Eulerian Graphs

An Eulerian cycle of a graph $G=(V, E)$ is a closed walk which uses each edge $e \in E$ exactly once.

The walk using edges $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{j}, \mathrm{k}$ in this order is an Eulerian cycle.

Theorem 1 A connected graph is Eulerian i.e. has an Eulerian cycle, iff it has no vertex of odd degree.

Proof \quad Suppose $W=\left(v_{1}, v_{2}, \ldots, v_{m}, v_{1}\right)$
($m=|E|$) is an Eulerian cycle. Fix $v \in V$. Whenever W visits v it enters through a new edge and leaves through a new edge. Thus each visit requires 2 new edges. Thus the degree of v is even.

The converse is proved by induction on $|E|$. The result is true for $|E|=3$. The only possible graph is a triangle.

Assume $|E| \geq 4 . G$ is not a tree, since it has no vertex of degree 1. Therefore it contains a cycle C. Delete the edges of C. The remaining graph has components $K_{1}, K_{2}, \ldots, K_{r}$.

Each K_{i} is connected and is of even degree deleting C removes 0 or 2 edges incident with a given $v \in V$. Also, each K_{i} has strictly less than $|E|$ edges. So, by induction, each K_{i} has an Eulerian cycle, C_{i} say.

We create an Eulerian cycle of G as follows: let $C=\left(v_{1}, v_{2}, \ldots, v_{s}, v_{1}\right)$. Let $v_{i_{t}}$ be the first vertex of C which is in K_{t}. Assume w.l.o.g. that $i_{1}<i_{2}<\cdots<i_{r}$.

$$
\begin{aligned}
& W=\left(v_{1}, v_{2}, \ldots, v_{i_{1}}, C_{1},, v_{i_{1}}, \ldots, v_{i_{2}}, C_{2}, v_{i_{2}},\right. \\
& \left.\ldots, v_{i_{r}}, C_{r}, v_{i_{r}}, \ldots, v_{1}\right)
\end{aligned}
$$

is an Eulerian cycle of G.

Corollary 1 A connected graph has an Eulerian Walk i.e. a walk which uses each edge exactly once, iff it has exactly 2 vertices of odd degree.

Proof If a walk exists then the endpoints have odd degree and the interior vertices have even degree.
Conversely, if there are two odd degree vertices x, y add an extra edge $e=x y$ to create a connected graph G^{\prime} with only even vertices. This has an Eulerian cycle C. Delete e from C to create the required path.

Hamilton Cycles

A Hamilton Cycle of a graph $G=(V, E)$ is a cycle which goes through each vertex (once).

A graph is called Hamiltonian if it contains a Hamilton cycle.

Hamiltonian Graph

Non-Hamiltonian Graph Petersen Graph

Lemma 1 Let $G=(V, E)$ and $|V|=n$. Suppose $x, y \in V, e=(x, y) \notin E$ and $d(x)+d(y) \geq$ n. Then

$$
G+e \text { is Hamiltonian } \leftrightarrow G \text { is Hamiltonian. }
$$

Proof

\leftarrow Trivial.
\rightarrow Suppose $G+e$ has a Hamilton cycle H. If $e \notin H$ then $H \subseteq G$ and G is Hamiltonian.

Suppose $e \in H$. We show that we can find another Hamilton cycle in $G+e$ which does not use e.

$$
\begin{aligned}
& H=\left(x=v_{1}, v_{2}, \ldots, v_{n}=y, x\right) . \\
& S=\left\{i:\left(x, v_{i+1}\right) \in E\right\} \text { and } \\
& T=\left\{i:\left(y, v_{i}\right) \in E\right\} .
\end{aligned}
$$

$$
S \subseteq\{1,2, \ldots, n-2\}, T \subseteq\{2,3, \ldots, n-1\} .
$$

$$
|S|+|T| \geq n \text { and }|S \cup T| \leq n-1
$$

Thus

$|S \cap T|=|S|+|T|-|S \cup T| \geq 1$ and so $\exists 1 \neq k \in S \cap T$ and then

$$
H^{\prime}=\left(v_{1}, v_{2}, \ldots, v_{k}, v_{n}, v_{n-1}, \ldots, v_{k+1}, v_{1}\right)
$$

is a Hamilton cycle of G.

Bondy-Chvatál Closure of a graph

begin
$c(G):=G$
while $\exists(x, y) \notin E$ with $d_{c(G)}(x)+d_{c(G)}(y) \geq n$ do begin

$$
c(G):=c(G)+(x, y)
$$

end
Output $c(G)$
end

The graph $c(G)$ is called the closure of G.

Lemma $2 c(G)$ is independent of the order in which edges are added i.e. it depends only on G.

Proof Suppose algorithm is run twice to obtain
$G_{1}=G+e_{1}+e_{2}+\cdots+e_{k}$ and
$G_{2}=G+f_{1}+f_{2}+\cdots+f_{\ell}$.
We show that $\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}=\left\{f_{1}, f_{2}, \ldots, f_{\ell}\right\}$.

Suppose not. Let $t=\min \left\{i: e_{i} \notin G_{2}\right\}, e_{t}=$ (x, y) and $G^{\prime}=G+e_{1}+e_{2}+\cdots+e_{t-1}$. Then

$$
\begin{aligned}
d_{G_{2}}(x)+d_{G_{2}}(y) & \geq d_{G^{\prime}}(x)+d_{G^{\prime}}(y) \\
& \geq n
\end{aligned}
$$

since e_{t} was added to G^{\prime}.

But then e_{t} should have been added to G_{2} contradiction.

- $c(G)$ Hamiltonian $\Rightarrow G$ is Hamiltonian.
- $c(G)$ complete $\Rightarrow G$ is Hamiltonian.
- $\delta(G) \geq n / 2 \Rightarrow G$ is Hamiltonian.

Second statement is due to Bondy and Murty. Third statement is due to Dirac.

Theorem 2 Let G be a simple graph with degree sequence $d_{1} \leq d_{2} \leq \cdots \leq d_{\nu}, \nu \geq 3$. Suppose that there does not exist $m<\nu / 2$ such that

$$
d_{m} \leq m \text { and } d_{\nu-m}<\nu-m .
$$

Then G is Hamiltonian.
Proof We prove that $c(G)$ is complete. Let d^{\prime} denote degree in $c(G)$. Suppose $c(G)$ is not complete. Among all pairs of vertices u, v which are not adjacent in $c(G)$ choose a pair which maximise $d^{\prime}(u)+d^{\prime}(v)$ and assume $m=d^{\prime}(u) \leq d^{\prime}(v)$. Note that

$$
d^{\prime}(u)+d^{\prime}(v) \leq \nu-1
$$

$S=\{w \in V \backslash\{v\}: v, w$ not adjacent in $c(G)\}$. $T=\{w \in V \backslash\{u\}: u, w$ not adjacent in $c(G)\}$.

$$
\begin{align*}
|S| & =\nu-1-d^{\prime}(v) \geq d^{\prime}(u)=m \tag{1}\\
|T \cup\{u\}| & =\nu-m . \tag{2}
\end{align*}
$$

The choice of u, v means that

$$
\begin{array}{r}
d^{\prime}(w) \leq d^{\prime}(u) \text { for } w \in S \\
d^{\prime}(w) \leq d^{\prime}(v)<\nu-m \text { for } w \in T \tag{4}
\end{array}
$$

Now $d(w) \leq d^{\prime}(w)$ for $w \in V$ and so
(1) and (3) imply that $d_{m} \leq m$.
(2) and (4) imply that $d_{\nu-m}<\nu-m$.

Contradiction.

