
Trees

A tree is a graph which is

(a) Connected and

(b) has no cycles (acyclic).
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Lemma 1 Let the components of G be
C1, C2, . . . , Cr, Suppose e = (u, v) /∈ E, u ∈ Ci, v ∈

Cj.

(a) i = j ⇒ ω(G + e) = ω(G).

(b) i 6= j ⇒ ω(G + e) = ω(G)− 1.

(a)

u

v

(b)

u v
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Proof Every path P in G + e which is not in G

must contain e. Also,

ω(G + e) ≤ ω(G).

Suppose

(x = u0, u1, . . . , uk = u, uk+1 = v, . . . , u` = y)

is a path in G + e that uses e. Then clearly x ∈ Ci

and y ∈ Cj.

(a) follows as now no new relations x ∼ y are added.

(b) Only possible new relations x ∼ y are for x ∈ Ci

and y ∈ Cj. But u ∼ v in G + e and so Ci ∪ Cj

becomes (only) new component. 2
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Lemma 2 G = (V, E) is acyclic (forest) with (tree)
components C1, C2, . . . , Ck. |V | = n. e = (u, v) /∈

E, u ∈ Ci, v ∈ Cj.

(a) i = j ⇒ G + e contains a cycle.

(b) i 6= j ⇒ G + e is acyclic and has one less com-
ponent.

(c) G has n− k edges.
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(a) u, v ∈ Ci implies there exists a path
(u = u0, u1, . . . , u` = v) in G.

So G + e contains the cycle u0, u1, . . . , u`, u0.

u
v
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(a)

u
v

Suppose G+ e contains the cycle C. e ∈ C else C is
a cycle of G.

C = (u = u0, u1, . . . , u` = v, u0).

But then G contains the path (u0, u1, . . . , u`) from u

to v – contradiction.
PSfrag replacements

u

u1

u2

u`−1

v
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The drop in the number of components follows from
Lemma 1.

The rest of the lemma follows from

(c) Suppose E = {e1, e2, . . . , er} and
Gi = (V, {e1, e2, . . . , ei}) for 0 ≤ i ≤ r.

Claim: Gi has n− i components.
Induction on i.
i = 0: G0 has no edges.

i > 0: Gi−1 is acyclic and so is Gi. It follows from
part (a) that ei joins vertices in distinct components of
Gi−1. It follows from (b) that Gi has one less compo-
nent than Gi−1.
End of proof of claim

Thus r = n− k (we assumed G had k components).
2
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Corollary 1 If a tree T has n vertices then

(a) It has n− 1 edges.

(b) It has at least 2 vertices of degree 1, (n ≥ 2).

Proof (a) is part (c) of previous lemma. k = 1

since T is connnected.

(b) Let s be the number of vertices of degree 1 in T .
There are no vertices of degree 0 – these would form
separate components. Thus

2n− 2 =
∑

v∈V

dT (v) ≥ 2(n− s) + s.

So s ≥ 2. 2
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Theorem 1 Suppose |V | = n and |E| = n− 1. The
following three statements become equivalent.

(a) G is connected.

(b) G is acyclic.

(c) G is a tree.

Proof Let E = {e1, e2, . . . , en−1} and
Gi = (V, {e1, e2, . . . , ei}) for 0 ≤ i ≤ n− 1.
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(a) ⇒ (b): G0 has n components and Gn−1 has
1 component. Addition of each edge ei must reduce
the number of components by 1 – Lemma 1(b). Thus
Gi−1 acyclic implies Gi is acyclic – Lemma 2(b). (b)
follows as G0 is acyclic.

(b) ⇒ (c): We need to show that G is connected.
Since Gn−1 is acyclic, ω(Gi) = ω(Gi−1) − 1 for
each i – Lemma 2(b). Thus ω(Gn−1) = 1.

(c)⇒ (a): trivial.
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Corollary 2 If v is a vertex of degree 1 in a tree T

then T − v is also a tree.

v

Proof Suppose T has n vertices and n edges.
Then T − v has n − 1 vertices and n − 2 edges. It
acyclic and so must be a tree. 2
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Cut edges

cut edge

e is a cut edge of G if ω(G− e) > ω(G).

