Connectivity

G is k-connected if $S \subseteq V,|S|<k$ implies $G-S$ is connected.

$$
\kappa(G)=\max \{k: G \text { is } k \text {-connected }\} .
$$

$$
\kappa(\mathrm{G})=2
$$

$$
\kappa(\mathrm{G})=1
$$

G is k-edge connected if $S \subseteq E,|S|<k$ implies $G-S$ is connected.

$$
\kappa^{\prime}(G)=\max \{k: G \text { is } k \text {-edge connected }\} .
$$

$$
\kappa^{\prime}(\mathrm{G})=2
$$

$$
\kappa^{\prime}(\mathrm{G})=2
$$

Assume G connected.

S is a k-vertex cutset if $S \subseteq V,|S|=k$ and $G-S$ is not connected.

A 1-vertex cutset is a cutpoint.
S is a k-edge cutset if $S \subseteq E,|S|=k$ and $G-E$ is not connected.

A 1-edge cutset is a bridge or cut-edge.

Lemma 1 If G is connected and e is a bridge, then $H=G-e$ has exactly 2 components.

Proof If H has components C_{1}, C_{2}, C_{3} then $G=$ $H+e$ has ≥ 2 components, since adding an edge decreases the number of components by at most 1 . This contradicts the fact that G is connected.

Complete Graphs

K_{n} has no vertex cutsets.
$\kappa\left(K_{n}\right)=n-1$ by convention.
$\kappa^{\prime}\left(K_{n}\right)=n-1$.
So in general

$$
\kappa(G) \leq \nu-1 .
$$

G not complete. v, w not neighbours.
$V \backslash\{v, w\}$ is a ($\nu-2$)-vertex cutset.

Theorem 1

$$
\kappa(G) \leq \kappa^{\prime}(G) \leq \delta(G) .
$$

Proof
If G has no edges then

$$
\kappa^{\prime}=0=\delta .
$$

Otherwise the set of edges incident with a vertex v of minimum degree is a δ-edge cutset.

δ edge cutset

Therefore $\kappa^{\prime} \leq \delta$.

We prove that $\kappa \leq \kappa^{\prime}$ by induction on κ^{\prime}.
True for $\kappa^{\prime}=0$.

Assume true for all graphs with $\kappa^{\prime}<k$ and let G be a graph with $\kappa^{\prime}(G)=k$.

Suppose $A \subseteq E$ is a k-edge cutset of G.

Let $e \in A$ and $H=G-e$. Then $H-(A \backslash e)=G-A$ is not connected and so $\kappa^{\prime}(H)<k$.

By the induction hypothesis $\kappa(H) \leq \kappa^{\prime}(H) \leq k-1$.

Let $S \subseteq V$ be a k - 1-vertex cutset of H.

If $G-S$ is not connected then $\kappa(G) \leq k-1<\kappa^{\prime}(G)$.

Assume therefore that $G-S$ is connected.

Neither endpoint of e is in S, else $G-S=H-S$.
e is a bridge of $G-S$ since $(G-S)-e=H-S$ is not connected. It has 2 components C_{1}, C_{2}.

If $\left|C_{1}\right| \geq 2$ then $S+v$ is a k-vertex cutset of G and so $\kappa(G) \leq k$.

Similarly if $\left|C_{2}\right| \geq 2$.

So assume that $G-S$ is the just the edge $v w$.

Then $\nu(G)=k+1$ and so $\kappa(G) \leq k$.

A block is a connected graph with no cutpoints.

Thus a block is either a single vertex, a single edge or if $\nu \geq 3$ it is a 2-connected graph.

A block of a graph is a maximal connected subgraph with no cutpoints.

Note that blocks partition the edges of G, not the vertices.

Union and Intersection of Graphs

$G_{i}=\left(V_{i}, E_{i}\right), i=1,2$.

$$
\begin{aligned}
G_{1} \cup G_{2} & =\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right) . \\
G_{1} \cap G_{2} & =\left(V_{1} \cap V_{2}, E_{1} \cap E_{2}\right)
\end{aligned}
$$

provided $V_{1} \cap V_{2} \neq \emptyset$.

Theorem 2 A connected graph G can be expressed as

$$
G=B_{1} \cup B_{2} \cup \cdots B_{r}
$$

where $B_{1}, B_{2}, \ldots, B_{r}$ are the blocks of G.

By induction on ν. Trivial for $\nu=1$.
Assume true for all connected graphs with $\nu<k$ and suppose that G has k vertices.
(a) G has no cutpoints $-G=B_{1}$.
(b) G has a cutpoint v.

Let $G-v$ have components $C_{1}, C_{2}, \ldots C_{s}$.
$C_{i}+v$ is connected for $1 \leq i \leq s$.
By induction

$$
C_{i}+v=\bigcup_{j=1}^{k_{i}} B_{i, j}
$$

where the $B_{i, j}$ are the blocks of $C_{i}+v$.

Thus

$$
G=\bigcup_{i=1}^{r} \bigcup_{j=1}^{k_{i}} B_{i, j} .
$$

We still have to check that the $B_{i, j}$ are maximal 2connected subgraphs. But $B_{i, j}$ is not strictly contained in any 2-connected subgraph of $C_{i}+v$ since it is a block of $C_{i}+v$. Also, if $x \notin C_{i}+v$ then every path from x to C_{i} must go through v and so v is a cutpoint of any subgraph containing $B_{i, j}$ and x.

