Independent sets and cliques

$S \subseteq V$ is independent if no edge of G has both of its endpoints in S.

$\alpha(G)=$ maximum size of an independent set of G.
Lemma $1 S$ is independent iff $V \backslash S$ is a cover.
Corollary 1

$$
\alpha(G)+\beta(G)=\nu .
$$

$L \subseteq E$ is an edge covering if every $v \in V$ is contained in an edge of L.

$\beta^{\prime}(G)=$ minimum size of an edge cover $\alpha^{\prime}(G)=$ maximum size of a matching .

Theorem 1 If there are no isolated vertices then

$$
\alpha^{\prime}+\beta^{\prime}=\nu .
$$

Proof
(a) $\alpha^{\prime}+\beta^{\prime} \leq \nu$.

Let M be a maximum matching of G.
Let U be the set of vertices unsaturated by M.
Cover U with edges $X,|X|=|U|$.
$M \cup X$ is a cover.

(b) $\alpha^{\prime}+\beta^{\prime} \geq \nu$.

Let L be a minimum edge cover of G.
$G[L]$ is a collection of disjoint stars $S_{1}, S_{2}, \ldots, S_{k}$.

[If G[L] contained x then L -y is a smaller cover.]
Choose matching M, one edge from each S_{i}.

$$
\begin{aligned}
\beta^{\prime}=|L| & =\nu-k \\
& =\nu-|M| \\
& \geq \nu-\alpha^{\prime}
\end{aligned}
$$

Ramsey's Theorem

Suppose we 2-colour the edges K_{6} of Red and Blue. There must be either a Red triangle or a Blue triangle.

This is not true for K_{5}.

There are 3 edges of the same colour incident with vertex 1 , say $(1,2)$, $(1,3)$, $(1,4)$ are Red. Either $(2,3,4)$ is a blue triangle or one of the edges of $(2,3,4)$ is Red, say $(2,3)$. But the latter implies $(1,2,3)$ is a Red triangle.

Ramsey's Theorem

For all positive integers k, ℓ there exists $R(k, \ell)$ such that if $N \geq R(k, \ell)$ and the edges of K_{N} are coloured Red or Blue then then either there is a "Red k-clique" or there is a "Blue ℓ-clique.

A clique is a complete subgraph and it is Red if all of its edges are coloured red etc.

$$
\begin{aligned}
& R(1, k)=R(k, 1)=1 \\
& R(2, k)=R(k, 2)=k
\end{aligned}
$$

Theorem 2

$$
R(k, \ell) \leq R(k, \ell-1)+R(k-1, \ell) .
$$

Proof \quad Let $N=R(k, \ell-1)+R(k-1, \ell)$.

$V_{R}=\left\{(x:(1, x)\right.$ is coloured Red $\}$ and $V_{B}=\{(x:$
$(1, x)$ is coloured Blue $\}$.

$$
\left|V_{R}\right| \geq R(k-1, \ell) \text { or }\left|V_{B}\right| \geq R(k, \ell-1)
$$

Since

$$
\begin{aligned}
\left|V_{R}\right|+\left|V_{B}\right| & =N-1 \\
& =R(k, \ell-1)+R(k-1, \ell)-1 .
\end{aligned}
$$

Suppose for example that $\left|V_{R}\right| \geq R(k-1, \ell)$. Then either V_{R} contains a Blue ℓ-clique - done, or it contains a Red k-1-clique K. But then $K \cup\{1\}$ is a Red k-clique.

Similarly, if $\left|V_{B}\right| \geq R(k, \ell-1)$ then either V_{B} contains a Red k-clique - done, or it contains a Blue $\ell-1$ clique L and then $L \cup\{1\}$ is a Blue ℓ-clique.

Theorem 3

$$
R(k, \ell) \leq\binom{ k+\ell-2}{k-1}
$$

Proof Induction on $k+\ell$. True for $k+\ell \leq 5$ say. Then

$$
\begin{aligned}
R(k, \ell) & \leq R(k, \ell-1)+R(k-1, \ell) \\
& \leq\binom{ k+\ell-3}{k-1}+\binom{k+\ell-3}{k-2} \\
& =\binom{k+\ell-2}{k-1} .
\end{aligned}
$$

So, for example,

$$
\begin{aligned}
R(k, k) & \leq\binom{ 2 k-2}{k-1} \\
& \leq 4^{k}
\end{aligned}
$$

Theorem 4

$$
R(k, k)>2^{k / 2}
$$

Proof We must prove that if $n \leq 2^{k / 2}$ then there exists a Red-Blue colouring of the edges of K_{n} which contains no Red k-clique and no Blue k-clique. We can assume $k \geq 4$ since we know $R(3,3)=6$.

