Network Flows

A Network is a digraph D = (V, A) plus 2 distinguished vertices, a source x and a sink y. Notation: if $f : A \to \mathbf{R}$ then for $S, T \subseteq V$,

$$f(S,T) = \sum_{(u,v)\in A\cap(S\times T)} f(u,v)$$

f is a flow from x to y if

$$f(v,V) - f(V,v) = 0$$

for all $v \in V, v \neq x, y$ – conservation of flow.

1

Arc *a* has capacity $c(a) \ge 0$.

A flow is feasible if

$$0 \le f(a) \le c(a) \qquad a \in A.$$

Lemma 1 If f is a flow from x to y then

$$f(x, V) - f(V, x) = f(V, y) - f(y, V).$$

Proof

$$0 = f(V,V) - f(V,V) = [f(x,V) + f(y,V)] - [f(V,x) + f(V,y)] + + \sum_{v \neq x,y} (f(v,V) - f(V,v)) = [f(x,V) + f(y,V)] - [f(V,x) + f(V,y)].$$

f(x, V) - f(V, x) is the *net* flow out of x.

f(V, y) - f(y, V) is the *net* flow into y.

The common value is called the value v_f of the flow f.

A feasible flow which maximises v_f is called a *maximum flow*.

Cuts

Let $x \in S \subseteq V$ and $y \in \overline{S} = V \setminus S$. The set of arcs $S : \overline{S} = A \cap (S \times \overline{S})$ is called an x, y cut.

 $S = \{x, a, c, e, f\}$: capacity of S:S is 4+5+15=24.

 $S : \overline{S}$ has capacity $c(S, \overline{S})$.

Lemma 2 If f is a feasible flow and S : \overline{S} is an x, y cut then

$$v_f \le c(S : \overline{S}).$$

Proof

$$v_{f} = f(x, V) - f(V, x)$$

$$= \sum_{v \in S} f(v, V) - \sum_{v \in S} f(V, v)$$

$$= f(S, S) + f(S, \overline{S}) - f(S, S) - f(\overline{S}, S)$$

$$= f(S, \overline{S}) - f(\overline{S}, S) \qquad (1)$$

$$\leq c(S : \overline{S}).$$

Flow f saturates arc a if f(a) = c(a).

Lemma 3 If flow f^* and x, y cut S^* : \overline{S}^* are such that

(i) f^* saturates every arc of S^* : \overline{S}^* .

(ii) $f^*(a) = 0$ for every $a \in \overline{S}^*$: S^* .

then

(a) $v_{f^*} = c(S^* : \bar{S}^*).$

(b) f^* is a maximum flow.

(c) S^* : \overline{S}^* is a minumum capacity cut.

Proof (a) follows from (i), (ii) and (1). Now let *f* be any feasible flow and let $S : \overline{S}$ be any x, y cut. Then

$$v_f \le c(S^* : \overline{S}^*) = v_{f^*} \le c(S : \overline{S}).$$

6

f-augmenting paths

Let f be a feasible flow. A path $P = (x_0 = x, x_1, ..., x_k = y)$ from x to y in the underlying graph G(D) is f-augmenting if

 $x_i x_{i+1} \in A \text{ implies that } f(x_i x_{i+1}) < c(x_i x_{i+1}).$ (2)

 $x_{i+1}x_i \in A$ implies that $f(x_{i+1}x_i) > 0.$ (3)

x,a,c,d,b,y is f-augmenting

Theorem 1 f is a maximum flow iff if there are no f-augmenting paths.

Proof If: Suppose $P = (x_0 = x, x_1, \dots, x_k = y)$ is an *f*-augmenting path. let

$$\theta = \min \begin{cases} c(x_i x_{i+1}) - f(x_i x_{i+1}) & x_i x_{i+1} \in A \\ f(x_{i+1} x_i) & x_{i+1} x_i \in A \end{cases}$$
(4)

Then $\theta > 0$. Define f' by

$$f'(a) = \begin{cases} f(x_i x_{i+1}) + \theta & a = x_i x_{i+1} \in A \\ f(x_{i+1} x_i) - \theta & a = x_{i+1} x_i \in A \\ f(a) & \text{otherwise} \end{cases}$$

(i) f' is a flow.

