
Directed graphs

Digraph D = (V, A).
V ={vertices}, A={arcs}

a

b

c d

e

f

g

h

V={a,b,...,h},   A={(a,b),(b,a),...}

(2 arcs with endpoints (c,d))

Thus a digraph is a graph with oriented edges.
D is strict if there are no loops or repeated edges.
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Digraph D: G(D) is the underlying graph obtained by
replaced each arc (a, b) by an edge {a, b}.
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The graph underlying the digraph on previous slide
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Graph G: an orientation of G is obtained by replacing
each edge {a, b} by (a, b) or (b, a).

G Orientation of G

There are 2|E| distinct orientations of G.
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Walks, trails, paths, cycles now have directed coun-
terparts.
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Directed Cycle: (g,a,b,a)

no arc (f,g).
(e,f,g,a) is not a directed walk -- there is 

Directed Walk: (c,d,e,f,a,b,g,f).
Directed Path: (a,b,g,f).
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The indegree d−D(v) of vertex v is the number of arcs
(x, v), x ∈ V . The outdegree d+

D(v) of vertex v is the
number of arcs (v, x), x ∈ V .
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a b c d e f g h

d+ 2 2 4 1 2 0 2 2
d− 2 1 0 2 3 5 2 0

Note that since each arc contributes one to a vertex
outdegree and one to a vertex indegree,

∑

v∈V

d+(v) =
∑

v∈V

d−(v) = |A|.
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Strong Connectivity or Diconnectivity

Given digraph D we define the relation ∼ on V by
v ∼ w iff there is a directed walk from v to w and a
directed walk from w to v.

This is an equivalence relation (proof same as directed
case) and the equivalence classes are called strong
components or dicomponents.
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Here the strong components are

{a, b, g}, {c}, {d}, {e, f, h}.
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A graph is strongly connected if it has one strong com-
ponent i.e. if there is a directed walk between each
pair of vertices.

For a set S ⊆ V let

N+(S) = {w /∈ S : ∃v ∈ S s.t.(v, w) ∈ A)}.

N−(S) = {w /∈ S : ∃v ∈ S s.t.(w, v) ∈ A)}.

Theorem 1 D is strongly connected iff there does not
exist S ⊆ V, S 6= ∅, V such that N+(S) = ∅.

Proof Only if: suppose there is such an S and
x ∈ S, y ∈ V \ S and suppose there is a directed
walk W from x to y. Let (v1 = x, v2, . . . , vk = y)

be the sequence of vertices traversed by W . Let vi

be the first vertex of this sequence which is not in S.
Then vi ∈ N+(S), contradiction, since arc (vi−1, vi)

exists.
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If: suppose that D is not strongly connected and that
there is no directed walk from x to y. Let S = {v ∈

V : ∃ a directed walk from x to v}.

S 6= ∅ as x ∈ S and S 6= V as y /∈ S.

S V/S

x
w

y
z

Then N+(S) = ∅. If z ∈ N+(S) then there exists
w ∈ S such that (w, z) ∈ A. But then since w ∈

S there is a directed walk from x to w which can be
extended to z, contradicting the fact that z /∈ S. 2
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A Directed Acyclic Graph (DAG) is a digraph without
any directed cycles.

Lemma 1 If D is a DAG then D has at least one
source (vertex of indegree 0) and at least one sink
(vertex of outdegree 0).

Proof Let P = (v1, v2, . . . , vk) be a directed path
of maximum length in D. Then v1 is a source and vk

is a sink.
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Suppose for example that there is an edge xv1. Then
either
(a) x /∈ {v2, v3, . . . , vk}. But then (x, P ) is a longer
directed path than P – contradiction.
(b) x = vi for some i 6= 1 and D contains the cycle
v1, v2, . . . , vi, v1. 2

A topological ordering v1, v2, . . . , vν of the vertex set
of a digraph D is one in which

vivj ∈ A implies i < j.
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Theorem 2 D has a topological ordering iff D is a
DAG.