We show that this is true with positive probability in a random Red-Blue colouring. So let Ω be the set of all Red-Blue edge colourings of K_{n} with uniform distribution. Equivalently we independently colour each edge Red with probability $1 / 2$ and Blue with probability $1 / 2$.

Let
\mathcal{E}_{R} be the event: $\{$ There is a Red k-clique $\}$ and \mathcal{E}_{B} be the event: $\{$ There is a Blue k-clique $\}$.

We show

$$
\operatorname{Pr}\left(\mathcal{E}_{R} \cup \mathcal{E}_{B}\right)<1
$$

Let $C_{1}, C_{2}, \ldots, C_{N}, N=\binom{n}{k}$ be the vertices of the $N k$-cliques of K_{n}.
Let $\mathcal{E}_{R, j}$ be the event: $\left\{C_{j}\right.$ is Red $\}$.

$$
\begin{aligned}
\operatorname{Pr}\left(\mathcal{E}_{R} \cup \mathcal{E}_{B}\right) & \leq \operatorname{Pr}\left(\mathcal{E}_{R}\right)+\operatorname{Pr}\left(\mathcal{E}_{B}\right) \\
& =2 \operatorname{Pr}\left(\mathcal{E}_{R}\right) \\
& =2 \operatorname{Pr}\left(\bigcup_{j=1}^{N} \mathcal{E}_{R, j}\right) \\
& \leq 2 \sum_{j=1}^{N} \operatorname{Pr}\left(\mathcal{E}_{R, j}\right) \\
& =2 \sum_{j=1}^{N}\left(\frac{1}{2}\right)^{\left({ }_{2}^{k}\right)} \\
& =2\binom{n}{k}\left(\frac{1}{2}\right)^{\binom{k}{2}} \\
& \leq 2 \frac{n^{k}}{k!}\left(\frac{1}{2}\right)^{\binom{k}{2}} \\
& \leq 2 \frac{2^{k^{2} / 2}}{k!}\left(\frac{1}{2}\right)^{\binom{k}{2}} \\
& =\frac{2^{1+k / 2}}{k!} \\
& <1 .
\end{aligned}
$$

More than two colours

$n \geq R\left(k_{1}, k_{2}, \ldots, k_{m}\right)$ implies that if the edges of K_{n} are coloured with $\{1,2, \ldots, m\}$ then $\exists i: K_{n}$ contains a k_{i}-clique all of whose edges have colour i. These numbers exist and satisfy

Theorem 5 (a)
$R\left(k_{1}, k_{2}, \ldots, k_{m}\right) \leq$

$$
\begin{aligned}
& R\left(k_{1}-1, k_{2}, \ldots, k_{m}\right)+ \\
& \quad R\left(k_{1}, k_{2}-1, \ldots, k_{m}\right)+ \\
& \quad+\cdots+R\left(k_{1}, k_{2}, \ldots, k_{m}-1\right)-(m-2) .
\end{aligned}
$$

(b)
$R\left(k_{1}, k_{2}, \ldots, k_{m}\right) \leq \frac{\left(k_{1}+k_{2}+\cdots+k_{m}-m\right)!}{\left(k_{1}-1\right)!\left(k_{2}-1\right)!\cdots\left(k_{m}-1\right)!}$.

Schur's Theorem

Theorem 6 For any $k \geq 1$ there exists an integer f_{k} such that for any partition $S_{1}, S_{2}, \ldots, S_{k}$ of $\left\{1,2, \ldots, f_{k}\right\}$ there exists an i and $a, b, c \in S_{i}$ such that $a+b=c$.

Proof Let $f=f_{k}=R(3,3, \ldots, 3)$. Edge colour K_{f} by
$x y$ gets colour i iff $|x-y| \in S_{i}$.
There exists i such that a triangle is coloured i.

$$
\begin{aligned}
a & =y-x \in S_{i} \\
b & =z-y \in S_{i} \\
c & =z-x \in S_{i} \\
a+b & =c
\end{aligned}
$$

Turan's Theorem

 m (or more).

