have colour c1 or c2 and C1 has
no neighbours other than u we see that this yields a
new proper colouring of H, but now x1 and x2 have
the same colour c1.

Thus we can assume that we have a ∆-colouring of
H in which 2 neighbours of v have the same colour.
This colouring can be extended to v since fewer than
∆ colours are being used by neighbours of v.
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Suppose then that there are no two neighbours which
form a 2-vertex cut set. We prove the existence of
vertices a, b, c such that

ab, ac ∈ E and bc /∈ E and G − {b, c} is connected.
(2)

Choose y ∈ V and let x be at distance 2 from x. y

cannot be a neighbour of every other vertex else G is
(∆ + 1)-clique. Let x be the middle vertex of a path
from x to y of length 2. Then xy, xz ∈ E and yz /∈ E.

If G − {yz} is connected then let a, b, c = x, y, z.
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Otherwise let G−{yz} have components C1, C2, . . . , Ck.
y has a neighbour α 6= x in C1 else x is of degree 2
or is a neighbour of z which is a cutpoint of G − z.
Similarly, y has a neighbour β 6= x in C2.

xα β

y z

C 1 C 2

We claim that H = G − {α, β} is connected and so
we can take a, b, c = y, α, β.
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Suppose C2 − β has components D1, D2, . . . . Then
z is adjacent to D1 else β is a cutpoint of G− y. Sim-
ilarly, z is adjacent to all components of C1 − α and
C2 − β. Now H contains the path x, y, z and every
other component C3, . . . , Ck is connected to y, z and
so H is connected.
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Suppose that (2) holds. We run the Greedy colouring
algorithm with

v1 = b, v2 = c, v3, . . . , vn−1, vn = a

The sequence v3, . . . , vn−1, vn is obtained by doing
BFS from a in G − {b, c}.

a=vb
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The important thing is that for 3 ≤ i ≤ n − 1

∃j > i such that vj is a neighbour of vi. (3)
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Greedy uses at most ∆ colours.

v1 and v2 both get colour 1.

For 3 ≤ i ≤ n − 1, (3) implies that at most ∆ − 1 of
vi’s neighbours have already been coloured when we
come to colour v − i.

Finally, vn = a has at least 2 neighbours, b, c using
the same colour and so at most ∆ − 1 colours have
been used so far in a’s neighbourhood. 2
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Chromatic Polynomial

πk(G) is the number of distinct proper k-colourings of
G.

π

π

k =k(k-1)(k-2)

k = k(k-1) 7

Theorem 4 Let e = uv be an edge of G. Then

πk(G) = πk(G − e) − πk(G · e).

Proof πk(G) = the number of k-colourings of
G − e in which u, v have different colours.
πk(G · e) = the number of k-colourings of G − e in
which u, v have the same colour. 2
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Theorem 5 πk(G) is a polynomial of degree ν in k

with integer coefficients, leading term kν and constant
term zero. The coefficients alternate in sign.

Proof By induction on |E|. If E = ∅ then πk(G) =

kν.

Assume true for all graphs with < m edges and let G

be a graph with m edges. Then by induction

πk(G − e) = kν +
ν−1
∑

i=1

(−1)ν−iaik
i

πk(G · e) = kν−1 +
ν−2
∑

i=1

(−1)ν−1−ibik
i

where a1, . . . , aν−1, b1, . . . , bν−2 are non-negative in-
tegers. Then

πk(G) = kν−(aν−1+1)kν−1+
ν−2
∑

i=1

(−1)ν−i(ai+bi)k
i.

2
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Triangle free graphs with high chromatic number

Theorem 6 For any positive integer k, there exists a
triangle-free graph with chromatic number k.

Proof For k = 1,2 we use K1, K2 respectively.

For larger k we use induction on k. Suppose we have
a triangle-free graph Gk = (Vk, Ek) of chromatic num-
ber k. Let Vk = {v1, v2, . . . , vn}. Form Gk as fol-
lows:

uvi i

v

Add vertices {v}∪U = {u1, u2, . . . , un} to Gk. Join
ui to v and the neighbours of vi in Gk, for 1 ≤ i ≤ n.
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(a) Gk+1 has no triangles.
U is an independent set and so any triangle will have
at most one vertex from U . Thus there are no trian-
gles involving v. Finally, if ui, vj, vk is a triangle then
vi, vj, vk is a triangle of Gk.

(b) Gk+1 does not have a proper k-colouring.
Suppose there was one c∗. We can assume that c∗(v) =

k and then U is coloured from {1,2, . . . , k − 1}. But
now we can define a proper (k−1)-colouring c of Gk

by

c(vi) =

{

c∗(vi) if c∗(vi) 6= k
c∗(ui) if c∗(vi) = k

This is a proper colouring of Gk since if vivj is an
edge of Gk with c(vi) = c(vj) then exactly one of
c(vi) 6= c∗(vi) or c(vj) 6= c∗(vj) holds. Assume
the former. Then c∗(vi) = k and c(vi) = c∗(ui) 6=

c∗(vj) = c(vj). Thus Gk+1 is k-colourable implies
Gk is (k − 1)-colourable, which it isn’t.
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(c) Gk+1 has a proper (k + 1)-colouring.
Let c be a proper k-colouring of Gk. Extend this to
U by putting c(ui) = c(vi) and then let c(v) = k +

1. Note that ui and vi have the same colour and the
same neighbours in Vk and so the colouring remains
proper.
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