## Network Flows

A Network is a digraph $D=(V, A)$ plus 2 distinguished vertices, a source $x$ and a sink $y$. Notation: if $f: A \rightarrow \boldsymbol{R}$ then for $S, T \subseteq V$,

$$
f(S, T)=\sum_{(u, v) \in A \cap(S \times T)} f(u, v)
$$

$f$ is a flow from $x$ to $y$ if

$$
f(v, V)-f(V, v)=0
$$

for all $v \in V, v \neq x, y-$ conservation of flow.


Arc $a$ has capacity $c(a) \geq 0$.

A flow is feasible if

$$
0 \leq f(a) \leq c(a) \quad a \in A .
$$

Lemma 1 If $f$ is a flow from $x$ to $y$ then

$$
f(x, V)-f(V, x)=f(V, y)-f(y, V)
$$

Proof

$$
\begin{aligned}
0= & f(V, V)-f(V, V) \\
= & {[f(x, V)+f(y, V)]-[f(V, x)+f(V, y)]+} \\
& +\sum_{v \neq x, y}(f(v, V)-f(V, v)) \\
= & {[f(x, V)+f(y, V)]-[f(V, x)+f(V, y)] . }
\end{aligned}
$$

$f(x, V)-f(V, x)$ is the net flow out of $x$.
$f(V, y)-f(y, V)$ is the net flow into $y$.

The common value is called the value $v_{f}$ of the flow $f$.

A feasible flow which maximises $v_{f}$ is called a maximum flow.

## Cuts

Let $x \in S \subseteq V$ and $y \in \bar{S}=V \backslash S$. The set of arcs $S: \bar{S}=A \cap(S \times \bar{S})$ is called an $x, y$ cut.

$S=\{x, a, c, e, f\}:$ capacity of $S: \bar{S}$ is $4+5+15=24$.
$S: \bar{S}$ has capacity $c(S, \bar{S})$.

Lemma 2 If $f$ is a feasible flow and $S: \bar{S}$ is an $x, y$ cut then

$$
v_{f} \leq c(S: \bar{S})
$$

Proof

$$
\begin{align*}
v_{f} & =f(x, V)-f(V, x) \\
& =\sum_{v \in S} f(v, V)-\sum_{v \in S} f(V, v) \\
& =f(S, S)+f(S, \bar{S})-f(S, S)-f(\bar{S}, S) \\
& =f(S, \bar{S})-f(\bar{S}, S)  \tag{1}\\
& \leq c(S: \bar{S}) .
\end{align*}
$$

Flow $f$ saturates arc $a$ if $f(a)=c(a)$.
Lemma 3 If flow $f^{*}$ and $x, y$ cut $S^{*}: \bar{S}^{*}$ are such that
(i) $f^{*}$ saturates every arc of $S^{*}: \bar{S}^{*}$.
(ii) $f^{*}(a)=0$ for every $a \in \bar{S}^{*}: S^{*}$.
then
(a) $v_{f^{*}}=c\left(S^{*}: \bar{S}^{*}\right)$.
(b) $f^{*}$ is a maximum flow.
(c) $S^{*}: \bar{S}^{*}$ is a minumum capacity cut.

Proof (a) follows from (i), (ii) and (1). Now let $f$ be any feasible flow and let $S: \bar{S}$ be any $x, y$ cut. Then

$$
v_{f} \leq c\left(S^{*}: \bar{S}^{*}\right)=v_{f^{*}} \leq c(S: \bar{S})
$$

## $f$-augmenting paths

Let $f$ be a feasible flow. A path $P=\left(x_{0}=x, x_{1}, \ldots\right.$, $x_{k}=y$ ) from $x$ to $y$ in the underlying graph $G(D)$ is $f$-augmenting if
$x_{i} x_{i+1} \in A$ implies that $f\left(x_{i} x_{i+1}\right)<c\left(x_{i} x_{i+1}\right)$.
(2)
$x_{i+1} x_{i} \in A$ implies that $f\left(x_{i+1} x_{i}\right)>0$.

