Trees

A tree is a graph which is
(a) Connected and
(b) has no cycles (acyclic).

Lemma 1 Let the components of G be
$C_{1}, C_{2}, \ldots, C_{r}$, Suppose $e(u, v) \notin E, u \in C_{i}, v \in$ C_{j}.
(a) $i=j \Rightarrow \omega(G+e)=\omega(G)$.
(b) $i \neq j \Rightarrow \omega(G+e)=\omega(G)-1$.
(a)

(b)

Proof Every path P in $G+e$ which is not in G must contain e. Also,

$$
\omega(G+e) \leq \omega(G) .
$$

Suppose

$$
\left(x=u_{0}, u_{1}, \ldots, u_{k}=u, u_{k+1}=v, \ldots, u_{\ell}=y\right)
$$

is a path in $G+e$ that uses e. Then clearly $x \in C_{i}$ and $y \in C_{j}$.
(a) follows as now no new relations $x \sim y$ are added.
(b) Only possible new relations $x \sim y$ are for $x \in C_{i}$ and $y \in C_{j}$. But $u \sim v$ in $G+e$ and so $C_{i} \cup C_{j}$ becomes (only) new component.

Lemma $2 G=$ (V, E) is acyclic (forest) with (tree) components $C_{1}, C_{2}, \ldots, C_{k} .|V|=n . e=(u, v) \notin$ $E, u \in C_{i}, v \in C_{j}$.
(a) $i=j \Rightarrow G+e$ contains a cycle.
(b) $i \neq j \Rightarrow G+e$ is acyclic and has one less component.
(c) G has $n-k$ edges.
(a) $u, v \in C_{i}$ implies there exists a path
($u=u_{0}, u_{1}, \ldots, u_{\ell}=v$) in G.

So $G+e$ contains the cycle $u_{0}, u_{1}, \ldots, u_{\ell}, u_{0}$.

(a)

Suppose $G+e$ contains the cycle $C . e \in C$ else C is a cycle of G.

$$
C=\left(u=u_{0}, u_{1}, \ldots, u_{\ell}=v, u_{0}\right)
$$

But then G contains the path ($u_{0}, u_{1}, \ldots, u_{\ell}$) from u to v-contradiction.

The drop in the number of components follows from Lemma 1.

The rest of the lemma follows from
(c) Suppose $E=\left\{e_{1}, e_{2}, \ldots, e_{r}\right\}$ and
$G_{i}=\left(V,\left\{e_{1}, e_{2}, \ldots, e_{i}\right\}\right)$ for $0 \leq i \leq r$.

Claim: G_{i} has $n-i$ components. Induction on i.
$i=0$: G_{0} has no edges.
$i>0: G_{i-1}$ is acyclic and so is G_{i}. It follows from part (a) that e_{i} joins vertices in distinct components of G_{i-1}. It follows from (b) that G_{i} has one less component than G_{i-1}.
End of proof of claim

Thus $r=n-k$ (we assumed G had k components).

Corollary 1 If a tree T has n vertices then
(a) It has $n-1$ edges.
(b) It has at least 2 vertices of degree 1, ($n \geq 2$).

Proof (a) is part (c) of previous lemma. $k=1$ since T is connnected.
(b) Let s be the number of vertices of degree 1 in T. There are no vertices of degree 0 - these would form separate components. Thus

$$
2 n-2=\sum_{v \in V} d_{T}(v) \geq 2(n-s)+s
$$

So $s \geq 2$.

Theorem 1 Suppose $|V|=n$ and $|E|=n-1$. The following three statements become equivalent.

(a) G is connected.
(b) G is acyclic.
(c) G is a tree.

