Trees

A tree is a graph which is

(a) Connected and

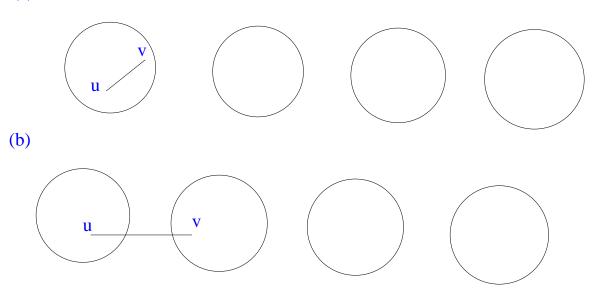
(b) has no cycles (*acyclic*).

Lemma 1 Let the components of G be C_1, C_2, \ldots, C_r , Suppose $e = (u, v) \notin E, u \in C_i, v \in C_j$.

(a)
$$i = j \Rightarrow \omega(G + e) = \omega(G).$$

(b)
$$i \neq j \Rightarrow \omega(G + e) = \omega(G) - 1.$$

(a)



Proof Every path P in G + e which is not in G must contain e. Also,

$$\omega(G+e) \le \omega(G).$$

Suppose

 $(x = u_0, u_1, \dots, u_k = u, u_{k+1} = v, \dots, u_{\ell} = y)$ is a path in G + e that uses e. Then clearly $x \in C_i$

and $y \in C_j$.

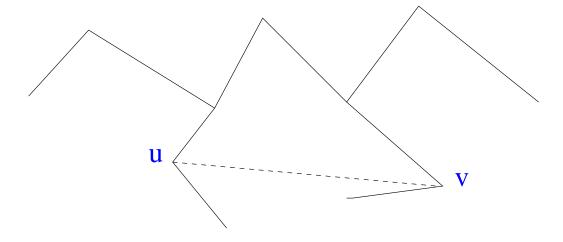
(a) follows as now no new relations $x \sim y$ are added.

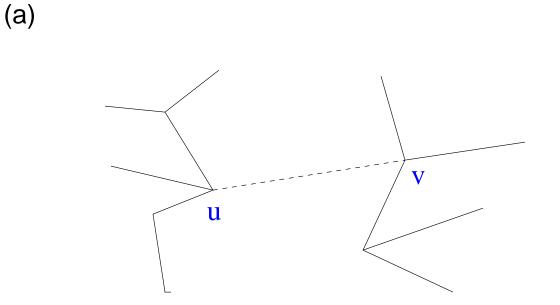
(b) Only possible new relations $x \sim y$ are for $x \in C_i$ and $y \in C_j$. But $u \sim v$ in G + e and so $C_i \cup C_j$ becomes (only) new component. Lemma 2 G = (V, E) is acyclic (forest) with (tree) components C_1, C_2, \ldots, C_k . |V| = n. $e = (u, v) \notin E$, $u \in C_i$, $v \in C_j$.

- (a) $i = j \Rightarrow G + e$ contains a cycle.
- (b) $i \neq j \Rightarrow G + e$ is acyclic and has one less component.
- (c) G has n k edges.

(a) $u, v \in C_i$ implies there exists a path $(u = u_0, u_1, \dots, u_\ell = v)$ in G.

So G + e contains the cycle $u_0, u_1, \ldots, u_\ell, u_0$.

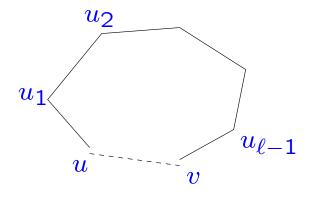




Suppose G + e contains the cycle C. $e \in C$ else C is a cycle of G.

$$C = (u = u_0, u_1, \dots, u_\ell = v, u_0).$$

But then *G* contains the path $(u_0, u_1, \ldots, u_\ell)$ from *u* to v - contradiction. PSfrag replacements



6

The drop in the number of components follows from Lemma 1.