 $v \notin P \Rightarrow f'(v, V) = f(v, V) \text{ and } f'(V, v) = f(V, v)$

(iii)
$$v_{f'} = v_f + \theta > v_f$$
.
 $\downarrow^{+\theta} \qquad \text{or} \qquad \downarrow^{-\theta}$

Only if: Suppose there are no *f*-augmenting paths. let

 $S = \{u \in V : \exists a \text{ path } P_u = (x_0 = x, x_1, \dots, x_k = u) \text{ in } G$ (5)

 $S={x}$ yields a mimimum cut

Then (i) $x \in S$ and $y \notin S$

(ii) $a = uv \in S$: \overline{S} implies f(a) = c(a). If f(a) < c(a) then (P_u, v) satisfies (2),(3) and so $v \in S$ – contradiction.

(iii) $a = vu \in \overline{S}$: *S* implies f(a) = 0. If f(a) > 0 then (P_u, v) satisfies (2),(3) and so $v \in S$ – contradiction.

It follows from Lemma 3 that f is a maximum flow (and $S : \overline{S}$ is a minimum cut).

Max-Flow Min-Cut Theorem

Theorem 2

$$\max_{f} v_{f} = \min_{S} c(S : \overline{S}).$$
 (6)

Proof Lemma 2 shows that the LHS of (6) is at most the RHS.

Suppose *f* is a maximum flow. Let *S* be as defined in (5). *f* has no *f*-augmenting paths and so $v_f = c(S : \overline{S})$. **Lemma 4** If c(a) is an integer for all $a \in A$ then there is a maximum flow with f(a) integer for all $a \in A$.

Proof Start with the feasible flow f = 0. Repeatedly find flow augmenting paths until a maximum flow is reached. We can argue inductively that f stays integer throughout. This is because θ of (4) will be integer if f and c are.

Alternate proof of Hall's Theorem

 $m = |X| \le |Y|.$ Let

$$c(a) = \begin{cases} 1 & a = xu, u \in X \\ 1 & a = vy, v \in Y \\ \infty & a \in E \end{cases}$$

An integral flow f from x to y defines a matching

$$M = \{uv \in E : f(uv) = 1\},\$$

and conversely.

Let $S : \overline{S}$ be an x, y cut and let

 $S_1 = S \cap X, S_2 = S \cap Y.$ If $\exists u \in S_1$ and $v \in Y \setminus X_2$ such that $uv \in E$ then $c(S : \overline{S}) \ge c(uv) = \infty.$

So

$$c(S:\overline{S}) < \infty \text{ iff } N(S_1) \subseteq S_2.$$

In which case

$$c(S:\bar{S}) = (|X| - |S_1|) + |S_2|.$$

By the Max-Flow Min-Cut Theorem

$$\max\{|M|\} = \min_{\substack{S_1 \subseteq X \\ N(S_1) \subseteq S_2 \subseteq Y}} (|X| - |S_1|) + |S_2|$$

=
$$\min_{S_1 \subseteq X} (|X| - |S_1|) + |N(S_1)|$$

Thus there exists a matching of size |X| iff

$$|X| - |S_1| + |N(S_1)| \ge |X|$$

for all $S_1 \subseteq X$, which is Hall's theorem.

A graph G is m-orientable if there is an orientation D of G with $\delta^+(D) \ge m$. $(\delta^+(D) = \min\{d^+(v) : v \in V\})$.

For $S \subseteq V$ let $\iota(S)$ denote the number of edges of G with at least one end in S.

Theorem 3 *G* is *m*-orientable iff $|(S) \ge m|S|$ for all $S \subseteq V$.

Proof Only if: Suppose that *D* is an orientation of *G* with $\delta^+ \ge m$. Then

$$|(S) \ge \sum_{v \in S} d^+(S) \ge m|S|.$$

G is m-orientable iff there exists a flow of value m|V|.

Suppose the maximum flow value is < m|V|. Let S: \overline{S} be a minimum cut in Γ . Let $A = S \cap E$ and $B = S \cap V$.

There are no edges from A to Z in Γ else $c(S : \overline{S}) = \infty$. So

$$|(Z) \leq |E| - |A|$$

 $|E| - |A| + m|B| < m|V|$
and $|(Z) < m|Z|$.

20

Menger's Theorems

In the following $x, y \in V$.

Theorem 4 The maximum number of arc disjoint directed paths joining x and y in a digraph D equals the minimum number of arcs whose deletion destroys all directed x, y paths.

Theorem 5 The maximum number of internally vertex disjoint directed paths joining x and y in a digraph D equals the minimum number of vertices ($\neq x, y$) whose deletion destroys all directed x, y paths.