$\mathrm{x}, \mathrm{a}, \mathrm{c}, \mathrm{d}, \mathrm{b}, \mathrm{y}$ is f -augmenting

Theorem $1 f$ is a maximum flow iff if there are no $f$ augmenting paths.

Proof If: Suppose $P=\left(x_{0}=x, x_{1}, \ldots, x_{k}=\right.$ $y$ ) is an $f$-augmenting path. let

$$
\theta=\min \begin{cases}c\left(x_{i} x_{i+1}\right)-f\left(x_{i} x_{i+1}\right) & x_{i} x_{i+1} \in A  \tag{4}\\ f\left(x_{i+1} x_{i}\right) & x_{i+1} x_{i} \in A\end{cases}
$$

Then $\theta>0$.
Define $f^{\prime}$ by

$$
f^{\prime}(a)= \begin{cases}f\left(x_{i} x_{i+1}\right)+\theta & a=x_{i} x_{i+1} \in A \\ f\left(x_{i+1} x_{i}\right)-\theta & a=x_{i+1} x_{i} \in A \\ f(a) & \text { otherwise }\end{cases}
$$


(i) $f^{\prime}$ is a flow.
$v \notin P \Rightarrow f^{\prime}(v, V)=f(v, V)$ and $f^{\prime}(V, v)=f(V, v)$

$$
v \in P
$$


(iii) $v_{f^{\prime}}=v_{f}+\theta>v_{f}$.


Only if: Suppose there are no $f$-augmenting paths. let
$S=\left\{u \in V: \exists\right.$ a path $P_{u}=\left(x_{0}=x, x_{1}, \ldots, x_{k}=u\right)$ in $G$
(5)


Then
(i) $x \in S$ and $y \notin S$
(ii) $a=u v \in S: \bar{S}$ implies $f(a)=c(a)$. If $f(a)<$ $c(a)$ then ( $P_{u}, v$ ) satisfies (2),(3) and so $v \in S$ - contradiction.
(iii) $a=v u \in \bar{S}: S$ implies $f(a)=0$. If $f(a)>0$ then ( $P_{u}, v$ ) satisfies (2),(3) and so $v \in S$ - contradiction.

It follows from Lemma 3 that $f$ is a maximum flow (and $S: \bar{S}$ is a minimum cut).

## Max-Flow Min-Cut Theorem

Theorem 2

$$
\begin{equation*}
\max _{f} v_{f}=\min _{S} c(S: \bar{S}) . \tag{6}
\end{equation*}
$$

Proof Lemma 2 shows that the LHS of (6) is at most the RHS.

Suppose $f$ is a maximum flow. Let $S$ be as defined in (5). $f$ has no $f$-augmenting paths and so $v_{f}=c(S: \bar{S})$.

Lemma 4 If $c(a)$ is an integer for all $a \in A$ then there is a maximum flow with $f(a)$ integer for all $a \in A$.

Proof Start with the feasible flow $f=0$. Repeatedly find flow augmenting paths until a maximum flow is reached. We can argue inductively that $f$ stays integer throughout. This is because $\theta$ of (4) will be integer if $f$ and $c$ are.

## Alternate proof of Hall's Theorem



$$
c(a)= \begin{cases}1 & a=x u, u \in X \\ 1 & a=v y, v \in Y \\ \infty & a \in E\end{cases}
$$

An integral flow $f$ from $x$ to $y$ defines a matching

$$
M=\{u v \in E: f(u v)=1\},
$$

and conversely.

Let $S: \bar{S}$ be an $x, y$ cut and let

$$
S_{1}=S \cap X, S_{2}=S \cap Y .
$$

If $\exists u \in S_{1}$ and $v \in Y \backslash X_{2}$ such that $u v \in E$ then

$$
c(S: \bar{S}) \geq c(u v)=\infty .
$$

So

$$
c(S: \bar{S})<\infty \text { iff } N\left(S_{1}\right) \subseteq S_{2}
$$

In which case

$$
c(S: \bar{S})=\left(|X|-\left|S_{1}\right|\right)+\left|S_{2}\right| .
$$

## By the Max-Flow Min-Cut Theorem

$$
\begin{aligned}
\max \{|M|\} & =\min _{\substack{S_{1} \subseteq X \\
N\left(S_{1} \subseteq S_{2} \subseteq Y\right.}}\left(|X|-\left|S_{1}\right|\right)+\left|S_{2}\right| \\
& =\min _{S_{1} \subseteq X}\left(|X|-\left|S_{1}\right|\right)+\left|N\left(S_{1}\right)\right|
\end{aligned}
$$