The rest of the lemma follows from

(c) Suppose $E = \{e_1, e_2, \dots, e_r\}$ and $G_i = (V, \{e_1, e_2, \dots, e_i\})$ for $0 \le i \le r$.

Claim: G_i has n - i components.

Induction on *i*.

i = 0: G_0 has no edges.

i > 0: G_{i-1} is acyclic and so is G_i . It follows from part (a) that e_i joins vertices in distinct components of G_{i-1} . It follows from (b) that G_i has one less component than G_{i-1} .

End of proof of claim

Thus r = n - k (we assumed G had k components).

 \square

Corollary 1 If a tree T has n vertices then

(a) It has n-1 edges.

(b) It has at least 2 vertices of degree 1, $(n \ge 2)$.

Proof (a) is part (c) of previous lemma. k = 1 since *T* is connected.

(b) Let s be the number of vertices of degree 1 in T. There are no vertices of degree 0 – these would form separate components. Thus

$$2n-2 = \sum_{v \in V} d_T(v) \ge 2(n-s) + s.$$

So $s \ge 2$.

Theorem 1 Suppose |V| = n and |E| = n - 1. The following three statements become equivalent.

(a) G is connected.

(b) G is acyclic.

(c) G is a tree.

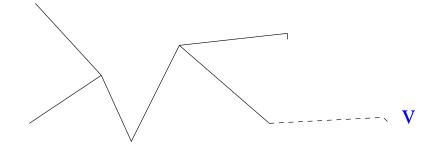
Proof Let $E = \{e_1, e_2, \dots, e_{n-1}\}$ and $G_i = (V, \{e_1, e_2, \dots, e_i\})$ for $0 \le i \le n-1$.

(a) \Rightarrow (b): G_0 has *n* components and G_{n-1} has 1 component. Addition of each edge e_i must reduce the number of components by 1 – Lemma 1(b). Thus G_{i-1} acyclic implies G_i is acyclic – Lemma 2(b). (b) follows as G_0 is acyclic.

(b) \Rightarrow (c): We need to show that G is connected. Since G_{n-1} is acyclic, $\omega(G_i) = \omega(G_{i-1}) - 1$ for each i – Lemma 2(b). Thus $\omega(G_{n-1}) = 1$.

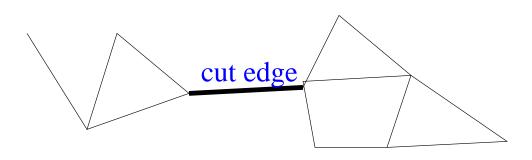
 $(c) \Rightarrow (a)$: trivial.

Corollary 2 If v is a vertex of degree 1 in a tree T then T - v is also a tree.



Proof Suppose *T* has *n* vertices and *n* edges. Then T - v has n - 1 vertices and n - 2 edges. It acyclic and so must be a tree.

Cut edges

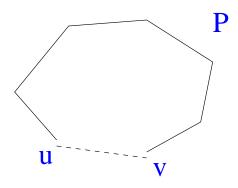


e is a cut edge of G if $\omega(G - e) > \omega(G)$.

Theorem 2 e = (u, v) is a cut edge iff e is not on any cycle of G.

Proof ω increases iff there exist $x \sim y \in V$ such that all walks from x to y use e.

Suppose there is a cycle (u, P, v, u) containing e. Then if $W = x, W_1, u, v, W_2, y$ is a walk from x to y using e, x, W_1, P, W_2, y is a walk from x to y that doesn't use e. Thus e is not a cut edge.



If *e* is not a cut edge then G-e contains a path *P* from *u* to *v* ($u \sim v$ in *G* and relations are maintained after deletion of *e*). So (v, u, P, v) is a cycle containing *e*.

Corollary 3 A connected graph is a tree iff every edge is a cut edge.

Corollary 4 *Every finite connected graph G contains a spanning tree.*

Proof Consider the following process: starting with *G*,

1. If there are no cycles – **stop**.

2. If there is a cycle, delete an edge of a cycle.

Observe that (i) the graph remains connected – we delete edges of cycles. (ii) the process must terminate as the number of edges is assumed finite.