Theorem 3 If B_{1}, B_{2} are blocks of the connected graph G then

$$
\left|V\left(B_{1}\right) \cap V\left(B_{2}\right)\right| \leq 1
$$

Proof Suppose that $\left|V\left(B_{1}\right) \cap V\left(B_{2}\right)\right| \geq 2$. We obtain the contradiction that $B_{1} \cup B_{2}$ is 2-connected. Let $x \in V\left(B_{1}\right) \cup V\left(B_{2}\right)$ and $y \in\left(V\left(B_{1}\right) \cap V\left(B_{2}\right)\right)-$ x. Then there is a path in B_{i} from every vertex v of $B_{i}-x$ to y. Thus $B_{1} \cup B_{2}-x$ is connected.

Lemma 2 If v is a cutpoint of connected graph then there exist blocks B_{1}, B_{2} such that $V\left(B_{1}\right) \cap V\left(B_{2}\right)=$ $\{v\}$.

Proof Let $G-v$ have components $C_{1}, C_{2}, \ldots, C_{r}$. Let B_{i} be the block of $C_{i}+v$ which contains v for $i=1,2 . B_{1}, B_{2}$ are blocks of G, by the same argument as given in end of proof of Theorem 2.

Lemma 3 If $B_{1} \neq B_{2}$ are blocks of G and $V\left(B_{1}\right) \cap$ $V\left(B_{2}\right)=\{v\}$ then every path from a vertex of B_{1} to a vertex of B_{2} goes through v.

Proof If there is a path P from $x \in B_{1}$ to $y \in B_{2}$ which avoids v then $B_{1} \cup B_{2} \cup P$ is 2-connected.

Corollary 1 If $B_{1} \neq B_{2}$ are blocks of G and $V\left(B_{1}\right) \cap$ $V\left(B_{2}\right)=\{v\}$ then v is a cutpoint of G.

Lemma 4 Suppose $B_{1} \neq B_{2}$ are vertex disjoint blocks of G and there is an edge $x y$ with $x \in V\left(B_{1}\right), y \in$ $V\left(B_{2}\right)$. Then x, y forms a block of G and both of x, y are cutpoints.

Proof If y is of degree 1 then $B_{1}=x$ is not a block.

Otherwise if y is not of degree 1 and is not a cutpoint then there is a path P from B_{2} to $B_{1}-x$ which implies $B_{1} \cup B_{2} \cup P$ is 2-connected - contradiction.

Thus $x y$ is a bridge of G and so is a block.

Block Graph

Let G be a connected graph with blocks $B_{1}, B_{2}, \ldots, B_{r}$ and cutpoints $c_{1}, c_{2}, \ldots, c_{s}$. We define a bipartite graph H with $V(H)=\left\{b_{1}, b_{2}, \ldots, b_{r}\right\} \cup\left\{c_{1}, c_{2}, \ldots, c_{s}\right\}$ (block vertices and cut vertices) and $E(H)=\left\{b_{i} c_{j}\right.$: $\left.c_{j} \in B_{i}\right\}$.

Theorem $4 H$ is a tree.

Proof If G is 2-connected then H consists of a single vertex. Assume that G is not 2 -connected.
(a) H is connected.

Suppose that H contains components $C_{1}, C_{2}, \ldots, C_{r}$, $r \geq 2$. Each component contains at least one block vertex and at least one cut vertex - each block contains a cutpoint and each cutpoint is contained in a block.

Since G is connected, there exist C_{i}, C_{j} and $b_{i} \in$ $C_{i}, b_{j} \in C_{j}$ such that either

1. $V\left(B_{i}\right) \cap V\left(B_{j}\right)=\{c\}$: but then H contains the path $b_{i}, c, b_{j}-$ contradiction.
2. $V\left(B_{i}\right) \cap V\left(B_{j}\right)=\emptyset$ and there is an edge x, y joining B_{i} to B_{j} : but then x, y is a block B_{k}, say, and H contains the path $b_{i}, x, b_{k}, y, b_{j}$ - contradiction.
(b) H contains no cycles.

If H contains the cycle $\left(b_{1}, c_{1}, b_{2}, c_{2}, \ldots, b_{k}, c_{k}, b_{1}\right)$ then $B_{1} \cup B_{2} \cup \cdots B_{k}$ is 2-connected - contradiction.

A family of paths is said to be internally disjoint if no vertex of G is an internal vertex of more than one path.

Theorem 5 A graph G with $\nu \geq 3$ is 2 -connected iff any two vertices of G are connected by at least two internally disjoint paths.

Proof

If: $G-v$ is connected for any v since $x, y \in V-v$ must contain at least one path which avoids v.

Only if: assume G is 2 -connected. We show by induction on $d(u, v)$ that every pair of vertices u, v are joined by two internally disjoint paths.

Base case: $d(u, v)=1$.
$e=u v$ is not a cut-edge and so is contained in a cycle.

Assume true for $d(u, v)<k$ and consider a pair u, v with $d(u, v)=k$. Let w be the penultimate vertex on some path of length k from u to v. Thus $d(u, w)=$ $k-1$ and there are two internally disjoint paths P, Q joining u and w.
$G-w$ is connected and so there exists a u, v-path P^{\prime} in $G-w$. Let x be the last vertex of P^{\prime} which is not in $P \cup Q$.

If $x \in P$ take $P(u, x)+P^{\prime}(x, v)$ and Q as the two internally disjoint paths.

Corollary 2 If G is 2 -connected and $\nu \geq 3$ then every pair of vertices are contained in a cycle.

Corollary 3 If G is 2-connected and $\nu \geq 3$ then every pair of edges e_{1}, e_{2} are contained in a cycle.

G^{\prime} is obtained from G by dividing $e_{1}, e_{2} . G^{\prime}$ is 2connected. Apply Theorem 5.