Theorem 2 e = (u, v) is a cut edge iff e is not on any
cycle of G.

Proof ω increases iff there exist x ∼ y ∈ V such
that all walks from x to y use e.

Suppose there is a cycle (u, P, v, u) containing e. Then
if W = x, W1, u, v, W2, y is a walk from x to y using
e, x, W1, P, W2, y is a walk from x to y that doesn’t
use e. Thus e is not a cut edge.
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u v

P

If e is not a cut edge then G−e contains a path P from
u to v (u ∼ v in G and relations are maintained after
deletion of e). So (v, u, P, v) is a cycle containing e.

2

Corollary 3 A connected graph is a tree iff every edge
is a cut edge.
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Corollary 4 Every finite connected graph G contains
a spanning tree.

Proof Consider the following process: starting with
G,

1. If there are no cycles – stop.

2. If there is a cycle, delete an edge of a cycle.

Observe that (i) the graph remains connected – we
delete edges of cycles. (ii) the process must terminate
as the number of edges is assumed finite.

On termination there are no cycles and so we have a
connected acyclic spanning subgraph i.e. we have a
spanning tree. 2

14



Alternative Construction

Let E = {e1, e2, . . . , em}.

begin
T := ∅

for i = 1,2, . . . , m do
begin

if T + ei does not contain a cycle
then T ← T + ei

end
Output T

end
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Lemma 3 If G is connected then (V, T ) is a spanning
tree of G.

Proof Clearly T is acyclic. Suppose it is not con-
nected and has compponnents C1, C2, . . . , Ck, k ≥

2. Let D = C2 ∪ · · · ∪ Ck. Then G has no edges
joining C1 and D – contradiction. (The first C1 : D

edge found by the algorithm would have been added.)
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Theorem 3 Let T be a spanning tree of G = (V, E),
|V | = n. Suppose e = (u, v) ∈ E \ T .

(a) T + e contains a unique cycle C(T, e).

(b) f ∈ C(T, e) implies that T + e− f is a spanning
tree of G.

u

v

f
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Proof (a) Lemma 2(a) implies that T + e has a
cycle C. Suppose that T + e contains another cycle
C′ 6= C. Let edge g ∈ C ′ \ C. T ′ = T + e − g is
connected, has n− 1 edges. But T ′ contains a cycle
C, contradictng Theorem 1.

(b) T + e − f is connected and has n − 1 edges.
Therefore it is a tree. 2
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Maximum weight trees

G = (V, E) is a connected graph.

w : E → R. w(e) is the weight of edge e.

For spanning tree T , w(T ) =
∑

e∈T w(e).

Problem: find a spanning tree of maximum weight.
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Greedy Algorithm

Sort edges so that E = {e1, e2, . . . , em} where

w(e1) ≥ w(e2) ≥ · · · ≥ w(em).

begin
T := ∅

for i = 1,2, . . . , m do
begin

if T + ei does not contain a cycle
then T ← T + ei

end
Output T

end

Greedy always adds the maximum weight edge which
does not make a cycle with previously chosen edges.
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Theorem 4 Let G be a connected weighted graph.
The tree constructed by GREEDY is a maximum weight
spanning tree.

Proof Lemma 3 implies that T is a spanning tree
of G.

Let the edges of the greedy tree be
e?
1, e?

2, . . . , e?
n−1, in order of choice. Note that w(e?

i ) ≥

w(e?
i+1) since neither makes a cycle with e?

1, e?
2, . . . , e?

i−1.

Let f1, f2, . . . , fn−1 be the edges of any other tree
where w(f1) ≥ w(f2) ≥ · · ·w(fn−1).

We show that

w(e?
i ) ≥ w(fi) 1 ≤ i ≤ n− 1. (1)
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Suppose (1) is false. There exists k > 0 such that

w(e?
i ) ≥ w(fi), 1 ≤ i < k and w(e?

k) < w(fk).