On termination there are no cycles and so we have a connected acyclic spanning subgraph i.e. we have a spanning tree.

Alternative Construction

Let
$$E = \{e_1, e_2, \dots, e_m\}.$$

begin

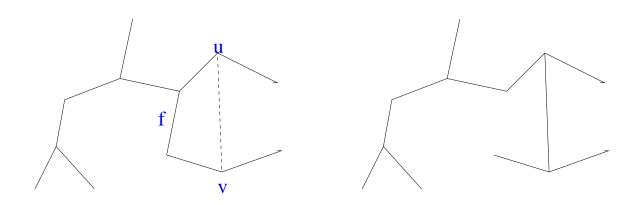
 $T := \emptyset$ for i = 1, 2, ..., m do begin if $T + e_i$ does not contain a cycle then $T \leftarrow T + e_i$ end Output Tend **Lemma 3** If G is connected then (V, T) is a spanning tree of G.

Proof Clearly *T* is acyclic. Suppose it is not connected and has components $C_1, C_2, \ldots, C_k, k \ge 2$. Let $D = C_2 \cup \cdots \cup C_k$. Then *G* has no edges joining C_1 and D – contradiction. (The first $C_1 : D$ edge found by the algorithm would have been added.)

Theorem 3 Let T be a spanning tree of G = (V, E), |V| = n. Suppose $e = (u, v) \in E \setminus T$.

(a) T + e contains a unique cycle C(T, e).

(b) $f \in C(T, e)$ implies that T + e - f is a spanning tree of G.



Proof (a) Lemma 2(a) implies that T + e has a cycle C. Suppose that T + e contains another cycle $C' \neq C$. Let edge $g \in C' \setminus C$. T' = T + e - g is connected, has n - 1 edges. But T' contains a cycle C, contradicting Theorem 1.

(b) T + e - f is connected and has n - 1 edges. Therefore it is a tree.

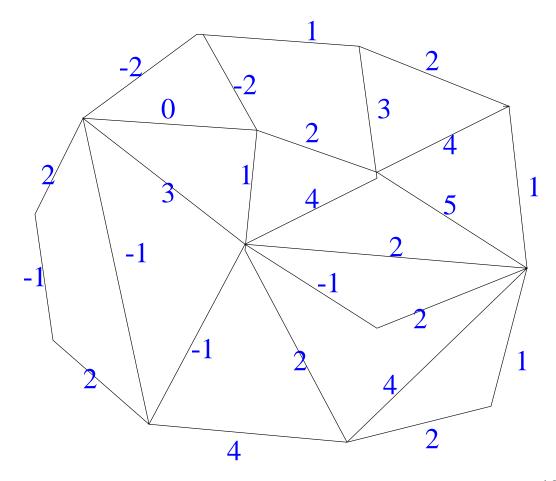
Maximum weight trees

G = (V, E) is a connected graph.

 $w: E \rightarrow \mathbf{R}. w(e)$ is the *weight* of edge e.

For spanning tree T, $w(T) = \sum_{e \in T} w(e)$.

Problem: find a spanning tree of maximum weight.



Greedy Algorithm

Sort edges so that $E = \{e_1, e_2, \dots, e_m\}$ where $w(e_1) \ge w(e_2) \ge \dots \ge w(e_m).$

```
begin

T := \emptyset

for i = 1, 2, ..., m do

begin

if T + e_i does not contain a cycle

then T \leftarrow T + e_i

end

Output T

end
```

Greedy always adds the maximum weight edge which does not make a cycle with previously chosen edges. **Theorem 4** Let *G* be a connected weighted graph. The tree constructed by GREEDY is a maximum weight spanning tree.

Proof Lemma 3 implies that *T* is a spanning tree of *G*.

Let the edges of the greedy tree be $e_1^{\star}, e_2^{\star}, \ldots, e_{n-1}^{\star}$, in order of choice. Note that $w(e_i^{\star}) \ge w(e_{i+1}^{\star})$ since neither makes a cycle with $e_1^{\star}, e_2^{\star}, \ldots, e_{i-1}^{\star}$.

