Matchings

A matching M of a graph G = (V, E) is a set of edges, no two of which are incident to a common vertex.

Perfect Matching

M-alternating path

An M-alternating path joining 2 M-unsaturated vertices is called an M-augmenting path.

M is a *maximum* matching of G if no matching M' has more edges.

Theorem 1 *M* is a maximum matching iff *M* admits no *M*-augmenting paths.

Proof Suppose *M* has an augmenting path $P = (a_0, b_1, a_1, \dots, a_k, b_{k+1})$ where $e_i = (a_{i-1}, b_i) \notin M$, $1 \le i \le k+1$ and $f_i = (b_i, a_i) \in M$, $1 \le i \le k$.

 $M' = M - \{f_1, f_2, \dots, f_k\} + \{e_1, e_2, \dots, e_{k+1}\}.$

- |M'| = |M| + 1.
- M' is a matching

For $x \in V$ let $d_M(x)$ denote the degree of x in matching M, So $d_M(x)$ is 0 or 1.

$$d_{M'}(x) = \begin{cases} d_M(x) & x \notin \{a_0, b_1, \dots, b_{k+1}\} \\ d_M(x) & x \in \{b_1, \dots, a_k\} \\ d_M(x) + 1 & x \in \{a_0, b_{k+1}\} \end{cases}$$

So if M has an augmenting path it is not maximum.

Suppose *M* is not a maximum matching and |M'| > |M|. Consider $H = G[M\Delta M']$ where $M\Delta M' = (M \setminus M') \cup (M' \setminus M)$ is the set of edges in *exactly* one of *M*, *M'*.

Maximum degree of H is 2, at most 1 edge from M or M'. So H is a collection of vertex disjoint alternating paths and cycles.

|M'| > |M| implies that there is at least one path of type (d).

Such a path is *M*-augmenting

Bipartite Graphs

Let $G = (A \cup B, E)$ be a bipartite graph with bipartition A, B.

For $S \subseteq A$ let $N(S) = \{b \in B : \exists a \in S, (a, b) \in E\}.$

 $N(a_2, a_3) = \{b_1, b_3, b_4\}$

Clearly, $|M| \leq |A|, |B|$ for any matching M of G.

Hall's Theorem

Theorem 2 *G* contains a matching of size |A| iff

 $N(\{a_1, a_2, a_3\}) = \{b_1, b_2\}$ and so at most 2 of a_1, a_2, a_3 can be saturated by a matching.

Only if: Suppose $M = \{(a, \phi(a)) : a \in A\}$ saturates A.

 $|N(S)| \ge |\{\phi(s) : s \in S\}| = |S|$

and so (1) holds.

If: Let $M = \{(a, \phi(a)) : a \in A'\}$ $(A' \subseteq A)$ is a maximum matching. Suppose $a_0 \in A$ is *M*-unsaturated. We show that (1) fails. Let $A_1 = \{a \in A : \text{such that } a \text{ is reachable from } a_0$ by an *M*-alternating path.} $B_1 = \{b \in B : \text{such that } b \text{ is reachable from } a_0$ by an *M*-alternating path.}

No A_1 : $B \setminus B_1$ edges

• B_1 is *M*-saturated else there exists an *M*-augmenting path.

• If $a \in A_1 \setminus \{a_0\}$ then $\phi(a) \in B_1$.

• If $b \in B_1$ then $\phi^{-1}(b) \in A_1 \setminus \{a_0\}$.

So

$$|B_1| = |A_1| - 1.$$

 $\stackrel{\text{acements}}{\bullet} N(A_1) \subseteq B_1$

So

 $|N(A_1)| = |A_1| - 1$

and (1) fails to hold.

Marriage Theorem

Theorem 3 Suppose $G = (A \cup B, E)$ is k-regular. ($k \ge 1$) i.e. $d_G(v) = k$ for all $v \in A \cup B$. Then G has a perfect matching.

Proof

k|A| = |E| = k|B|

and so |A| = |B|.

Suppose $S \subseteq A$. Let m be the number of edges incident with S. Then

$$k|S| = m \le k|N(S)|.$$

So (1) holds and there is a matching of size |A| i.e. a perfect matching.

Edge Covers

A set of vertices $X \subseteq V$ is a *covering* of G = (V, E) if every edge of E contains at least one endpoint in X.

