Connectivity

G is *k*-connected if $S \subseteq V, |S| < k$ implies G - S is connected.

 $\kappa(G) = \max\{k : G \text{ is } k \text{-connected}\}.$

G is k-edge connected if $S \subseteq E, |S| < k$ implies G-S is connected.

 $\kappa'(G) = \max\{k : G \text{ is } k \text{-edge connected}\}.$

Assume G connected.

S is a k-vertex cutset if $S \subseteq V, |S| = k$ and G - S is not connected.

A 1-vertex cutset is a *cutpoint*.

S is a k-edge cutset if $S \subseteq E$, |S| = k and G - E is not connected.

A 1-edge cutset is a *bridge* or cut-edge.

Lemma 1 If G is connected and e is a bridge, then H = G - e has exactly 2 components.

Proof If *H* has components C_1, C_2, C_3 then G = H + e has ≥ 2 components, since adding an edge decreases the number of components by at most 1. This contradicts the fact that *G* is connected. \Box

Complete Graphs

 K_n has no vertex cutsets.

 $\kappa(K_n) = n - 1$ by convention.

$$\kappa'(K_n) = n - 1.$$

So in general

 $\kappa(G) \leq \nu - 1.$

G not complete. v, w not neighbours. $V \setminus \{v, w\}$ is a $(\nu - 2)$ -vertex cutset. **Theorem 1**

$$\kappa(G) \le \kappa'(G) \le \delta(G).$$

Proof If G has no edges then

 $\kappa' = 0 = \delta.$

Otherwise the set of edges incident with a vertex v of minimum degree is a δ -edge cutset.

Therefore $\kappa' \leq \delta$.

We prove that $\kappa \leq \kappa'$ by induction on κ' .

True for $\kappa' = 0$.

Assume true for all graphs with $\kappa' < k$ and let *G* be a graph with $\kappa'(G) = k$.

Suppose $A \subseteq E$ is a k-edge cutset of G.

Let $e \in A$ and H = G - e. Then

 $H - (A \setminus e) = G - A$ is not connected and so $\kappa'(H) < k$.

By the induction hypothesis $\kappa(H) \leq \kappa'(H) \leq k-1$.

Let $S \subseteq V$ be a k - 1-vertex cutset of H.

If G-S is not connected then $\kappa(G) \leq k-1 < \kappa'(G)$.

Assume therefore that G - S is connected.

Neither endpoint of e is in S, else G - S = H - S.

e is a bridge of G - S since (G - S) - e = H - S is not connected. It has 2 components C_1, C_2 .

If $|C_1| \ge 2$ then S + v is a k-vertex cutset of G and so $\kappa(G) \le k$.

Similarly if $|C_2| \ge 2$.

So assume that G - S is the just the edge vw.

Then $\nu(G) = k + 1$ and so $\kappa(G) \leq k$.

A *block* is a connected graph with no cutpoints.

Thus a block is either a single vertex, a single edge or if $\nu \ge 3$ it is a 2-connected graph.

A block of a graph is a *maximal* connected subgraph with no cutpoints.

Note that blocks partition the edges of G, not the vertices.

Union and Intersection of Graphs

$$G_i = (V_i, E_i), i = 1, 2.$$

 $G_1 \cup G_2 = (V_1 \cup V_2, E_1 \cup E_2).$
 $G_1 \cap G_2 = (V_1 \cap V_2, E_1 \cap E_2)$
provided $V_1 \cap V_2 \neq \emptyset.$

Theorem 2 A connected graph *G* can be expressed as

 $G = B_1 \cup B_2 \cup \cdots B_r$

where B_1, B_2, \ldots, B_r are the blocks of G.

By induction on ν . Trivial for $\nu = 1$. Assume true for all connected graphs with $\nu < k$ and suppose that *G* has *k* vertices. (a) G has no cutpoints $-G = B_1$.

(b) G has a cutpoint v.

Let G - v have components $C_1, C_2, \ldots C_s$.

 $C_i + v$ is connected for $1 \le i \le s$. By induction

$$C_i + v = \bigcup_{j=1}^{k_i} B_{i,j}$$

where the $B_{i,j}$ are the blocks of $C_i + v$.

Thus

$$G = \bigcup_{i=1}^{r} \bigcup_{j=1}^{k_i} B_{i,j}.$$

We still have to check that the $B_{i,j}$ are maximal 2connected subgraphs. But $B_{i,j}$ is not strictly contained in any 2-connected subgraph of $C_i + v$ since it is a block of $C_i + v$. Also, if $x \notin C_i + v$ then every path from x to C_i must go through v and so v is a cutpoint of any subgraph containing $B_{i,j}$ and x. **Theorem 3** If B_1 , B_2 are blocks of the connected graph *G* then

 $|V(B_1) \cap V(B_2)| \le 1.$

Proof Suppose that $|V(B_1) \cap V(B_2)| \ge 2$. We obtain the contradiction that $B_1 \cup B_2$ is 2-connected. Let $x \in V(B_1) \cup V(B_2)$ and $y \in (V(B_1) \cap V(B_2)) - x$. Then there is a path in B_i from every vertex v of $B_i - x$ to y. Thus $B_1 \cup B_2 - x$ is connected. \Box

14

Lemma 2 If v is a cutpoint of connected graph then there exist blocks B_1, B_2 such that $V(B_1) \cap V(B_2) = \{v\}$.

