Edge Colourings

We assume in this chapter that G has no loops.
A k-edge colouring of G is a mapping

$$
c: E \rightarrow\{1,2, \ldots, k\} .
$$

$c(e)$ is the colour of edge e.
$M_{i}=\{e \in E: c(e)=i\}$ is the set of edges with colour i.

c is proper if $M_{1}, M_{2}, \ldots, M_{k}$ are matchings i.e. edges e, f sharing a common vertex have $c(e) \neq$ $c(f)$.
G is k-edge colourable if it has a proper k-edge colouring.
$\chi^{\prime}(G)=\min \{k: G$ is k-edge colourable $\}$.

Lemma 1

$$
\chi^{\prime}(G) \geq \Delta(G) .
$$

Proof If $d(v)=\Delta$ then every edge incident with v must have a distinct colour in a proper edge colouring.

Lemma 2 If G^{\prime} is a subgraph of G then

$$
\chi^{\prime}(G) \geq \chi^{\prime}\left(G^{\prime}\right)
$$

Proof A proper colouring of G induces a proper colouring of G^{\prime}.

Bipartite Graphs

Theorem 1 If G is a k-regular bipartite graph then $\chi^{\prime}(G)=k$.

Proof $\quad \chi^{\prime}(G) \geq k$ by Lemma 1. We prove by induction on k that G has a proper k-colouring.
$k=1: G$ is a matching covering all vertices and so is 1-edge colourable.

Assume that $\chi^{\prime}(H)=\ell$ for all ℓ-regular bipartite graphs with $\ell<k$.
G contains a perfect matching M. $G-M$ is ($k-1$)-regular and so, by the inductive hypothesis, has a proper ($k-1$)-edge colouring c^{\prime}. Define a proper k-edge colouring c of G by

$$
c(e)= \begin{cases}c^{\prime}(e) & e \notin M \\ k & e \in M\end{cases}
$$

Corollary 1 If G is bipartite then $\chi^{\prime}(G)=\Delta$.

Proof We add edges to G to produce a Δ-regular bipartite graph G^{\prime}.
(Repeatedly join pairs of vertices of degree $<$ Δ until the graph is Δ-regular.)

Then

$$
\Delta \leq \chi^{\prime}(G) \leq \chi^{\prime}\left(G^{\prime}\right)=\Delta
$$

Lemma 3 Let M, N be disjoint matchings of G with $|M|>|N|$. Then there exist disjoint matchings M^{\prime}, N^{\prime} such that (i) $M^{\prime} \cup N^{\prime}=M \cup N$ and (ii) $\left|M^{\prime}\right|=|M|-1,\left|N^{\prime}\right|=|N|+1$.

Proof $G[M \cup N]$ contains at least one alternating path P which starts and ends with M-edges.

Let $M^{\prime}=M \Delta P$ and $N^{\prime}=N \Delta P$ i.e. remove the M-edges of P from M and replace them by the N-edges of P to obtain M^{\prime}. Remove the N-edges of P from N and replace them by the M-edges of P to obtain N^{\prime}.

Theorem 2 If G is a bipartite graph and $p \geq \Delta$ then there exists a p-edge colouring $M_{1} \cup M_{2} \cup$ $\cdots \cup M_{p}$ such that

$$
\lfloor|E| / p\rfloor \leq\left|M_{i}\right| \leq\lceil|E| / p\rceil \quad 1 \leq i \leq p .
$$

(1)

Proof Start with an arbitrary proper pedge colouring of E (some colour classes may be empty.) If there exist a pair of matchings M_{i}, M_{j} which differ in size by 2 or more then use Lemma 3 to reduce the larger and increase the smaller. This yields a new proper edge colouring.

Repeat until (1) holds.

School Timetabling

m teachers $A_{1}, A_{2}, \ldots, A_{m}$.
n classes $B_{1}, B_{2}, \ldots, B_{n}$.
A_{i} teaches class $B_{j} p_{i, j}$ times.
r rooms available.

Let

$$
\begin{aligned}
\Delta & =\max \left\{\max _{i=1}^{m} \sum_{j=1}^{n} p_{i, j},{\underset{j}{m a x}}_{n}^{n} \sum_{i=1}^{m} p_{i, j}\right\} \\
& =\text { maximum class/teacher load } \\
\ell & =\sum_{i=1}^{m} \sum_{j=1}^{n} p_{i, j} \\
& =\text { total number of classes }
\end{aligned}
$$

Clearly we need at least

$$
p=\max \{\Delta,\lceil\ell / r\rceil\}
$$

periods.

