Edge Colourings

We assume in this chapter that G has no loops.

A k-edge colouring of G is a mapping

$$c: E \to \{1, 2, \ldots, k\}.$$

c(e) is the colour of edge e.

 $M_i = \{e \in E : c(e) = i\}$ is the set of edges with colour *i*.

c is proper if M_1, M_2, \ldots, M_k are matchings i.e. edges e, f sharing a common vertex have $c(e) \neq c(f)$. G is $k-edge\ colourable$ if it has a proper k-edge colouring.

 $\chi'(G) = \min\{k : G \text{ is } k \text{-edge colourable}\}.$

Lemma 1

$\chi'(G) \ge \Delta(G).$

Proof If $d(v) = \Delta$ then every edge incident with v must have a distinct colour in a proper edge colouring.

Lemma 2 If G' is a subgraph of G then $\chi'(G) \ge \chi'(G').$

Proof A proper colouring of G induces a proper colouring of G'.

Bipartite Graphs

Theorem 1 If G is a k-regular bipartite graph then $\chi'(G) = k$.

Proof $\chi'(G) \ge k$ by Lemma 1. We prove by induction on k that G has a proper k-colouring.

k = 1: G is a matching covering all vertices and so is 1-edge colourable.

Assume that $\chi'(H) = \ell$ for all ℓ -regular bipartite graphs with $\ell < k$.

G contains a perfect matching M.

G-M is (k-1)-regular and so, by the inductive hypothesis, has a proper (k-1)-edge colouring c'. Define a proper k-edge colouring c of G by

$$c(e) = \begin{cases} c'(e) & e \notin M \\ k & e \in M \end{cases}$$

3

Corollary 1 If G is bipartite then $\chi'(G) = \Delta$.

Proof We add edges to G to produce a Δ -regular bipartite graph G'. (Repeatedly join pairs of vertices of degree $< \Delta$ until the graph is Δ -regular.)

Then

 $\Delta \le \chi'(G) \le \chi'(G') = \Delta.$

Lemma 3 Let M, N be disjoint matchings of G with |M| > |N|. Then there exist disjoint matchings M', N' such that (i) $M' \cup N' = M \cup N$ and (ii) |M'| = |M| - 1, |N'| = |N| + 1.

Proof $G[M \cup N]$ contains at least one alternating path P which starts and ends with M-edges.

Let $M' = M\Delta P$ and $N' = N\Delta P$ i.e. remove the *M*-edges of *P* from *M* and replace them by the *N*-edges of *P* to obtain *M'*. Remove the *N*-edges of *P* from *N* and replace them by the *M*-edges of *P* to obtain *N'*. **Theorem 2** If G is a bipartite graph and $p \ge \Delta$ then there exists a p-edge colouring $M_1 \cup M_2 \cup \cdots \cup M_p$ such that

 $\lfloor |E|/p \rfloor \le |M_i| \le \lceil |E|/p \rceil \qquad 1 \le i \le p.$ (1)

Proof Start with an arbitrary proper p-edge colouring of E (some colour classes may be empty.) If there exist a pair of matchings M_i, M_j which differ in size by 2 or more then use Lemma 3 to reduce the larger and increase the smaller. This yields a new proper edge colouring.

Repeat until (1) holds.

School Timetabling

m teachers A_1, A_2, \ldots, A_m . n classes B_1, B_2, \ldots, B_n . A_i teaches class B_j $p_{i,j}$ times. r rooms available.

Let

$$\Delta = \max \left\{ \max_{i=1}^{m} \sum_{j=1}^{n} p_{i,j}, \max_{j=1}^{n} \sum_{i=1}^{m} p_{i,j} \right\}$$

= maximum class/teacher load

$$\ell = \sum_{i=1}^{m} \sum_{j=1}^{n} p_{i,j}$$

= total number of classes

Clearly we need at least

$$p = \max\{\Delta, \lceil \ell/r \rceil\}$$

periods.