How many edges can a there be in a $K_{m}-f r e e$ graph?
$m=3$ - triangle free.
$K_{\lfloor\nu / 2\rfloor,\lceil\nu / 2\rceil}$ has no triangles and no triangle free graph with ν vertices has more edges.

t-partite graphs

G is t-partite if $V=V_{1} \cup V_{2} \cup \cdots \cup V_{t}$ is a partition where $V_{1}, V_{2}, \ldots, V_{t}$ are independent sets.

3-partite

A t-partite graph is K_{t+1}-free - pigeon hole principle.
$K_{m_{1}, m_{2}, \ldots, m_{t}}$ is a complete t-partite graph.
$\left|V_{i}\right|=m_{i}$ for $1 \leq i \leq t$.
Every vertex in V_{i} is connected to every vertex in V_{j} by an edge, $1 \leq i<j \leq t$.

Therefore

$$
\epsilon\left(K_{m_{1}, m_{2}, \ldots, m_{t}}\right)=\sum_{i=1}^{t-1} \sum_{j=i+1}^{t} m_{i} m_{j} .
$$

Which ν vertex t-partite graph has most edges?
Suppose $\nu=k t+\ell$ where $0 \leq \ell<t$.

$$
T_{t, \nu}=K_{k, k, \ldots, k+1}
$$

($t-\ell k$'s and $\ell k+1$'s in the sequence $k, k, \ldots, k+1$.)
Lemma 2 If $m_{1}+m_{2}+\cdots+m_{t}=\nu$ then

$$
\epsilon\left(K_{m_{1}, m_{2}, \ldots, m_{t}}\right)<\epsilon\left(T_{t, \nu}\right)
$$

unless $K_{m_{1}, m_{2}, \ldots, m_{t}} \cong T_{t, \nu}$.
Proof \quad Suppose that $m_{2} \geq m_{1}+2$. Then

$$
\begin{aligned}
\epsilon\left(K_{m_{1}+1, m_{2}-1, \ldots, m_{t}}\right) & =\epsilon\left(K_{m_{1}, m_{2}, \ldots, m_{t}}\right)+ \\
& +m_{2}-m_{1}-1 \\
& >\epsilon\left(K_{m_{1}, m_{2}, \ldots, m_{t}}\right) .
\end{aligned}
$$

So if the block sizes are not as even as possible, the number of edges is not maximum.
$G_{1}=\left(V, E_{1}\right)$ degree majorises $G_{2}=\left(V, E_{2}\right)$ if

$$
d_{G_{1}}(v) \geq d_{G_{2}}(v) \quad \text { for all } v \in V .
$$

We write $G_{1} \geq_{d m} G_{2}$.

Theorem 7 If G is simple and K_{m+1} free then there exists a complete m-partite graph H such that
(a) $H \geq{ }_{d m} G$.
(b) $\epsilon(G)=\epsilon(H)$ implies that $G \cong H$.

Proof By induction on m.

True for $m=1$ as K_{2}-free means $E=\emptyset$.

Assume the result for $m^{\prime}<m$ and let G be $K_{m+1^{-}}$ free.

Let $d_{G}(u)=\Delta(G), V_{1}=N(u),\left|V_{1}\right|=\Delta$ and $V_{2}=V \backslash V_{1}$.

There is a complete ($m-1$)-partite graph H_{1} such that $H_{1} \geq_{d m} G_{1}$ - induction.

Let

$$
H=V_{2} \wedge G_{1}
$$

We claim that

$$
H \geq_{d m} G .
$$

$v \in V_{2}$ implies $d_{G}(v) \leq \Delta=d_{H}(v)$
$v \in V_{1}$ implies $d_{G}(v) \leq\left|V_{2}\right|+d_{G_{1}}(v)$
$\leq\left|V_{2}\right|+d_{H_{1}}(v)$
$=d_{H}(v)$
(b) Now suppose that $\epsilon(G)=\epsilon(H)$. This implies that $d_{G}(v)=d_{H}(v)$ for all $v \in V$.