Theorem 3 There is a feasible p period timetable.

Proof Define the bipartite graph G with $A=\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}, B=\left\{B_{1}, B_{2}, \ldots, B_{n}\right\}$ and $p_{i, j}$ edges joining A_{i} and B_{j}.
G has maximum degree Δ.

By Theorem $2 G$ has a p-edge colouring $M_{1}, M_{2}, \ldots, M_{p}$ with

$$
\left|M_{i}\right| \leq\lceil\ell / p\rceil \leq\lceil\ell /\lceil\ell / r\rceil\rceil \leq r .
$$

Each M_{i} represents the teaching of a particular period.

Vizing's Theorem

If G is an odd cycle then $\chi^{\prime}(G)=3>\Delta(G)=$ 2.

Theorem 4 If G is simple then

$$
\Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1 .
$$

Proof We need to prove the existence of a proper $(\Delta+1)$-edge colouring. We prove this by induction on $|V|$. It is clearly true for $|V|=1$.

Assume inductively that the theorem is true for all simple graphs with fewer than n vertices and suppose that $|V|=n$.

For $v \in V$ let $G^{\prime}=G-v$.
$\chi^{\prime}\left(G^{\prime}\right) \leq \Delta\left(G^{\prime}\right)+1 \leq \Delta(G)+1$
induction.
Thus there is a $k=\Delta+1$ proper edge colouring of the edges of G^{\prime}.

Viziing's theorem follows from

Lemma 4 Let G be a simple graph, $v \in V$ and $e_{1}, e_{2}, \ldots, e_{r} \in E$ be incident with v where $e_{i}=$ $v w_{i}, 1 \leq i \leq r$ and $w_{0}=v$.

Suppose $k>\Delta(G)$ and $G^{*}=G-\left\{e_{1}, e_{2}, \ldots, e_{r}\right\}$ is k-edge colourable with the following property: F_{i} is the set of colours not used on the edges incident with w_{i} for $0 \leq i \leq r$.
$\left|F_{i} \cap F_{0}\right| \geq 2, \quad 2 \leq i \leq r$.
$\left|F_{1} \cap F_{0}\right| \geq 1$.

Then G is k-edge colourable.

To apply the lemma we let $r=d_{G}(v)$.
$e_{1}, e_{2}, \ldots, e_{r}$ are all the edges incident with v.
$F_{0}=\{1,2, \ldots, \Delta+1\}$.
$\left|F_{i}\right| \geq 2$ for $1 \leq i \leq r$ since if w_{i} is a neighbour of v in G then $d_{G^{\prime}}\left(w_{i}\right) \leq \Delta-1$.

So we can apply Lemma 4 to conclude that G is $\Delta+1$ colourable.

Proof of Lemma 4 This is by induction on r.

Case $r=1$: we extend the colouring of G^{*} to G by giving e_{1} a colour from $F_{0} \cap F_{1}$.

Inductive Step

Choose $C_{1} \subseteq F_{0} \cap F_{1}$ and $C_{i} \subseteq F_{0} \cap F_{i}$ where

$$
\left|C_{1}\right|=1 \text { and }\left|C_{i}\right|=2 \text { for } 2 \leq i \leq r .
$$

SubCase 1: There is a colour α such that α is in exactly one of $C_{1}, C_{2}, \ldots, C_{r}$. Suppose $\alpha \in C_{i}$. Colour e_{i} with α.

$\alpha \notin C_{j}$ for $j \neq i$ and so the colours C_{j} are still missing from v and w_{j} for $j \neq i$.
We can apply induction for the case $r-1$ to finish the colouring.

SubCase 2: No colour occurs in exactly one C_{i}.
There exists a colour $\alpha \in F_{0} \backslash \cup_{i=1}^{r} C_{i}$. $\left(\left|F_{0}\right| \geq k-(\Delta-r)>r\right.$ and $\left|\bigcup_{i=1}^{r} C_{i}\right|<r$.)

Let $C_{1}=\{\beta\}$ and let P be the path containing w_{1} in the subgraph of G^{\prime} induced by edges of colour α or β.

Note that $x \neq v$ or w_{1} since α, β are both missing at v and β is missing at w_{1}.

The vertices in the interior of P have the same set of missing colours after the exchange of colours.

Thus at most one $C_{i}, i \geq 2$ changes (if $x=w_{i}$) and then by one. We have coloured one more edge, e_{1}, and so we can again apply induction for the case $r-1$ to finish the colouring.