Thus there exists a matching of size $|X|$ iff

$$
|X|-\left|S_{1}\right|+\left|N\left(S_{1}\right)\right| \geq|X|
$$

for all $S_{1} \subseteq X$, which is Hall's theorem.

A graph $G$ is $m$-orientable if there is an orientation $D$ of $G$ with $\delta^{+}(D) \geq m$. $\left(\delta^{+}(D)=\min \left\{d^{+}(v): v \in\right.\right.$ $V\}$ ).

For $S \subseteq V$ let । $(S)$ denote the number of edges of $G$ with at least one end in $S$.

Theorem $3 G$ is $m$-orientable iff $ı(S) \geq m|S|$ for all $S \subseteq V$.

Proof Only if: Suppose that $D$ is an orientation of $G$ with $\delta^{+} \geq m$. Then

$$
\mathrm{I}(S) \geq \sum_{v \in S} d^{+}(S) \geq m|S|
$$



Interpret $u v \quad \mathrm{f}=1 \quad \mathrm{C} \quad \mathrm{C}$ Interpret $\mathrm{uv}{ }^{\mathrm{v}}$ as orient $u v$ from $u$ to $v$. as orient $u v$ from $v$ to $u$.

$$
\mathrm{f}=1
$$

$G$ is $m$-orientable iff there exists a flow of value $m|V|$.

Suppose the maximum flow value is $<m|V|$. Let $S$ : $\bar{S}$ be a minimum cut in $\Gamma$. Let $A=S \cap E$ and $B=$ $S \cap V$.


There are no edges from $A$ to $Z$ in $\Gamma$ else $c(S: \bar{S})=$ $\infty$. So

$$
\begin{aligned}
\mathrm{I}(Z) & \leq|E|-|A| \\
|E|-|A|+m|B| & <m|V|
\end{aligned}
$$

and $\mathrm{\imath}(Z)<m|Z|$.

## Menger's Theorems

In the following $x, y \in V$.
Theorem 4 The maximum number of arc disjoint directed paths joining $x$ and $y$ in a digraph $D$ equals the minimum number of arcs whose deletion destroys all directed $x, y$ paths.

Theorem 5 The maximum number of internally vertex disjoint directed paths joining $x$ and $y$ in a digraph $D$ equals the minimum number of vertices $(\neq x, y)$ whose deletion destroys all directed $x, y$ paths.

Theorem 6 The maximum number of edge disjoint paths joining $x$ and $y$ in a graph $G$ equals the minimum number of edges whose deletion destroys all $x, y$ paths.

Theorem 7 The maximum number of internally vertex disjoint paths joining $x$ and $y$ in a graph $D$ equals the minimum number of vertices $(\neq x, y)$ whose deletion destroys all $x, y$ paths.

Lemma 5 Let $N$ be a network in which each arc has capacity 1. Let $f^{*}$ be a maximum flow and $S^{*}: \bar{S}^{*}$ a minimum cut.
(a) $v_{f^{*}}$ is the maximum number $m_{1}^{*}$, of arc disjoint directed $x, y$ paths.
(b) $c\left(S^{*}: \bar{S}^{*}\right)$ is the minimum number $m_{2}^{*}$ of arcs whose deletion destroys all directed $x, y$ paths.
(a) If $P_{1}, P_{2}, \ldots, P_{m_{1}^{*}}$ is a set of arc disjoint directed $x, y$ paths then we can send one unit of flow along each path. Thus $v_{f^{*}} \geq m_{1}^{*}$.