Let $f_1, f_2, \ldots, f_{n-1}$ be the edges of any other tree where $w(f_1) \ge w(f_2) \ge \cdots w(f_{n-1})$.

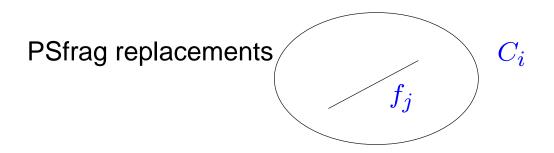
We show that

 $w(e_i^{\star}) \ge w(f_i) \qquad 1 \le i \le n-1.$ (1)

Suppose (1) is false. There exists k > 0 such that $w(e_i^{\star}) \ge w(f_i), \ 1 \le i < k \text{ and } w(e_k^{\star}) < w(f_k).$

Each f_i , $1 \le i \le k$ is either one of or makes a cycle with $e_1^{\star}, e_2^{\star}, \ldots, e_{k-1}^{\star}$. Otherwise one of the f_i would have been chosen in preference to e_k^{\star} .

Let components of forest $(V, \{e_1^{\star}, e_2^{\star}, \dots, e_{k-1}^{\star}\})$ be $C_1, C_2, \dots, C_{n-k+1}$. Each $f_i, 1 \leq i \leq k$ has both of its endpoints in the same component.



Let μ_i be the number of f_j which have both endpoints in C_i and let ν_i be the number of vertices of C_i . Then

$$\mu_1 + \mu_2 + \cdots + \mu_{n-k+1} = k$$
 (2)

$$\nu_1 + \nu_2 + \dots + \nu_{n-k+1} = n \tag{3}$$

It follows from (2) and (3) that there exists t such that

$$\mu_t \ge \nu_t. \tag{4}$$

[Otherwise

$$\sum_{i=1}^{n-k+1} \mu_i \leq \sum_{\substack{i=1\\i=1}}^{n-k+1} (\nu_i - 1)$$

=
$$\sum_{\substack{i=1\\i=1\\k-1.}}^{n-k+1} \nu_i - (n-k+1)$$
]

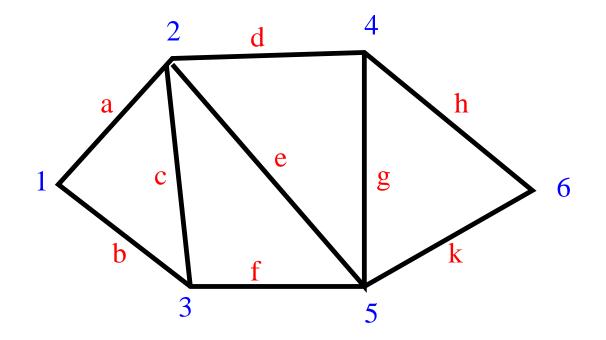
But (4) implies that the edges f_j such that $f_j \subseteq C_t$ contain a cycle.

. . .

Cut Sets and Bonds

If $S \subseteq V, S \neq \emptyset, V$ then the **cut-set**

 $S: \bar{S} = \{e = vw \in E: v \in S, w \in \bar{S} = V \setminus S\}$



 $S = \{1, 2, 3\} \qquad S : \overline{S} = \{d, e, f\}.$

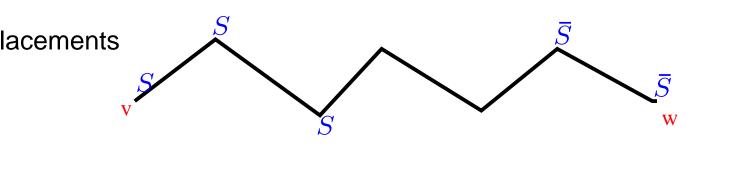
Lemma 4 Let *G* be connected and $X \subseteq E$. Then $G[E \setminus X]$ is not connected iff *X* contains a cutset.