Proof Let $E=\left\{e_{1}, e_{2}, \ldots, e_{n-1}\right\}$ and
$G_{i}=\left(V,\left\{e_{1}, e_{2}, \ldots, e_{i}\right\}\right)$ for $0 \leq i \leq n-1$.
(a) $\Rightarrow(b): G_{0}$ has n components and G_{n-1} has 1 component. Addition of each edge e_{i} must reduce the number of components by 1 - Lemma 1(b). Thus G_{i-1} acyclic implies G_{i} is acyclic - Lemma 2(b). (b) follows as G_{0} is acyclic.
$(b) \Rightarrow(c)$: We need to show that G is connected. Since G_{n-1} is acyclic, $\omega\left(G_{i}\right)=\omega\left(G_{i-1}\right)-1$ for each i - Lemma 2(b). Thus $\omega\left(G_{n-1}\right)=1$.
$(c) \Rightarrow(a)$: trivial.

Corollary 2 If v is a vertex of degree 1 in a tree T then $T-v$ is also a tree.

Proof Suppose T has n vertices and n edges. Then $T-v$ has $n-1$ vertices and $n-2$ edges. It acyclic and so must be a tree.

Cut edges

e is a cut edge of G if $\omega(G-e)>\omega(G)$.

Theorem $2 e=(u, v)$ is a cut edge iff e is not on any cycle of G.

Proof $\quad \omega$ increases iff there
that all walks from x to y use e.

Suppose there is a cycle (u, P, v, u) containing e. Then if $W=x, W_{1}, u, v, W_{2}, y$ is a walk from x to y using e, x, W_{1}, P, W_{2}, y is a walk from x to y that doesn't use e. Thus e is not a cut edge.

If e is not a cut edge then $G-e$ contains a path P from u to $v(u \sim v$ in G and relations are maintained after deletion of e). So (v, u, P, v) is a cycle containing e.

Corollary 3 A connected graph is a tree iff every edge is a cut edge.

Corollary 4 Every finite connected graph G contains a spanning tree.

Proof Consider the following process: starting with G,

1. If there are no cycles - stop.
2. If there is a cycle, delete an edge of a cycle.

Observe that (i) the graph remains connected - we delete edges of cycles. (ii) the process must terminate as the number of edges is assumed finite.

On termination there are no cycles and so we have a connected acyclic spanning subgraph i.e. we have a spanning tree.

Alternative Construction

$$
\text { Let } E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\} .
$$

begin
$T:=\emptyset$
for $i=1,2, \ldots, m$ do begin if $T+e_{i}$ does not contain a cycle then $T \leftarrow T+e_{i}$ end
Output T end

Lemma 3 If G is connected then (V, T) is a spanning tree of G.

Proof Clearly T is acyclic. Suppose it is not connected and has compponnents $C_{1}, C_{2}, \ldots, C_{k}, k \geq$ 2. Let $D=C_{2} \cup \cdots \cup C_{k}$. Then G has no edges joining C_{1} and D - contradiction. (The first $C_{1}: D$ edge found by the algorithm would have been added.)

Theorem 3 Let T be a spanning tree of $G=(V, E)$, $|V|=n$. Suppose $e=(u, v) \in E \backslash T$.
(a) $T+e$ contains a unique cycle $C(T, e)$.
(b) $f \in C(T, e)$ implies that $T+e-f$ is a spanning tree of G.

Proof (a) Lemma 2(a) implies that $T+e$ has a cycle C. Suppose that $T+e$ contains another cycle $C^{\prime} \neq C$. Let edge $g \in C^{\prime} \backslash C$. $T^{\prime}=T+e-g$ is connected, has $n-1$ edges. But T^{\prime} contains a cycle C, contradictng Theorem 1.
(b) $T+e-f$ is connected and has $n-1$ edges. Therefore it is a tree.

Maximum weight trees

$G=(V, E)$ is a connected graph.
$w: E \rightarrow \boldsymbol{R} . w(e)$ is the weight of edge e.
For spanning tree $T, w(T)=\sum_{e \in T} w(e)$.
Problem: find a spanning tree of maximum weight.

Greedy Algorithm

Sort edges so that $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ where

$$
w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \cdots \geq w\left(e_{m}\right) .
$$

begin

$$
T:=\emptyset
$$

$$
\text { for } i=1,2, \ldots, m \text { do }
$$ begin

if $T+e_{i}$ does not contain a cycle then $T \leftarrow T+e_{i}$
end
Output T
end

Greedy always adds the maximum weight edge which does not make a cycle with previously chosen edges.

