Eulerian Graphs

An *Eulerian cycle* of a graph G = (V, E) is a closed walk which uses each edge $e \in E$ exactly once.

The walk using edges a,b,c,d,e,f,g,h,j,k in this order is an Eulerian cycle.

Theorem 1 A connected graph is Eulerian i.e. has an Eulerian cycle, iff it has no vertex of odd degree.

Proof Suppose $W = (v_1, v_2, \ldots, v_m, v_1)$ (m = |E|) is an Eulerian cycle. Fix $v \in V$. Whenever W visits v it enters through a new edge and leaves through a new edge. Thus each visit requires 2 new edges. Thus the degree of v is even.

The converse is proved by induction on |E|. The result is true for |E| = 3. The only possible graph is a triangle.

Assume $|E| \ge 4$. *G* is not a tree, since it has no vertex of degree 1. Therefore it contains a cycle *C*. Delete the edges of *C*. The remaining graph has components K_1, K_2, \ldots, K_r .

Each K_i is connected and is of even degree – deleting C removes 0 or 2 edges incident with a given $v \in V$. Also, each K_i has strictly less than |E| edges. So, by induction, each K_i has an Eulerian cycle, C_i say.

We create an Eulerian cycle of G as follows: let $C = (v_1, v_2, \ldots, v_s, v_1)$. Let v_{i_t} be the first vertex of C which is in K_t . Assume w.l.o.g. that $i_1 < i_2 < \cdots < i_r$.

$$W = (v_1, v_2, \dots, v_{i_1}, C_1, v_{i_1}, \dots, v_{i_2}, C_2, v_{i_2}, \dots, v_{i_r}, C_r, v_{i_r}, \dots, v_1)$$

is an Eulerian cycle of G.

Corollary 1 A connected graph has an Eulerian Walk i.e. a walk which uses each edge exactly once, iff it has exactly 2 vertices of odd degree.

Proof If a walk exists then the endpoints have odd degree and the interior vertices have even degree.

Conversely, if there are two odd degree vertices x, y add an extra edge e = xy to create a connected graph G' with only even vertices. This has an Eulerian cycle C. Delete e from C to create the required path.

Hamilton Cycles

A Hamilton Cycle of a graph G = (V, E) is a cycle which goes through each vertex (once).

A graph is called *Hamiltonian* if it contains a Hamilton cycle.

Hamiltonian Graph

Non-Hamiltonian Graph Petersen Graph Lemma 1 Let G = (V, E) and |V| = n. Suppose $x, y \in V$, $e = (x, y) \notin E$ and $d(x) + d(y) \ge n$. Then

G + e is Hamiltonian $\leftrightarrow G$ is Hamiltonian.

Proof

 \leftarrow Trivial.

→ Suppose G + e has a Hamilton cycle H. If $e \notin H$ then $H \subseteq G$ and G is Hamiltonian.

Suppose $e \in H$. We show that we can find another Hamilton cycle in G + e which does not use e.

$$H = (x = v_1, v_2, \dots, v_n = y, x).$$

$$S = \{i : (x, v_{i+1}) \in E\} \text{ and }$$

$$T = \{i : (y, v_i) \in E\}.$$

 $S \subseteq \{1, 2, \dots, n-2\}, T \subseteq \{2, 3, \dots, n-1\}.$ $|S| + |T| \ge n \text{ and } |S \cup T| \le n-1.$

Thus

 $|S \cap T| = |S| + |T| - |S \cup T| \ge 1$ and so $\exists 1 \neq k \in S \cap T$ and then

 $H' = (v_1, v_2, \dots, v_k, v_n, v_{n-1}, \dots, v_{k+1}, v_1)$ is a Hamilton cycle of *G*.

Bondy-Chvatál Closure of a graph

begin

c(G) := Gwhile $\exists (x, y) \notin E$ with $d_{c(G)}(x) + d_{c(G)}(y) \ge n$ do begin c(G) := c(G) + (x, y)end Output c(G)end

The graph c(G) is called the closure of G.

Lemma 2 c(G) is independent of the order in which edges are added i.e. it depends only on G.

Proof Suppose algorithm is run twice to obtain $G_1 = G + e_1 + e_2 + \dots + e_k$ and $G_2 = G + f_1 + f_2 + \dots + f_\ell$. We show that $\{e_1, e_2, \dots, e_k\} = \{f_1, f_2, \dots, f_\ell\}$.

Suppose not. Let $t = \min\{i : e_i \notin G_2\}$, $e_t = (x, y)$ and $G' = G + e_1 + e_2 + \cdots + e_{t-1}$. Then

$$d_{G_2}(x) + d_{G_2}(y) \ge d_{G'}(x) + d_{G'}(y)$$

 $\ge n$

since e_t was added to G'.

But then e_t should have been added to G_2 – contradiction.

- c(G) Hamiltonian $\Rightarrow G$ is Hamiltonian.
- c(G) complete $\Rightarrow G$ is Hamiltonian.
- $\delta(G) \ge n/2 \Rightarrow G$ is Hamiltonian.

Second statement is due to Bondy and Murty. Third statement is due to Dirac. **Theorem 2** Let G be a simple graph with degree sequence $d_1 \leq d_2 \leq \cdots \leq d_{\nu}$, $\nu \geq 3$. Suppose that there does **not** exist $m < \nu/2$ such that

$$d_m \leq m$$
 and $d_{\nu-m} < \nu - m$.

Then G is Hamiltonian.

Proof We prove that c(G) is complete. Let d' denote degree in c(G). Suppose c(G) is not complete. Among all pairs of vertices u, v which are not adjacent in c(G) choose a pair which maximise d'(u) + d'(v) and assume $m = d'(u) \le d'(v)$. Note that

 $d'(u) + d'(v) \le \nu - 1.$

 $S = \{w \in V \setminus \{v\} : v, w \text{ not adjacent in } c(G)\}.$ $T = \{w \in V \setminus \{u\} : u, w \text{ not adjacent in } c(G)\}.$

$$|S| = \nu - 1 - d'(v) \ge d'(u) = m \quad (1)$$

$$|T \cup \{u\}| = \nu - m. \quad (2)$$

The choice of u, v means that

$$d'(w) \leq d'(u)$$
 for $w \in S$ (3)
 $d'(w) \leq d'(v) < \nu - m$ for $w \in T$ (4)
Now $d(w) \leq d'(w)$ for $w \in V$ and so
(1) and (3) imply that $d_m \leq m$.

(2) and (4) imply that $d_{\nu-m} < \nu - m$.

Contradiction.