Proof

Only if $G[E \setminus X]$ contains components C_1, C_2, \ldots, C_k , $k \ge 2$ and so $X \supseteq C_1 : \overline{C}_1$ and $C_1 \ne \emptyset, V$.

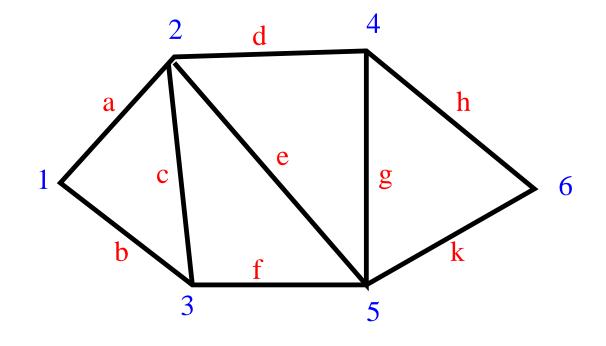
lf

Suppose $X = S : \overline{S}$ and $v \in S, w \in \overline{S}$. Then every walk from v to w in G contains an edge of X.



So $G[E \setminus X]$ contains no walk from v to w.

A **Bond** *B* is a *minimal* cut-set. I.e. $B = S : \overline{S}$ and if $T : \overline{T} \subseteq B$ then $B = T : \overline{T}$.



 $\begin{array}{ll} S_1 = \{1,2,3\} & B_1 = S_1 : \bar{S}_1 \text{ is a bond} \\ S_2 = \{2,3,4,5\} & B_2 = S_2 : \bar{S}_2 \text{ is not a bond} \\ \text{since } B_2 \supset S_3 : \bar{S}_3 \text{ and } B_2 \neq S_3 : \bar{S}_3 \text{ where } S_3 = \\ \{1\}. \end{array}$

Theorem 5 *G* is connected and *B* is a a bond \leftrightarrow *G* \setminus *B* contains exactly 2 components.

Proof \rightarrow : $G \setminus B$ contains components C_1, C_2, \ldots, C_k . Assume w.l.o.g. that there is at least one edge e in Gjoining C_1 and C_2 . If $k \ge 3$ then $B \supseteq C_3 : \overline{C}_3$ and $B \ne C_3 : \overline{C}_3$ since B contains e.

 $\leftarrow: \text{ Assume that } G \setminus B \text{ contains exactly two compo-}\\ \text{nents } C_1 = G[S], C_2 = G[\overline{S}]. \text{ Let } e \in B. \text{ Adding}\\ e \text{ to the graph } C_1 \cup C_2 \text{ clearly produces a connected}\\ \text{graph and so } B \setminus e \text{ is not a cutset.} \qquad \Box$

A **co-tree** \overline{T} of a connected graph G is the edge complement of a spanning tree of G i.e. $\overline{T} = E \setminus T$ for some spanning tree T.

Theorem 6 Let T be a spanning tree of G and $e \in T$. Then

- (a) \overline{T} contains no bond of G.
- (b) $\overline{T} + e$ contains a unique bond $B(\overline{T}, e)$ of G.
- (c) $f \in B(\overline{T}, e)$ implies that $\overline{T} + e f$ is a co-tree of G.

[Compare with Tree + edge \supseteq cycle.]

Proof (a) $X \subseteq \overline{T} \leftrightarrow G \setminus X \supseteq T$ which implies that $G \setminus X$ is connected. So X is not a bond.