Let t be the number of edges contained in V_{2}. We claim that $t=0$.

$$
\begin{aligned}
\Delta\left|V_{2}\right| & =2 t+\left|V_{2}: V_{1}\right| \\
\epsilon(G) & =t+\left|V_{2}: V_{1}\right|+\epsilon\left(G_{1}\right) \\
\epsilon(H) & =\Delta\left|V_{2}\right|+\epsilon\left(H_{1}\right) .
\end{aligned}
$$

So $0 \leq t=\epsilon\left(G_{1}\right)-\epsilon\left(H_{1}\right) \leq 0$. Thus $\epsilon\left(G_{1}\right)=$ $\epsilon\left(G_{2}\right)$ and V_{2} is an independent set in G. We can now use induction to argue that $G_{1} \cong H_{1}$ and then $G \cong H$.

Theorem 8 If G is simple and K_{m+1}-free then
(a) $\epsilon(G) \leq \epsilon\left(T_{m, \nu}\right)$.
(b) $\epsilon(G)=\epsilon\left(T_{m, \nu}\right)$ imlpies that $G \cong T_{m, \nu}$.

Proof (a) follows from Lemma 2 and Theorem 7a. For (b) we observe that the graph H of Theorem 7 satisfies

$$
\begin{aligned}
\epsilon(G) & =\epsilon(H)=\epsilon\left(T_{m, \nu}\right) \\
G & \cong H
\end{aligned}
$$

But then $\epsilon(H)=\epsilon\left(T_{m, \nu}\right)$ and Lemma 2 implies that $H \cong T_{m, \nu}$.

Geometry Problem

Theorem 9 Let $X_{1}, X_{2}, \ldots, X_{n}$ be points in the plane such that for $1 \leq i<j \leq n$

$$
\left|X_{i}-X_{j}\right| \leq 1
$$

Then
$\mid\left\{(i, j): i<j\right.$ and $\left.\left|X_{i}-X_{j}\right|>1 / \sqrt{2}\right\} \mid \leq\left\lfloor n^{2} / 3\right\rfloor$.

Proof Define graph G with $V=\{1,2, \ldots, n\}$ and $E=\left\{(i, j):\left|X_{i}-X_{j}\right|>1 / \sqrt{2}\right\}$. We claim that G has no K_{4} and so

$$
|E| \leq \epsilon\left(T_{3, n}\right)=\left\lfloor n^{2} / 3\right\rfloor .
$$

There exist i, j, k such that $\angle X_{1} X_{j} X_{k} \geq \pi / 2$. Then

$$
1 \geq\left|X_{i} X_{k}\right|^{2} \geq\left|X_{i} X_{j}\right|^{2}+\left|X_{j} X_{k}\right|^{2}
$$

The circles are of radius r and the sides of the triangle are $1-2 r$ where $0<r<(1-1 / \sqrt{2}) / 4$. The n points are split as evenly as possible within each circle.

Theorem 10 If $\bar{d}=2 \epsilon / \nu=$ the average degree of simple graph G then

$$
\alpha(G) \geq \frac{\nu}{\bar{d}+1} .
$$

Proof Let $\pi(1), \pi(2), \ldots, \pi(\nu)$ be an arbitrary permutation of V. Let $N(v)$ denote the set of neighbours of vertex v and let

$$
I(\pi)=\{v: \pi(w)>\pi(v) \text { for all } w \in N(v)\} .
$$

Claim $1 I$ is an independent set.

$$
\begin{array}{llllllllll}
& a & b & c & d & e & f & g & h & I \\
\pi_{1} & c & b & f & h & a & g & e & d & \{c, f\} \\
\pi_{2} & g & f & h & d & e & a & b & c & \{g, d, a\}
\end{array}
$$

Proof of Claim 1
Suppose $w_{1}, w_{2} \in I(\pi)$ and $w_{1} w_{2} \in E$. Suppose $\pi\left(w_{1}\right)<\pi\left(w_{2}\right)$. Then $w_{2} \notin I(\pi)$ - contradiction.