Theorem 4 Let G be a connected weighted graph. The tree constructed by GREEDY is a maximum weight spanning tree.

Proof Lemma 3 implies that T is a spanning tree of G.

Let the edges of the greedy tree be
$e_{1}^{\star}, e_{2}^{\star}, \ldots, e_{n-1}^{\star}$, in order of choice. Note that $w\left(e_{i}^{\star}\right) \geq$
$w\left(e_{i+1}^{\star}\right)$ since neither makes a cycle with $e_{1}^{\star}, e_{2}^{\star}, \ldots, e_{i-1}^{\star}$.
Let $f_{1}, f_{2}, \ldots, f_{n-1}$ be the edges of any other tree where $w\left(f_{1}\right) \geq w\left(f_{2}\right) \geq \cdots w\left(f_{n-1}\right)$.

We show that

$$
\begin{equation*}
w\left(e_{i}^{\star}\right) \geq w\left(f_{i}\right) \quad 1 \leq i \leq n-1 . \tag{1}
\end{equation*}
$$

Suppose (1) is false. There exists $k>0$ such that

$$
w\left(e_{i}^{\star}\right) \geq w\left(f_{i}\right), 1 \leq i<k \text { and } w\left(e_{k}^{\star}\right)<w\left(f_{k}\right) .
$$

Each $f_{i}, 1 \leq i \leq k$ is either one of or makes a cycle with $e_{1}^{\star}, e_{2}^{\star}, \ldots, e_{k-1}^{\star}$. Otherwise one of the f_{i} would have been chosen in preference to e_{k}^{\star}.

Let components of forest ($V,\left\{e_{1}^{\star}, e_{2}^{\star}, \ldots, e_{k-1}^{\star}\right\}$) be $C_{1}, C_{2}, \ldots, C_{n-k+1}$. Each $f_{i}, 1 \leq i \leq k$ has both of its endpoints in the same component.

Let μ_{i} be the number of f_{j} which have both endpoints in C_{i} and let ν_{i} be the number of vertices of C_{i}. Then

$$
\begin{align*}
\mu_{1}+\mu_{2}+\cdots \mu_{n-k+1} & =k \tag{2}\\
\nu_{1}+\nu_{2}+\cdots \nu_{n-k+1} & =n \tag{3}
\end{align*}
$$

It follows from (2) and (3) that there exists t such that

$$
\begin{equation*}
\mu_{t} \geq \nu_{t} . \tag{4}
\end{equation*}
$$

[Otherwise

$$
\begin{aligned}
\sum_{i=1}^{n-k+1} \mu_{i} & \leq \sum_{i=1}^{n-k+1}\left(\nu_{i}-1\right) \\
& =\sum_{i=1}^{n-k+1} \nu_{i}-(n-k+1) \\
& =k-1 .
\end{aligned}
$$

But (4) implies that the edges f_{j} such that $f_{j} \subseteq C_{t}$ contain a cycle.

Cut Sets and Bonds

If $S \subseteq V, S \neq \emptyset, V$ then the cut-set

$$
S: \bar{S}=\{e=v w \in E: v \in S, w \in \bar{S}=V \backslash S\}
$$

$$
S=\{1,2,3\} \quad S: \bar{S}=\{d, e, f\} .
$$

Lemma 4 Let G be connected and $X \subseteq E$. Then $G[E \backslash X]$ is not connected iff X contains a cutset.

Proof

Only if
$G[E \backslash X]$ contains components $C_{1}, C_{2}, \ldots, C_{k}$,
$k \geq 2$ and so $X \supseteq C_{1}: \bar{C}_{1}$ and $C_{1} \neq \emptyset, V$.

If
Suppose $X=S: \bar{S}$ and $v \in S, w \in \bar{S}$. Then every walk from v to w in G contains an edge of X.

So $G[E \backslash X]$ contains no walk from v to w.