Proof Let G-v have components C_1, C_2, \ldots, C_r . Let B_i be the block of $C_i + v$ which contains v for i = 1, 2. B_1, B_2 are blocks of G, by the same argument as given in end of proof of Theorem 2. **Lemma 3** If $B_1 \neq B_2$ are blocks of G and $V(B_1) \cap V(B_2) = \{v\}$ then every path from a vertex of B_1 to a vertex of B_2 goes through v.

Proof If there is a path *P* from $x \in B_1$ to $y \in B_2$ which avoids *v* then $B_1 \cup B_2 \cup P$ is 2-connected.

Corollary 1 If $B_1 \neq B_2$ are blocks of G and $V(B_1) \cap V(B_2) = \{v\}$ then v is a cutpoint of G.

Lemma 4 Suppose $B_1 \neq B_2$ are vertex disjoint blocks of *G* and there is an edge xy with $x \in V(B_1), y \in$ $V(B_2)$. Then x, y forms a block of *G* and both of x, yare cutpoints.

Proof If y is of degree 1 then $B_1 = x$ is not a block.

Otherwise if y is not of degree 1 and is not a cutpoint then there is a path P from B_2 to $B_1 - x$ which implies $B_1 \cup B_2 \cup P$ is 2-connected – contradiction.

Thus xy is a bridge of G and so is a block.

Block Graph

Let *G* be a connected graph with blocks B_1, B_2, \ldots, B_r and cutpoints c_1, c_2, \ldots, c_s . We define a bipartite graph *H* with $V(H) = \{b_1, b_2, \ldots, b_r\} \cup \{c_1, c_2, \ldots, c_s\}$ (block vertices and cut vertices) and $E(H) = \{b_i c_j : c_j \in B_i\}$.

Theorem 4 *H* is a tree.

Proof If G is 2-connected then H consists of a single vertex. Assume that G is not 2-connected.

(a) *H* is connected.

Suppose that *H* contains components C_1, C_2, \ldots, C_r , $r \ge 2$. Each component contains at least one block vertex and at least one cut vertex – each block contains a cutpoint and each cutpoint is contained in a block.

Since *G* is connected, there exist C_i, C_j and $b_i \in C_i, b_j \in C_j$ such that either

- 1. $V(B_i) \cap V(B_j) = \{c\}$: but then *H* contains the path b_i, c, b_j contradiction.
- 2. $V(B_i) \cap V(B_j) = \emptyset$ and there is an edge x, y joining B_i to B_j : but then x, y is a block B_k , say, and H contains the path b_i, x, b_k, y, b_j contradiction.

(b) H contains no cycles.

If *H* contains the cycle $(b_1, c_1, b_2, c_2, \dots, b_k, c_k, b_1)$ then $B_1 \cup B_2 \cup \dots B_k$ is 2-connected – contradiction.

g replacements

 B_4

20

A family of paths is said to be *internally disjoint* if no vertex of *G* is an internal vertex of more than one path.

Theorem 5 A graph G with $\nu \ge 3$ is 2-connected iff any two vertices of G are connected by at least two internally disjoint paths.

Proof

If: G - v is connected for any v since $x, y \in V - v$ must contain at least one path which avoids v.

Only if: assume *G* is 2-connected. We show by induction on d(u, v) that every pair of vertices u, v are joined by two internally disjoint paths.

Base case: d(u, v) = 1.

e = uv is not a cut-edge and so is contained in a cycle.

Assume true for d(u, v) < k and consider a pair u, vwith d(u, v) = k. Let w be the penultimate vertex on some path of length k from u to v. Thus d(u, w) =k - 1 and there are two internally disjoint paths P, Qjoining u and w.

G - w is connected and so there exists a u, v-path P'in G - w. Let x be the last vertex of P' which is not in $P \cup Q$.

If $x \in P$ take P(u, x) + P'(x, v) and Q as the two internally disjoint paths. \Box

Corollary 2 If *G* is 2-connected and $\nu \ge 3$ then every pair of vertices are contained in a cycle.

Corollary 3 If *G* is 2-connected and $\nu \ge 3$ then every pair of edges e_1, e_2 are contained in a cycle.

G' is obtained from G by *dividing* e_1, e_2 . G' is 2-connected. Apply Theorem 5.