Now let π be a random permutation.
Claim 2

$$
\mathbf{E}(|I|) \geq \sum_{v \in V} \frac{1}{d(v)+1} .
$$

Proof of Claim 2
Let

$$
\delta(v)= \begin{cases}1 & v \in I \\ 0 & v \notin I\end{cases}
$$

Thus

$$
\begin{aligned}
|I| & =\sum_{v \in V} \delta(v) \\
\mathbf{E}(|I|) & =\sum_{v \in V} \mathbf{E}(\delta(v)) \\
& =\sum_{v \in V} \operatorname{Pr}(\delta(v)=1) .
\end{aligned}
$$

Now $\delta(v)=1$ if v comes before all of its neighbours in the order π. Thus

$$
\operatorname{Pr}(\delta(v)=1) \geq \frac{1}{d(v)+1}
$$

and the claim follows.
Thus there exists a π such that

$$
|I(\pi)| \geq \sum_{v \in V} \frac{1}{d(v)+1}
$$

and so

$$
\alpha(G) \geq \sum_{v \in V} \frac{1}{d(v)+1} .
$$

We finish the proof of Theorem 10 by showing that

$$
\sum_{v \in V} \frac{1}{d(v)+1} \geq \frac{\nu}{\bar{d}+1}
$$

This follows from the following claim by putting $x_{v}=$ $d(v)+1$ for $v \in V$.

Claim 3 If $x_{1}, x_{2}, \ldots x_{k}>0$ then

$$
\begin{equation*}
\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{k}} \geq \frac{k^{2}}{x_{1}+x_{2}+\cdots+x_{k}} \tag{1}
\end{equation*}
$$

Proof of Claim 3

Multiplying (1) by $x_{1}+x_{2}+\cdots+x_{k}$ and subtracting k from both sides we see that (1) is equivalent to

$$
\begin{equation*}
\sum_{1 \leq i<j \leq k}\left(\frac{x_{i}}{x_{j}}+\frac{x_{j}}{x_{i}}\right) \geq k(k-1) . \tag{2}
\end{equation*}
$$

But for all $x, y>0$

$$
\frac{x}{y}+\frac{y}{x} \geq 2
$$

and (2) follows.

Parallel searching for the maximum - Valiant

We have n processors and n numbers $x_{1}, x_{2}, \ldots, x_{n}$. In each round we choose n pairs i, j and compare the values of x_{i}, x_{j}.
The set of pairs chosen in a round can depend on the results of previous comparisons.

Aim: find i^{*} such that $x_{i^{*}}=\max _{i} x_{i}$.

Claim 4 For any algorithm there exists an input which requires at least $\frac{1}{2} \log _{2} \log _{2} n$ rounds.

Suppose that the first round of comparisons involves comparing x_{i}, x_{j} for edge $i j$ of the above graph and that the arrows point to the larger of the two values. Consider the independent set $\{1,2,5,8,9$,$\} . These$ are the indices of the 5 largest elements, but their relative order can be arbitrary since there is no implied relation between their values.

Let $C(a, b)$ be the maximum number of rounds needed for a processors to compute the maximum of b values in this way.

Lemma 3

$$
C(a, b) \geq 1+C\left(a,\left\lceil\frac{b^{2}}{2 a+b}\right\rceil\right)
$$

Proof The set of b comparisons defines a b-edge graph G on a vertices where comparison of x_{i}, x_{j} produces an edge $i j$ of G. Theorem 10 implies that

$$
\alpha(G) \geq\left\lceil\frac{b}{\frac{2 a}{b}+1}\right\rceil=\left\lceil\frac{b^{2}}{2 a+b}\right\rceil .
$$

For any independent set I it is always possible to define values for $x_{1}, x_{2}, \ldots, x_{a}$ such I is the index set of the $|I|$ largest values and so that the comparisons do not yield any information about the ordering of the elements $x_{i}, i \in I$.

Thus after one round one has the problem of finding the maximum among $\alpha(G)$ elements.

Now define the sequence c_{0}, c_{1}, \ldots by $c_{0}=n$ and

$$
c_{i+1}=\left\lceil\frac{c_{i}^{2}}{2 n+c_{i}}\right\rceil .
$$

It follows from Lemma 3 that

$$
c_{k} \geq 2 \text { implies } C(n, n) \geq k+1 .
$$

Claim 4 now follows from

Claim 5

$$
c_{i} \geq \frac{n}{3^{2^{i}-1}} .
$$

By induction on i. Trivial for $i=0$. Then

$$
\begin{aligned}
c_{i+1} & \geq \frac{n^{2}}{3^{2^{i+1}-2}} \times \frac{1}{2 n+\frac{n}{3^{2^{i}-1}}} \\
& =\frac{n}{3^{2^{i+1}-1}} \times \frac{3^{2+\frac{1}{3^{2^{i}-1}}}}{} \\
& \geq \frac{n}{3^{2^{i+1}-1}} .
\end{aligned}
$$