A Bond B is a minimal cut-set. I.e. $B=S: \bar{S}$ and if $T: \bar{T} \subseteq B$ then $B=T: \bar{T}$.

since $B_{2} \supset S_{3}: \bar{S}_{3}$ and $B_{2} \neq S_{3}: \bar{S}_{3}$ where $S_{3}=$ \{1\}.

Theorem $5 G$ is connected and B is a a bond $\leftrightarrow G \backslash$ B contains exactly 2 components.

Proof $\quad \rightarrow: G \backslash B$ contains components $C_{1}, C_{2}, \ldots, C_{k}$. Assume w.l.o.g. that there is at least one edge e in G joining C_{1} and C_{2}. If $k \geq 3$ then $B \supseteq C_{3}: \bar{C}_{3}$ and $B \neq C_{3}: \bar{C}_{3}$ since B contains e.
\leftarrow : Assume that $G \backslash B$ contains exactly two components $C_{1}=G[S], C_{2}=G[\bar{S}]$. Let $e \in B$. Adding e to the graph $C_{1} \cup C_{2}$ clearly produces a connected graph and so $B \backslash e$ is not a cutset.

A co-tree \bar{T} of a connected graph G is the edge complement of a spanning tree of G i.e. $\bar{T}=E \backslash T$ for some spanning tree T.

Theorem 6 Let T be a spanning tree of G and $e \in T$. Then
(a) \bar{T} contains no bond of G.
(b) $\bar{T}+e$ contains a unique bond $B(\bar{T}, e)$ of G.
(c) $f \in B(\bar{T}, e)$ implies that $\bar{T}+e-f$ is a co-tree of G.
[Compare with Tree + edge \supseteq cycle.]

Proof (a) $X \subseteq \bar{T} \leftrightarrow G \backslash X \supseteq T$ which implies that $G \backslash X$ is connected. So X is not a bond.

(b)\&(c) $G \backslash(\bar{T}+e)=T \backslash e$ contains exactly two components and so by Theorem $5 \bar{T}+e$ contains a bond $B=S: \bar{S}$ where S, \bar{S} are the 2 components of $T \backslash e$.

$$
\begin{aligned}
f \in B & \Rightarrow e \in C(T, f) \\
& \Rightarrow T+f-e \text { is a tree } \\
& \Rightarrow \bar{T}+e-f \text { is a co-tree } \quad \text { proving (c) }
\end{aligned}
$$

Hence every bond of $\bar{T}+e$ contains f - otherwise $\bar{T}+e-f$ contains a bond, contradicting (a) and proving (b).

How many trees? - Cayley’s Formula

$\mathrm{n}=4$

4

12
$\mathrm{n}=5$

5

60

60
$\mathrm{n}=6$

6
120

360

90

360

360

Contracting edges

If $e=v w \in E, v \neq w$ then we can contract e to get $G \cdot e$ by (i) deleting e, (ii) identifying v, w i.e. make them into a single new vertex.

$G-e$ is obtained by deleting e.
$\tau(G)$ is the number of spanning trees of G.

Theorem 7 If $e \in E$ is not a loop then

$$
\tau(G)=\tau(G \cdot e)+\tau(G-e) .
$$

Proof

- $\tau(G-e)=$ the number of spanning trees of G which do not contain e.
- $\tau(G \cdot e)=$ the number of spanning trees of G which contain e.
[Bijection $T \rightarrow T \cdot e$ maps spanning trees of G which contain e to spanning trees of $G \cdot e$.]

Matrix Tree Theorem

Define the $V \times V$ matrix $L=D-A$ where A is the adjacency matrix of G and D is the diagonal matrix with $D(v, v)=$ degree of v.

$$
L=\left|\begin{array}{cccc}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 3 & -1 \\
-1 & -1 & -1 & 3
\end{array}\right|
$$

$$
L_{1}=\left\lvert\, \begin{array}{ccc}
3 & -1 & -1 \\
-1 & 3 & -1
\end{array} \quad\right. \text { Determinant } L_{1}=16
$$

Let L_{1} be obtained by deleting the first row and column of L.