Each fi, 1 ≤ i ≤ k is either one of or makes a cycle
with e?

1, e?
2, . . . , e?

k−1. Otherwise one of the fi would
have been chosen in preference to e?

k.

Let components of forest (V, {e?
1, e?

2, . . . , e?
k−1}) be

C1, C2, . . . , Cn−k+1. Each fi, 1 ≤ i ≤ k has both
of its endpoints in the same component.

PSfrag replacements

fj

Ci
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Let µi be the number of fj which have both endpoints
in Ci and let νi be the number of vertices of Ci. Then

µ1 + µ2 + · · ·µn−k+1 = k (2)

ν1 + ν2 + · · · νn−k+1 = n (3)

It follows from (2) and (3) that there exists t such that

µt ≥ νt. (4)

[Otherwise

n−k+1
∑

i=1

µi ≤
n−k+1

∑

i=1

(νi − 1)

=
n−k+1

∑

i=1

νi − (n− k + 1) ]

= k − 1.

But (4) implies that the edges fj such that fj ⊆ Ct

contain a cycle. 2
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Cut Sets and Bonds

If S ⊆ V, S 6= ∅, V then the cut-set

S : S̄ = {e = vw ∈ E : v ∈ S, w ∈ S̄ = V \ S}

1

2

3

4

5

6

a

b

c

d

e

f

g

h

k

S = {1,2,3} S : S̄ = {d, e, f}.
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Lemma 4 Let G be connected and X ⊆ E. Then
G[E \X] is not connected iff X contains a cutset.

Proof
Only if
G[E \X] contains components C1, C2, . . . , Ck,

k ≥ 2 and so X ⊇ C1 : C̄1 and C1 6= ∅, V .

If
Suppose X = S : S̄ and v ∈ S, w ∈ S̄. Then every
walk from v to w in G contains an edge of X.

v w

PSfrag replacements

S̄

S̄

S

S

S

So G[E \X] contains no walk from v to w. 2
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A Bond B is a minimal cut-set. I.e. B = S : S̄ and if
T : T̄ ⊆ B then B = T : T̄ .
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S1 = {1,2,3} B1 = S1 : S̄1 is a bond
S2 = {2,3,4,5} B2 = S2 : S̄2 is not a bond

since B2 ⊃ S3 : S̄3 and B2 6= S3 : S̄3 where S3 =

{1}.

26



Theorem 5 G is connected and B is a a bond↔ G \

B contains exactly 2 components.

Proof →: G\B contains components C1, C2, . . . , Ck.
Assume w.l.o.g. that there is at least one edge e in G

joining C1 and C2. If k ≥ 3 then B ⊇ C3 : C̄3 and
B 6= C3 : C̄3 since B contains e.

←: Assume that G \ B contains exactly two compo-
nents C1 = G[S], C2 = G[S̄]. Let e ∈ B. Adding
e to the graph C1 ∪ C2 clearly produces a connected
graph and so B \ e is not a cutset. 2

27



A co-tree T̄ of a connected graph G is the edge com-
plement of a spanning tree of G i.e. T̄ = E \ T for
some spanning tree T .

Theorem 6 Let T be a spanning tree of G and e ∈ T .
Then

(a) T̄ contains no bond of G.

(b) T̄ + e contains a unique bond B(T̄ , e) of G.

(c) f ∈ B(T̄ , e) implies that T̄ + e− f is a co-tree of
G.

[Compare with Tree + edge ⊇ cycle.]
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Proof (a) X ⊆ T̄ ↔ G \ X ⊇ T which implies
that G \X is connected. So X is not a bond.