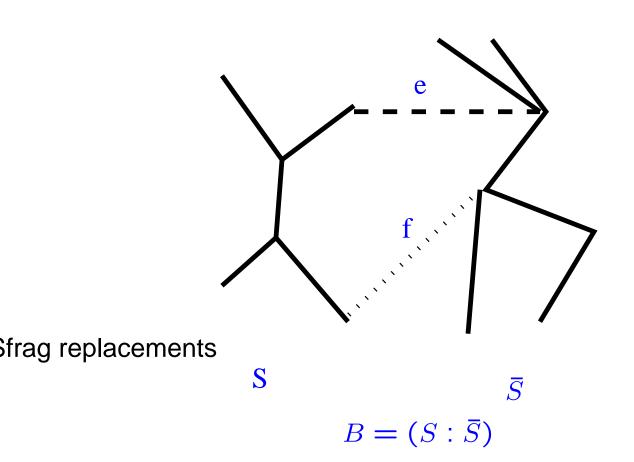
(b)&(c) $G \setminus (\overline{T} + e) = T \setminus e$ contains exactly two components and so by Theorem 5 $\overline{T} + e$ contains a bond $B = S : \overline{S}$ where S, \overline{S} are the 2 components of $T \setminus e$.

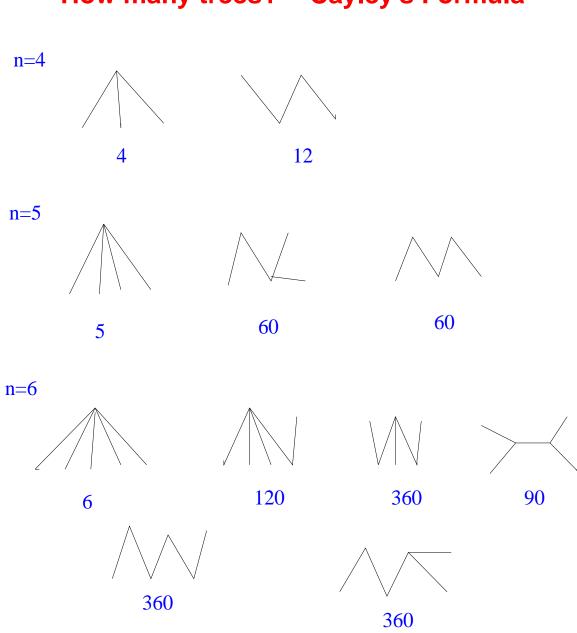
$$f \in B \implies e \in C(T, f)$$

$$\implies T + f - e \text{ is a tree}$$

$$\implies \overline{T} + e - f \text{ is a co-tree} \quad \text{proving (c)}$$

Hence every bond of $\overline{T} + e$ contains f – otherwise $\overline{T} + e - f$ contains a bond, contradicting (a) and proving (b).



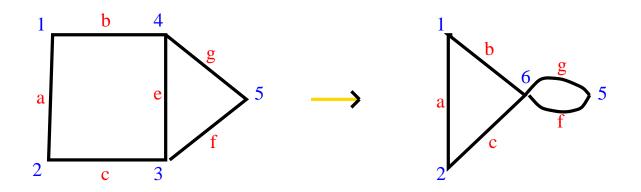


How many trees? – Cayley's Formula

31

Contracting edges

If $e = vw \in E$, $v \neq w$ then we can **contract** e to get $G \cdot e$ by (i) deleting e, (ii) identifying v, w i.e. make them into a single new vertex.



G - e is obtained by deleting e.

 $\tau(G)$ is the number of spanning trees of G.

Theorem 7 If $e \in E$ is not a loop then $\tau(G) = \tau(G \cdot e) + \tau(G - e).$

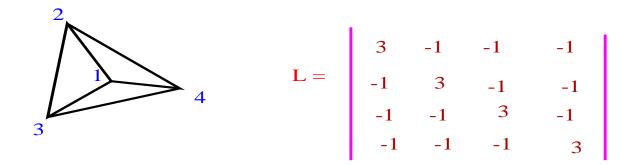
Proof

- $\tau(G e)$ = the number of spanning trees of *G* which do not contain *e*.
- $\tau(G \cdot e)$ = the number of spanning trees of *G* which contain *e*.

[Bijection $T \rightarrow T \cdot e$ maps spanning trees of G which contain e to spanning trees of $G \cdot e$.]

Matrix Tree Theorem

Define the $V \times V$ matrix L = D - A where A is the adjacency matrix of G and D is the diagonal matrix with D(v, v) = degree of v.



lacements

 $L_{1} = \begin{bmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{bmatrix}$ Determinant $L_{1} = 16$

Let L_1 be obtained by deleting the first row and column of L.

