Matchings

A matching M of a graph $G=(V, E)$ is a set of edges, no two of which are incident to a common vertex.

Perfect Matching

An M-alternating path joining $2 M$-unsaturated vertices is called an M-augmenting path.
M is a maximum matching of G if no matching M^{\prime} has more edges.

Theorem $1 M$ is a maximum matching iff M admits no M-augmenting paths.

Proof Suppose M has an augmenting path $P=\left(a_{0}, b_{1}, a_{1}, \ldots, a_{k}, b_{k+1}\right)$ where $e_{i}=\left(a_{i-1}, b_{i}\right) \notin$ $M, 1 \leq i \leq k+1$ and $f_{i}=\left(b_{i}, a_{i}\right) \in M, 1 \leq i \leq k$.

$$
M^{\prime}=M-\left\{f_{1}, f_{2}, \ldots, f_{k}\right\}+\left\{e_{1}, e_{2}, \ldots, e_{k+1}\right\}
$$

- $\left|M^{\prime}\right|=|M|+1$.
- M^{\prime} is a matching

For $x \in V$ let $d_{M}(x)$ denote the degree of x in matching M, So $d_{M}(x)$ is 0 or 1 .

$$
d_{M^{\prime}}(x)= \begin{cases}d_{M}(x) & x \notin\left\{a_{0}, b_{1}, \ldots, b_{k+1}\right\} \\ d_{M}(x) & x \in\left\{b_{1}, \ldots, a_{k}\right\} \\ d_{M}(x)+1 & x \in\left\{a_{0}, b_{k+1}\right\}\end{cases}
$$

So if M has an augmenting path it is not maximum.

Suppose M is not a maximum matching and $\left|M^{\prime}\right|>|M|$. Consider $H=G\left[M \Delta M^{\prime}\right]$ where $M \Delta M^{\prime}=\left(M \backslash M^{\prime}\right) \cup$ ($M^{\prime} \backslash M$) is the set of edges in exactly one of M, M^{\prime}.

Maximum degree of H is 2 , at most 1 edge from M or M^{\prime}. So H is a collection of vertex disjoint alternating paths and cycles.

$\left|M^{\prime}\right|>|M|$ implies that there is at least one path of type (d).

Such a path is M-augmenting

Bipartite Graphs

Let $G=(A \cup B, E)$ be a bipartite graph with bipartition A, B.

For $S \subseteq A$ let $N(S)=\{b \in B: \exists a \in S,(a, b) \in$ $E\}$.

$$
N\left(a_{2}, a_{3}\right)=\left\{b_{1}, b_{3}, b_{4}\right\}
$$

Clearly, $|M| \leq|A|,|B|$ for any matching M of G.

Hall's Theorem

Theorem $2 G$ contains a matching of size $|A|$ iff

$$
\begin{equation*}
|N(S)| \geq|S| \quad \forall S \subseteq A \tag{1}
\end{equation*}
$$

$N\left(\left\{a_{1}, a_{2}, a_{3}\right\}\right)=\left\{b_{1}, b_{2}\right\}$ and so at most 2 of a_{1}, a_{2}, a_{3} can be saturated by a matching.

Only if: Suppose $M=\{(a, \phi(a)): a \in A\}$ saturates A.

and so (1) holds.
If: Let $M=\left\{(a, \phi(a)): a \in A^{\prime}\right\}\left(A^{\prime} \subseteq A\right)$ is a maximum matching. Suppose $a_{0} \in A$ is M-unsaturated. We show that (1) fails.

Let
$A_{1}=\left\{a \in A:\right.$ such that a is reachable from a_{0} by an M-alternating path. $\}$
$B_{1}=\left\{b \in B:\right.$ such that b is reachable from a_{0} by an M-alternating path. $\}$

No $A_{1}: B \backslash B_{1}$ edges

- B_{1} is M-saturated else there exists an M augmenting path.
- If $a \in A_{1} \backslash\left\{a_{0}\right\}$ then $\phi(a) \in B_{1}$.

- If $b \in B_{1}$ then $\phi^{-1}(b) \in A_{1} \backslash\left\{a_{0}\right\}$.

So

$$
\left|B_{1}\right|=\left|A_{1}\right|-1 .
$$

- $N\left(A_{1}\right) \subseteq B_{1}$

So

$$
\left|N\left(A_{1}\right)\right|=\left|A_{1}\right|-1
$$

and (1) fails to hold.

Marriage Theorem

Theorem 3 Suppose $G=(A \cup B, E)$ is k-regular. $(k \geq 1)$ i.e. $d_{G}(v)=k$ for all $v \in A \cup B$. Then G has a perfect matching.

Proof

$$
k|A|=|E|=k|B|
$$

and so $|A|=|B|$.

Suppose $S \subseteq A$. Let m be the number of edges incident with S. Then

$$
k|S|=m \leq k|N(S)| .
$$

So (1) holds and there is a matching of size $|A|$ i.e. a perfect matching.

Edge Covers

A set of vertices $X \subseteq V$ is a covering of $G=$ (V, E) if every edge of E contains at least one endpoint in X.