Theorem 3 There is a feasible *p* period timetable.

Proof Define the bipartite graph G with $A = \{A_1, A_2, \dots, A_m\}, B = \{B_1, B_2, \dots, B_n\}$ and $p_{i,j}$ edges joining A_i and B_j .

G has maximum degree Δ .

By Theorem 2 G has a p-edge colouring M_1, M_2, \ldots, M_p with

 $|M_i| \le \lceil \ell/p \rceil \le \lceil \ell/\lceil \ell/r \rceil \rceil \le r.$

Each M_i represents the teaching of a particular period.

Vizing's Theorem

If G is an odd cycle then $\chi'(G) = 3 > \Delta(G) = 2$.

Theorem 4 If G is simple then $\Delta(G) < \chi'(G) < \Delta(G) + 1.$

Proof We need to prove the existence of a proper $(\Delta + 1)$ -edge colouring. We prove this by induction on |V|. It is clearly true for |V| = 1.

Assume inductively that the theorem is true for all simple graphs with fewer than n vertices and suppose that |V| = n. For $v \in V$ let G' = G - v. $\chi'(G') \leq \Delta(G') + 1 \leq \Delta(G) + 1$ induction. Thus there is a $k = \Delta + 1$ proper edge colouring of the edges of G'.

Viziing's theorem follows from

Lemma 4 Let G be a simple graph, $v \in V$ and $e_1, e_2, \ldots, e_r \in E$ be incident with v where $e_i = vw_i, 1 \le i \le r$ and $w_0 = v$.

Suppose $k > \Delta(G)$ and $G^* = G - \{e_1, e_2, \dots, e_r\}$ is k-edge colourable with the following property: F_i is the set of colours not used on the edges incident with w_i for $0 \le i \le r$.

 $|F_i \cap F_0| \ge 2,$ $2 \le i \le r.$ $|F_1 \cap F_0| \ge 1.$

Then G is k-edge colourable.

To apply the lemma we let $r = d_G(v)$. e_1, e_2, \ldots, e_r are all the edges incident with v. $F_0 = \{1, 2, \ldots, \Delta + 1\}$. $|F_i| \ge 2$ for $1 \le i \le r$ since if w_i is a neighbour of v in G then $d_{G'}(w_i) \le \Delta - 1$.

So we can apply Lemma 4 to conclude that G is $\Delta + 1$ colourable.

Proof of Lemma 4 This is by induction on *r*.

Case r=1: we extend the colouring of G^* to G by giving e_1 a colour from $F_0 \cap F_1$.

Inductive Step

Choose $C_1 \subseteq F_0 \cap F_1$ and $C_i \subseteq F_0 \cap F_i$ where

 $|C_1| = 1$ and $|C_i| = 2$ for $2 \le i \le r$.

SubCase 1: There is a colour α such that α is in exactly **one** of C_1, C_2, \ldots, C_r . Suppose $\alpha \in C_i$. Colour e_i with α .

 $\alpha \notin C_j$ for $j \neq i$ and so the colours C_j are still missing from v and w_j for $j \neq i$.

We can apply induction for the case r - 1 to finish the colouring.

SubCase 2: No colour occurs in exactly one C_i .

There exists a colour $\alpha \in F_0 \setminus \bigcup_{i=1}^r C_i$. $(|F_0| \ge k - (\Delta - r) > r \text{ and } |\bigcup_{i=1}^r C_i| < r.)$

Let $C_1 = \{\beta\}$ and let P be the path containing w_1 in the subgraph of G' induced by edges of colour α or β .

Note that $x \neq v$ or w_1 since α, β are both missing at v and β is missing at w_1 .

The vertices in the interior of P have the same set of missing colours after the exchange of colours.

Thus at most one C_i , $i \ge 2$ changes (if $x = w_i$) and then by one. We have coloured one more edge, e_1 , and so we can again apply induction for the case r - 1 to finish the colouring.