Theorem 8

 $\tau(G) = \text{determinant } L_1.$

Pfuffer's Correspondence

There is a 1-1 correspondence ϕ_V between spanning trees of K_V (the complete graph with vertex set V) and sequences V^{n-2} . Thus for $n \ge 2$

 $\tau(K_n) = n^{n-2}$ Cayley's Formula.

Assume some arbitrary ordering $V = \{v_1 < v_2 < \cdots < v_n\}.$

$\phi_V(T)$:

begin

 $T_1 := T;$

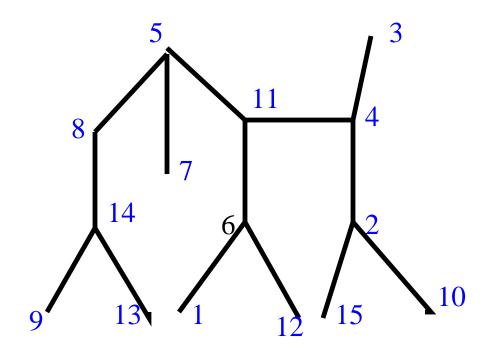
for i = 1 to n - 2 do

begin

 $s_i :=$ neighbour of least leaf ℓ_i of T_i .

 $T_{i+1} = T_i - \ell_i.$ end $\phi_V(T) = s_1 s_2 \dots s_{n-2}$

end



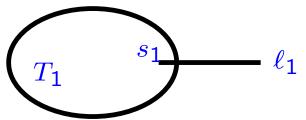
6,4,5,14,2,6,11,14,8,5,11,4,2

Lemma 5 $v \in V(T)$ appears exactly $d_T(v) - 1$ times in $\phi_V(T)$.

Proof Assume $n = |V(T)| \ge 2$. By induction on n. n = 2: $\phi_V(T) = \Lambda$ = empty string.

Assume $n \geq 3$:

PSfrag replacements



 $\phi_V(T) = s_1 \phi_{V_1}(T_1)$ where $V_1 = V - \{\ell_1\}$.

 s_1 appears $d_{T_1}(s_1) - 1 + 1 = d_T(s_1) - 1$ times – induction.

 $v \neq s_1$ appears $d_{T_1}(v) - 1 = d_T(v) - 1$ times – induction.

37

Construction of ϕ_V^{-1}

Inductively assume that for all |X| < n there is an inverse function ϕ_X^{-1} . (True for n = 2). Now define ϕ_V^{-1} by

 $\phi_V^{-1}(s_1s_2...s_{n-2}) = \phi_{V_1}^{-1}(s_2...s_{n-2}) \text{ plus edge } s_1\ell_1,$ where $\ell_1 = \min\{s : s \notin s_1, s_2, ...s_{n-2}\}$ and $V_1 = V - \{\ell_1\}.$

Then

$$\phi_V(\phi_V^{-1}(s_1s_2...s_{n-2})) = \\ = \phi_V(\phi_{V_1}^{-1}(s_2...s_{n-2}) \text{ plus edge } s_1\ell_1) \\ = s_1\phi_{V_1}(\phi_{V_1}^{-1}(s_2...s_{n-2})) \\ = s_1s_2...s_{n-2}.$$

Thus ϕ_V has an inverse and the correspondence is established.

Number of trees with a given degree sequence

Corollary 5 If $d_1 + d_2 + \cdots + d_n = 2n - 2$ then he number of spanning trees of K_n with degree sequence d_1, d_2, \ldots, d_n is

$$\binom{n-2}{d_1-1,d_2-1,\ldots,d_n-1} = \frac{(n-2)!}{(d_1-1)!(d_2-1)!\cdots(d_n-1)!}.$$

Proof From Pfuffer's correspondence and Lemma 5 this is the number of sequences of length n - 2 in which 1 appears $d_1 - 1$ times, 2 appears $d_2 - 1$ times and so on.

39