(b)&(c) G \ (T̄ + e) = T \ e contains exactly two
components and so by Theorem 5 T̄ + e contains a
bond B = S : S̄ where S, S̄ are the 2 components of
T \ e.

f ∈ B ⇒ e ∈ C(T, f)

⇒ T + f − e is a tree

⇒ T̄ + e− f is a co-tree proving (c)

Hence every bond of T̄ + e contains f – otherwise
T̄ +e−f contains a bond, contradicting (a) and prov-
ing (b). 2
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S
PSfrag replacements

B = (S : S̄)

S̄
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How many trees? – Cayley’s Formula

n=4

4 12

n=5

5 60 60

n=6

6 120 360 90

360
360
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Contracting edges

If e = vw ∈ E, v 6= w then we can contract e to
get G · e by (i) deleting e, (ii) identifying v, w i.e. make
them into a single new vertex.

1
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5a
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5
6

1

2

G− e is obtained by deleting e.

τ(G) is the number of spanning trees of G.
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Theorem 7 If e ∈ E is not a loop then

τ(G) = τ(G · e) + τ(G− e).

Proof

• τ(G − e) = the number of spanning trees of G

which do not contain e.

• τ(G · e) = the number of spanning trees of G

which contain e.

[Bijection T → T · e maps spanning trees of G which
contain e to spanning trees of G · e.]
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Matrix Tree Theorem

Define the V × V matrix L = D − A where A is the
adjacency matrix of G and D is the diagonal matrix
with D(v, v) = degree of v.

=

3 -1 -1

-1 3 -1

-1 -1 3

1

2

3

4
L = 

3 -1 -1 -1

-1 3

-1 -1 3

-1 -1

-1

-1 -1 -1 3

PSfrag replacements
Determinant L1 = 16L1

Let L1 be obtained by deleting the first row and col-
umn of L.

Theorem 8

τ(G) = determinantL1.
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Pfuffer’s Correspondence

There is a 1-1 correspondence φV between spanning
trees of KV (the complete graph with vertex set V )
and sequences V n−2. Thus for n ≥ 2

τ(Kn) = nn−2 Cayley’s Formula.

Assume some arbitrary ordering V = {v1 < v2 <

· · · < vn}.

φV (T ):
begin

T1 := T ;

for i = 1 to n− 2 do
begin

si := neighbour of least leaf `i of Ti.
Ti+1 = Ti − `i.

end φV (T ) = s1s2 . . . sn−2

end
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6,4,5,14,2,6,11,14,8,5,11,4,2
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Lemma 5 v ∈ V (T ) appears exactly dT (v)−1 times
in φV (T ).

Proof Assume n = |V (T )| ≥ 2. By induction on
n.
n = 2: φV (T ) = Λ = empty string.

Assume n ≥ 3:

PSfrag replacements

T1

s1 `1

φV (T ) = s1φV1
(T1) where V1 = V − {`1}.

s1 appears dT1
(s1) − 1 + 1 = dT (s1) − 1 times –

induction.
v 6= s1 appears dT1

(v) − 1 = dT (v) − 1 times –
induction. 2
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Construction of φ−1
V

Inductively assume that for all |X| < n there is an
inverse function φ−1

X . (True for n = 2).
Now define φ−1

V by

φ−1
V (s1s2 . . . sn−2) = φ−1

V1
(s2 . . . sn−2) plus edge s1`1,

where `1 = min{s : s /∈ s1, s2, . . . sn−2} and V1 =

V − {`1}.

Then

φV (φ−1
V (s1s2 . . . sn−2)) =

= φV (φ−1
V1

(s2 . . . sn−2) plus edge s1`1)

= s1φV1
(φ−1

V1
(s2 . . . sn−2))

= s1s2 . . . sn−2.

Thus φV has an inverse and the correspondence is
established.
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Number of trees with a given degree sequence

Corollary 5 If d1 + d2 + · · · + dn = 2n − 2 then
he number of spanning trees of Kn with degree se-
quence d1, d2, . . . , dn is
(

n−2
d1−1,d2−1,... ,dn−1

)

=

(n− 2)!

(d1 − 1)!(d2 − 1)! · · · (dn − 1)!
.

Proof From Pfuffer’s correspondence and Lemma
5 this is the number of sequences of length n − 2 in
which 1 appears d1−1 times, 2 appears d2−1 times
and so on. 2
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