$\{\bullet\}$ is a covering

Lemma 1 If X is a covering and M is a matching then $|X| \geq|M|$.

Proof Let $M=\left\{\left(a_{1}, b_{i}\right): 1 \leq i \leq k\right\}$. Then $|X| \geq|M|$ since $a_{i} \in X$ or $b_{i} \in X$ for $1 \leq i \leq k$ and a_{1}, \ldots, b_{k} are distinct.

Konig's Theorem

Let $\mu(G)$ be the maximum size of a matching. Let $\beta(G)$ be the minimum size of a covering. Then

$$
\mu(G) \leq \beta(G)
$$

Theorem 4 If G is bipartite then $\mu(G)=\beta(G)$.

Proof Let M be a maximum matching. Let S_{0} be the M-unsaturated vertices of A. Let $S \supseteq S_{0}$ be the A-vertices which are reachable from S by M-alternating paths. Let T be the M-neighbours of $S \backslash S_{0}$.

Let $X=(A \backslash S) \cup T$.

- $|X|=|M|$.
$|T|=\left|S \backslash S_{0}\right|$. The remaining edges of M cover $A \backslash S$ exactly once.
- X is a cover.

There are no edges (x, y) where $x \in S$ and $y \in B \backslash T$. Otherwise, since y is M-saturated (no M-augmenting paths) the M-neightbour of y would have to be in S, contradicting $y \notin T$.

Tutte's Theorem

We now discuss arbitrary (i.e. non-bipartite) graphs.
For $S \subseteq V$ we let $o(G-S)$ denote the number of components of odd cardinality in $G-S$.

Theorem $5 G$ has a perfect matching iff

$$
\begin{equation*}
o(G-S) \leq|S| \quad \text { for all } S \subseteq V \tag{2}
\end{equation*}
$$

Proof
We restrict our attention to simple graphs.

Only if:

Need to match $\mathrm{x}, \mathrm{y}, \mathrm{z}$ to a, b

Suppose $|S|=k$ and $O_{1}, O_{2}, \ldots, O_{k+1}$ are odd components of $G-S$. In any perfect matching of G, at least one vertex x_{i} of C_{i} will have to be matched outside O_{i} for $i=1,2, \ldots, k+1$. But then $x_{1}, x_{2}, \ldots, x_{k+1}$ will all have to be matched with S, which is impossible.

If: Suppose (2) holds and G has no perfect matching. Add edges until we have a graph G^{*} which satisfies

- G^{*} has no perfect matching.
- $G^{*}+e$ has a perfect matching for all $e \notin$ $E\left(G^{*}\right)$.

Clearly,

$$
\begin{equation*}
o\left(G^{*}-S\right) \leq o(G-S) \leq|S| \quad \text { for all } S \subseteq V \tag{3}
\end{equation*}
$$

In particular, if $S=\emptyset, o\left(G^{*}\right)=0$ and $|V|$ is even.

$$
U=\left\{v \in V: d_{G^{*}}(v)=\nu-1\right\} .
$$

$U \neq V$ else G^{*} has a perfect matching.

Claim: $G^{*}-U$ is the disjoint union of complete graphs.

Suppose C is a component of $G^{*}-U$ which is not a clique. Then there exist $x, y, z \in C$ such that $x y, x z \in E\left(G^{*}\right)$ and $x z \notin E\left(G^{*}\right)$.
Take $x, z \in C$ at distance 2 in G^{*}.

$y \notin U$ implies that there exists $w \notin U$ with $y w \notin E\left(G^{*}\right)$.

Let M_{1}, M_{2} be perfect matchings in $G^{*}+x z, G^{*}+$ $y w$ respectively.

Let $H=M_{1} \Delta M_{2}$. H is a collection of vertex disjoint even cycles.

Case 1: $x z, y w$ are in different cycles of H.

$=M_{1}$
$-\quad-M_{2}$

+ edges form a perfect matching in G^{*} - contradiction.

Case 2: $x z, y w$ are in same cycle of H.

+ edges form a perfect matching in G^{*} - contradiction.

Claim is proved.

Suppose $G-U$ has ℓ odd components. Then - $\ell \leq|U|$ from (3).

- $\ell=|U| \bmod 2$, since $|V|$ is even.
-------- Odd Components ----------

U
G^{*} has a perfect matching - contradiction. \square

Petersen's Theorem

Theorem 6 Every 3-regular graph without cutedges contains a perfect matching.

Proof Suppose $S \subseteq V$. Let $G-S$ have components $C_{1}, C_{2}, \ldots, C_{r}$ where $C_{1}, C_{2}, \ldots, C_{\ell}$ are odd.
m_{i} is the number of $C_{i}: S$ edges; $m_{i} \geq 2$. n_{i} is the number of edges contained in C_{i}.

$$
3\left|C_{i}\right|=m_{i}+2 n_{i} .
$$

So m_{i} is odd for $1 \leq i \leq \ell$. Hence $m_{i} \geq 3$ for $1 \leq i \leq \ell$. Thus

$$
3 \ell \leq m_{1}+m_{2}+\cdots+m_{\ell} \leq 3|S|,
$$

and (2) holds.