Theorem 8

$$
\tau(G)=\text { determinant } L_{1} .
$$

Pfuffer's Correspondence

There is a 1-1 correspondence ϕ_{V} between spanning trees of K_{V} (the complete graph with vertex set V) and sequences V^{n-2}. Thus for $n \geq 2$

$$
\tau\left(K_{n}\right)=n^{n-2} \quad \text { Cayley's Formula. }
$$

Assume some arbitrary ordering $V=\left\{v_{1}<v_{2}<\right.$ $\left.\cdots<v_{n}\right\}$.
$\phi_{V}(T)$:
begin
$T_{1}:=T$;
for $i=1$ to $n-2$ do
begin
$s_{i}:=$ neighbour of least leaf ℓ_{i} of T_{i}.

$$
T_{i+1}=T_{i}-\ell_{i} .
$$

end $\quad \phi_{V}(T)=s_{1} s_{2} \ldots s_{n-2}$
end

$6,4,5,14,2,6,11,14,8,5,11,4,2$

Lemma $5 v \in V(T)$ appears exactly $d_{T}(v)-1$ times in $\phi_{V}(T)$.

Proof Assume $n=|V(T)| \geq 2$. By induction on n.
$n=2: \phi_{V}(T)=\Lambda=$ empty string.

Assume $n \geq 3$:

$\phi_{V}(T)=s_{1} \phi_{V_{1}}\left(T_{1}\right)$ where $V_{1}=V-\left\{\ell_{1}\right\}$.
s_{1} appears $d_{T_{1}}\left(s_{1}\right)-1+1=d_{T}\left(s_{1}\right)-1$ times induction.
$v \neq s_{1}$ appears $d_{T_{1}}(v)-1=d_{T}(v)-1$ times induction.

Construction of ϕ_{V}^{-1}

Inductively assume that for all $|X|<n$ there is an inverse function ϕ_{X}^{-1}. (True for $n=2$).
Now define ϕ_{V}^{-1} by
$\phi_{V}^{-1}\left(s_{1} s_{2} \ldots s_{n-2}\right)=\phi_{V_{1}}^{-1}\left(s_{2} \ldots s_{n-2}\right)$ plus edge $s_{1} \ell_{1}$,
where $\ell_{1}=\min \left\{s: s \notin s_{1}, s_{2}, \ldots s_{n-2}\right\}$ and $V_{1}=$ $V-\left\{\ell_{1}\right\}$.

Then

$$
\begin{aligned}
& \phi_{V}\left(\phi_{V}^{-1}\left(s_{1} s_{2} \ldots s_{n-2}\right)\right)= \\
& \quad=\phi_{V}\left(\phi_{V_{1}}^{-1}\left(s_{2} \ldots s_{n-2}\right) \text { plus edge } s_{1} \ell_{1}\right) \\
& \quad=s_{1} \phi_{V_{1}}\left(\phi_{V_{1}}^{-1}\left(s_{2} \ldots s_{n-2}\right)\right) \\
& \quad=s_{1} s_{2} \ldots s_{n-2} .
\end{aligned}
$$

Thus ϕ_{V} has an inverse and the correspondence is established.

Number of trees with a given degree sequence

Corollary 5 If $d_{1}+d_{2}+\cdots+d_{n}=2 n-2$ then he number of spanning trees of K_{n} with degree sequence $d_{1}, d_{2}, \ldots, d_{n}$ is

$$
\begin{aligned}
& \left(\begin{array}{c}
d_{1}-1, d_{2}-1, \ldots, d_{n}-1
\end{array}\right)= \\
& \quad \frac{(n-2)!}{\left(d_{1}-1\right)!\left(d_{2}-1\right)!\cdots\left(d_{n}-1\right)!} .
\end{aligned}
$$

Proof From Pfuffer's correspondence and Lemma 5 this is the number of sequences of length $n-2$ in which 1 appears $d_{1}-1$ times, 2 appears $d_{2}-1$ times and so on.