To prove $v_{f^{*}} \leq m_{1}^{*}$ delete all arcs with $f^{*}(a)=0$ to obtain arc set $A^{*}$. Note that $f^{*}(a)=1$ for $A \in A^{*}$. Add $v_{f^{*}} y x$ arcs. The digraph $D^{*}=\left(V, A^{*}\right)$ has an Euler tour. Deleting the $y x$ edges from the tour yields $v_{f^{*}}$ arc disjoint directed $x, y$ paths.

(b) Let $S: \bar{S}$ be an $x, y$ cut in $N . S: \bar{S}$ meets every $x, y$ path and so deleting $S: \bar{S}$ destroys all $x, y$ paths and $c(S: \bar{S})=|S: \bar{S}| \geq m_{2}^{*}$.

On the other hand, if $X$ is any set of arcs which meet every $x, y$ path, let $S=\{v: v$ is reachable from $x$ by a directed path in $D-X\}$. Then $y \in \bar{S}$ and $X \supseteq S: \bar{S}$. (If there is an arc $u v \notin X, u \in S, v \in \bar{S}$ then $v$ is reachable from $x$ in $D-X$, contradiction.) Thus $|X| \geq c(S: \bar{S})$ which implies $m_{2}^{*}$ is at least the minimum capacity of a cut.

Theorem 4 follows from the above lemma and the Max-Flow Min-Cut theorem.

## Lemma 6 Let

$m_{1}$ be the maximum number of arc disjoint $x, y$ directed paths in $D(G)$.
$m_{2}$ be the maximum number of arc disjoint $x, y$ directed paths in $D(G)$ such that
at most one of $u v, v u$ can be used as an edge in the set of paths. (7)

Then $m_{1}=m_{2}$.

Proof Clearly $m_{1} \geq m_{2}$. For the converse, let $P_{1}, P_{2}, \ldots, P_{m_{1}}$ be a collection of arc disjoint $x, y$ directed paths and assume that $\sum\left|P_{i}\right|$ is as small as possible. We claim that (7) holds.


We can reduce $\sum\left|P_{i}\right|$ by removing the $u v$ and $v u$.



## Proof of Theorem 6.

$m=$ max. number of edge disjoint $x, y$ paths in $G$
$=m_{2}$ of Lemma 6
$=m_{1}$ of Lemma 6
$=\widehat{m}_{1}$ (the minimum number of arcs whose deletion destroys all directed $x, y$ paths in $G(D)$ by Theorem 4)
$\geq m^{\prime}=$ minimum number of edges whose deletion destroys all $x, y$ paths in $G$.


If $Z$ covers all $x, y$ paths in $D(G)$ then $Z^{\prime}$ covers all $x, y$ paths in $G$.

We finish by showing that $m^{\prime} \geq \widehat{m}_{1}$. Suppose that the deletion of $X,|X|=m^{\prime}$ destroys all $x, y$ paths in $G$. $X$ is minimal with this property. So $G-X$ has two components.

$\mathrm{C}_{\mathrm{x}}$

$C_{y}$

Let $Y=\left\{u v: u v \in X, u \in C_{x}, v \in C_{y}\right\}$. Then $|X|=|Y|$ and there are no directed $x, y$ paths in $D(G)-Y$. Thus $m^{\prime} \geq \widehat{m}_{1}$.

## Proof of Theorem 5



Each vertex $v$ of $D$ becomes an arc $a_{v}$ of $D^{\prime}$. For $S \subseteq V$ let $A_{S}=\left\{a_{v}: v \in S\right\}$.
(a) In the transformation $D \rightarrow D^{\prime}$ node disjoint paths correspond to arc disjoint paths.
(b)
(i) $Z$ covers all directed $x, y$ paths in $D$ implies $A_{Z}$ covers all directed $x, y$ paths in $D^{\prime}$.
(ii) $Y$ covers all directed $x, y$ paths in $D^{\prime}, Y$ has as few arcs as possible, then we can assume $Y \subseteq A_{Z}$.

(Can always replace $a$ by b.)

## Proof of Theorem 7

Node disjoint paths in $G$ map to node disjoint paths in $G(D)$.
G

$X \subseteq V$ covers all $x, y$ paths in $G$ iff $X$ covers all directed $x, y$ paths in $D$.

