
Edge Colourings

We assume in this chapter that G has no loops.

A k − edge colouring of G is a mapping

c : E → {1,2, . . . , k}.

c(e) is the colour of edge e.

Mi = {e ∈ E : c(e) = i} is the set of edges

with colour i.
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c is proper if M1, M2, . . . , Mk are matchings i.e.

edges e, f sharing a common vertex have c(e) 6=

c(f).
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G is k−edge colourable if it has a proper k-edge

colouring.

χ′(G) = min{k : G is k-edge colourable}.

Lemma 1

χ′(G) ≥ ∆(G).

Proof If d(v) = ∆ then every edge inci-

dent with v must have a distinct colour in a

proper edge colouring. 2

Lemma 2 If G′ is a subgraph of G then

χ′(G) ≥ χ′(G′).

Proof A proper colouring of G induces a

proper colouring of G′. 2
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Bipartite Graphs

Theorem 1 If G is a k-regular bipartite graph

then χ′(G) = k.

Proof χ′(G) ≥ k by Lemma 1. We prove

by induction on k that G has a proper k-colouring.

k = 1: G is a matching covering all vertices

and so is 1-edge colourable.

Assume that χ′(H) = ` for all `-regular bipar-

tite graphs with ` < k.

G contains a perfect matching M .

G−M is (k−1)-regular and so, by the inductive

hypothesis, has a proper (k−1)-edge colouring

c′. Define a proper k-edge colouring c of G by

c(e) =

{

c′(e) e /∈ M
k e ∈ M

2
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Corollary 1 If G is bipartite then χ′(G) = ∆.

Proof We add edges to G to produce a

∆-regular bipartite graph G′.

(Repeatedly join pairs of vertices of degree <

∆ until the graph is ∆-regular.)

Then

∆ ≤ χ′(G) ≤ χ′(G′) = ∆.

2
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Lemma 3 Let M, N be disjoint matchings of

G with |M | > |N |. Then there exist disjoint

matchings M ′, N ′ such that (i) M ′∪N ′ = M∪N

and (ii) |M ′| = |M | − 1, |N ′| = |N | + 1.

Proof G[M ∪ N ] contains at least one al-

ternating path P which starts and ends with

M-edges.

M M M M
N N N

Let M ′ = M∆P and N ′ = N∆P i.e. remove

the M-edges of P from M and replace them by

the N-edges of P to obtain M ′. Remove the

N-edges of P from N and replace them by the

M-edges of P to obtain N ′. 2
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Theorem 2 If G is a bipartite graph and p ≥ ∆

then there exists a p-edge colouring M1∪M2∪

· · · ∪ Mp such that

b|E|/pc ≤ |Mi| ≤ d|E|/pe 1 ≤ i ≤ p.

(1)

Proof Start with an arbitrary proper p-

edge colouring of E (some colour classes may

be empty.) If there exist a pair of matchings

Mi, Mj which differ in size by 2 or more then

use Lemma 3 to reduce the larger and increase

the smaller. This yields a new proper edge

colouring.

Repeat until (1) holds. 2
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School Timetabling

m teachers A1, A2, . . . , Am.

n classes B1, B2, . . . , Bn.

Ai teaches class Bj pi,j times.

r rooms available.

Let

∆ = max







m
max
i=1

n
∑

j=1

pi,j,
n

max
j=1

m
∑

i=1

pi,j







= maximum class/teacher load

` =
m
∑

i=1

n
∑

j=1

pi,j

= total number of classes

Clearly we need at least

p = max{∆, d`/re}

periods.

Theorem 3 There is a feasible p period timetable.
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Proof Define the bipartite graph G with

A = {A1, A2, . . . , Am}, B = {B1, B2, . . . , Bn}

and pi,j edges joining Ai and Bj.

G has maximum degree ∆.

By Theorem 2 G has a p-edge colouring

M1, M2, . . . , Mp with

|Mi| ≤ d`/pe ≤ d`/d`/ree ≤ r.

Each Mi represents the teaching of a particular

period. 2
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Vizing’s Theorem

If G is an odd cycle then χ′(G) = 3 > ∆(G) =

2.

Theorem 4 If G is simple then

∆(G) ≤ χ′(G) ≤ ∆(G) + 1.

Proof We need to prove the existence of

a proper (∆ + 1)-edge colouring. We prove

this by induction on |V |. It is clearly true for

|V | = 1.

Assume inductively that the theorem is true

for all simple graphs with fewer than n vertices

and suppose that |V | = n.
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For v ∈ V let G′ = G − v.

χ′(G′) ≤ ∆(G′)+1 ≤ ∆(G)+1 induction.

Thus there is a k = ∆+1 proper edge colour-

ing of the edges of G′.

Viziing’s theorem follows from

Lemma 4 Let G be a simple graph, v ∈ V and

e1, e2, . . . , er ∈ E be incident with v where ei =

vwi,1 ≤ i ≤ r and w0 = v.

Suppose k > ∆(G) and G∗ = G−{e1, e2, . . . , er}

is k-edge colourable with the following prop-

erty: Fi is the set of colours not used on the

edges incident with wi for 0 ≤ i ≤ r.

|Fi ∩ F0| ≥ 2, 2 ≤ i ≤ r.

|F1 ∩ F0| ≥ 1.

Then G is k-edge colourable.
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To apply the lemma we let r = dG(v).

e1, e2, . . . , er are all the edges incident with v.

F0 = {1,2, . . . ,∆ + 1}.

|Fi| ≥ 2 for 1 ≤ i ≤ r since if wi is a neighbour

of v in G then dG′(wi) ≤ ∆ − 1.

So we can apply Lemma 4 to conclude that G

is ∆ + 1 colourable. 2

Proof of Lemma 4 This is by induction on r.
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Case r=1: we extend the colouring of G∗ to

G by giving e1 a colour from F0 ∩ F1.

Inductive Step

Choose C1 ⊆ F0 ∩ F1 and Ci ⊆ F0 ∩ Fi where

|C1| = 1 and |Ci| = 2 for 2 ≤ i ≤ r.

SubCase 1: There is a colour α such that

α is in exactly one of C1, C2, . . . , Cr. Suppose

α ∈ Ci. Colour ei with α.

α
vPSfrag replacements

wi

wj

α /∈ Cj for j 6= i and so the colours Cj are still

missing from v and wj for j 6= i.

We can apply induction for the case r − 1 to

finish the colouring.
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SubCase 2: No colour occurs in exactly one

Ci.

There exists a colour α ∈ F0 \
⋃r

i=1 Ci.

(|F0| ≥ k − (∆ − r) > r and |
⋃r

i=1 Ci| < r.)

Let C1 = {β} and let P be the path containing

w1 in the subgraph of G′ induced by edges of

colour α or β.
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P

Recolour P

v α β α

βα

α β

αβ

v
uncoloured

x

x
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Note that x 6= v or w1 since α, β are both miss-

ing at v and β is missing at w1.

The vertices in the interior of P have the same

set of missing colours after the exchange of

colours.

Thus at most one Ci, i ≥ 2 changes (if x = wi)

and then by one. We have coloured one more

edge, e1, and so we can again apply induction

for the case r − 1 to finish the colouring.
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