Theorem 6 The maximum number of edge disjoint paths joining x and y in a graph G equals the minimum number of edges whose deletion destroys all x, y paths.

Theorem 7 The maximum number of internally vertex disjoint paths joining x and y in a graph D equals the minimum number of vertices ($\neq x, y$) whose deletion destroys all x, y paths. **Lemma 5** Let *N* be a network in which each arc has capacity 1. Let f^* be a maximum flow and S^* : \overline{S}^* a minimum cut.

(a) v_{f^*} is the maximum number m_1^* , of arc disjoint directed x, y paths.

(b) $c(S^* : \overline{S}^*)$ is the minimum number m_2^* of arcs whose deletion destroys all directed x, y paths.

(a) If $P_1, P_2, \ldots, P_{m_1^*}$ is a set of arc disjoint directed x, y paths then we can send one unit of flow along each path. Thus $v_{f^*} \ge m_1^*$.

To prove $v_{f^*} \leq m_1^*$ delete all arcs with $f^*(a) = 0$ to obtain arc set A^* . Note that $f^*(a) = 1$ for $A \in A^*$. Add $v_{f^*} yx$ arcs. The digraph $D^* = (V, A^*)$ has an Euler tour. Deleting the yx edges from the tour yields v_{f^*} arc disjoint directed x, y paths.

(b) Let $S : \overline{S}$ be an x, y cut in N. $S : \overline{S}$ meets every x, y path and so deleting $S : \overline{S}$ destroys all x, y paths and $c(S : \overline{S}) = |S : \overline{S}| \ge m_2^*$.

On the other hand, if X is any set of arcs which meet every x, y path, let $S = \{v : v \text{ is reachable from} x$ by a directed path in $D - X\}$. Then $y \in \overline{S}$ and $X \supseteq S : \overline{S}$. (If there is an arc $uv \notin X, u \in S, v \in \overline{S}$ then v is reachable from x in D - X, contradiction.) Thus $|X| \ge c(S : \overline{S})$ which implies m_2^* is at least the minimum capacity of a cut.

Theorem 4 follows from the above lemma and the Max-Flow Min-Cut theorem.

Lemma 6 Let

 m_1 be the maximum number of arc disjoint x, y directed paths in D(G).

 m_2 be the maximum number of arc disjoint x, y directed paths in D(G) such that

at most one of uv, vu can be used

as an edge in the set of paths. (7)

Then $m_1 = m_2$ *.*

Proof Clearly $m_1 \ge m_2$. For the converse, let $P_1, P_2, \ldots, P_{m_1}$ be a collection of arc disjoint x, y directed paths and assume that $\sum |P_i|$ is as small as possible. We claim that (7) holds.

We can reduce $\sum |P_i|$ by removing the uv and vu.

Proof of Theorem 6.

- $m = \max$. number of edge disjoint x, y paths in G
 - $= m_2$ of Lemma 6
 - $= m_1$ of Lemma 6
 - $= \widehat{m}_1 \text{(the minimum number of arcs whose deletion} \\ \text{destroys all directed } x, y \text{ paths in } G(D) \\ \text{by Theorem 4)}$
 - $\geq m' =$ minimum number of edges whose deletion destroys all x, y paths in G.

If Z covers all x, y paths in D(G) then Z' covers all x, y paths in G.

We finish by showing that $m' \ge \hat{m}_1$. Suppose that the deletion of X, |X| = m' destroys all x, y paths in G. X is minimal with this property. So G - X has two components.

Let $Y = \{uv : uv \in X, u \in C_x, v \in C_y\}$. Then |X| = |Y| and there are no directed x, y paths in D(G) - Y. Thus $m' \ge \hat{m}_1$.

Proof of Theorem 5

Each vertex v of D becomes an arc a_v of D'. For $S \subseteq V$ let $A_S = \{a_v : v \in S\}.$

(a) In the transformation $D \rightarrow D'$ node disjoint paths correspond to arc disjoint paths.

(b)

(i) Z covers all directed x, y paths in D implies A_Z covers all directed x, y paths in D'.

(ii) *Y* covers all directed x, y paths in *D'*, *Y* has as few arcs as possible, then we can assume $Y \subseteq A_Z$.

(Can always replace a by b.)

Proof of Theorem 7

Node disjoint paths in G map to node disjoint paths in G(D).

 $X \subseteq V$ covers all x, y paths in G iff X covers all directed x, y paths in D.