Lemma 1 If X is a covering and M is a matching then $|X| \ge |M|$.

Proof Let $M = \{(a_1, b_i) : 1 \le i \le k\}$. Then $|X| \ge |M|$ since $a_i \in X$ or $b_i \in X$ for $1 \le i \le k$ and a_1, \ldots, b_k are distinct.

Konig's Theorem

Let $\mu(G)$ be the maximum size of a matching. Let $\beta(G)$ be the minimum size of a covering. Then

 $\mu(G) \leq \beta(G).$

Theorem 4 If G is bipartite then $\mu(G) = \beta(G)$.

Proof Let M be a maximum matching. Let S_0 be the M-unsaturated vertices of A. Let $S \supseteq S_0$ be the A-vertices which are reachable from S by M-alternating paths. Let T be the M-neighbours of $S \setminus S_0$.

Let $X = (A \setminus S) \cup T$.

• |X| = |M|.

 $|T| = |S \setminus S_0|$. The remaining edges of M cover $A \setminus S$ exactly once.

• X is a cover.

There are no edges (x, y) where $x \in S$ and $y \in B \setminus T$. Otherwise, since y is M-saturated (no M-augmenting paths) the M-neightbour of y would have to be in S, contradicting $y \notin T$.

Tutte's Theorem

We now discuss arbitrary (i.e. non-bipartite) graphs. For $S \subseteq V$ we let o(G - S) denote the number of components of odd cardinality in G - S.

Theorem 5 *G* has a perfect matching iff

 $o(G-S) \le |S|$ for all $S \subseteq V$. (2)

Proof We restrict our attention to simple graphs.

Need to match x,y,z to a,b

Suppose |S| = k and $O_1, O_2, \ldots, O_{k+1}$ are odd components of G-S. In any perfect matching of G, at least one vertex x_i of C_i will have to be matched outside O_i for $i = 1, 2, \ldots, k+1$. But then $x_1, x_2, \ldots, x_{k+1}$ will all have to be matched with S, which is impossible. If: Suppose (2) holds and G has no perfect matching. Add edges until we have a graph G^* which satisfies

- G^* has no perfect matching.
- $G^* + e$ has a perfect matching for all $e \notin E(G^*)$.

Clearly,

 $o(G^* - S) \le o(G - S) \le |S|$ for all $S \subseteq V$. (3) In particular, if $S = \emptyset$, $o(G^*) = 0$ and |V| is even.

$$U = \{ v \in V : d_{G^*}(v) = \nu - 1 \}.$$

 $U \neq V$ else G^* has a perfect matching.

Claim: $G^* - U$ is the disjoint union of complete graphs.

Suppose C is a component of $G^* - U$ which is not a clique. Then there exist $x, y, z \in C$ such that $xy, xz \in E(G^*)$ and $xz \notin E(G^*)$. Take $x, z \in C$ at distance 2 in G^* .

 $y \notin U$ implies that there exists $w \notin U$ with $yw \notin E(G^*)$.

Let M_1, M_2 be perfect matchings in $G^* + xz, G^* + yw$ respectively.

Let $H = M_1 \Delta M_2$. *H* is a collection of vertex disjoint even cycles.

Case 1: xz, yw are in different cycles of H.

+ edges form a perfect matching in G^* – contradiction.

Case 2: xz, yw are in same cycle of H.

+ edges form a perfect matching in G^* – contradiction.

Claim is proved.

Suppose G - U has ℓ odd components. Then

- $\ell \leq |U|$ from (3).
- $\ell = |U| \mod 2$, since |V| is even.

 G^* has a perfect matching – contradiction. \Box

Petersen's Theorem

Theorem 6 Every 3-regular graph without cutedges contains a perfect matching.

Proof Suppose $S \subseteq V$. Let G - S have components C_1, C_2, \ldots, C_r where C_1, C_2, \ldots, C_ℓ are odd.

 m_i is the number of C_i : S edges; $m_i \ge 2$. n_i is the number of edges contained in C_i .

 $3|C_i| = m_i + 2n_i.$

So m_i is odd for $1 \le i \le \ell$. Hence $m_i \ge 3$ for $1 \le i \le \ell$. Thus

 $3\ell \le m_1 + m_2 + \dots + m_\ell \le 3|S|,$ and (2) holds.

22