Proof Only if: Suppose there is a topological or-
dering and a directed cycle vi1, vi2, . . . , vik. Then

i1 < i2 < · · · < ik < i1

which is absurd.

if: By induction on ν. Suppose that D is a DAG.
The result is true for ν = 1 since D has no loops.
Suppose that ν > 1, vν is any sink of D and let
D′ = D − vν.

D′ is a DAG and has a topological ordering v1, v2, . . . ,

vν−1, induction. v1, v2, . . . , vν is a topological order-
ing of D. For if there is an edge vivj with i > j then
(i) it cannot be in D′ and (ii) i 6= ν since vν is a sink.

2
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Theorem 3 Let G = G(D). Then D contains a di-
rected path of length χ(G) − 1.

Proof Let D = (V, A) and A′ ⊆ A be a minimal
set of edges such that D′ = D − A is a DAG.

Let k be the length of the longest directed path in D′.

Define c(v)=length of longest path from v in D′.
c(v) ∈ {0,1,2, . . . , k}. We claim that c(v) is a proper
colouring of G, proving the theorem.

12



Note first that if D′ contains a path P = (x1, x2, . . . , xk)

then

c(x1) ≥ c(xk) + k − 1. (1)

(We can add the longest path Q from xk to P to create
a path (P, Q). This uses the fact that D′ is a DAG.)

Suppose c is not a proper colouring of G and there
exists an edge vw ∈ G with c(v) = c(w). Suppose
vw ∈ A i.e. it is directed from v to w.

Case 1: vw /∈ A′. (1) implies c(v) ≥ c(w) + 1 –
contradiction.

Case 2: vw ∈ A′. There is a cycle in D′ + vw which
contains vw, by the minimality of A′. Suppose that
C has ` ≥ 2 edges. Then (1) implies that c(w) ≥

c(v) + ` − 1. 2
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Tournaments

A tournament is an orientation of a complete graph
Kn.
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45

1,2,5,4,3 is a directed Hamilton Path

Corollary 1 A tournament T contains a directed Hamil-
ton path.

Proof χ(G(T )) = n. Now apply Theorem 3. 2
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Theorem 4 If D is a strongly connected tournament
with ν ≥ 3 then D contains a directed cycle of size k
for all 3 ≤ k ≤ ν.

Proof By induction on k.
k = 3.
Choose v ∈ V and let S = N+(V ), T = N−(v) =
V \ (S ∪ {v}).

x y

v

S=N
+

(v) T=N
-

(v)

S 6= ∅ since D is strongly connected. Similarly, S 6=
V \ {v} else N+(V \ {v}) = ∅.

Thus N+(S) 6= ∅. v /∈ N+(S) and so N+(S) = T .
Thus ∃x ∈ S, y ∈ T with xy ∈ A.
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Suppose now that there exists a directed cycle C =

(v1, v2, . . . , vk, v1).

Case 1: ∃w /∈ C and i 6= j such that viw ∈ A, wvj ∈

A.

w

v vi j
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It follows that there exists ` with v`w ∈ A, wv`+1 ∈

A.
C′ = (w, v`+1, . . . , v`, v1, . . . , v`, w) is a cycle of length
k + 1.

w

l l +1
v v
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Case 2 V \ C = S ∪ T where

w ∈ S implies wvi ∈ A, 1 ≤ i ≤ k.

w ∈ T implies viw ∈ A, 1 ≤ i ≤ k.

S TC
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S = ∅ implies T = ∅ (and C is a Hamilton cycle) or
N+(T ) = ∅.
T = ∅ implies N+(C) = ∅.

Thus we can assume
S, T 6= ∅ and N+(T ) 6= ∅.
N+(T ) ∩ C = ∅ and so N+(T ) ∩ S 6= ∅.

Thus ∃x ∈ T, y ∈ S such that xy ∈ A.

x y

The cycle (v1, x, y, v3, . . . , vk, v1) is a cycle of length
k + 1.
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Robbin’s Theorem

Theorem 5 A connected graph G has an orientation
which is strongly connected iff G is 2-edge connected.

Only if: Suppose that G has a cut edge e = xy.

x y

If we orient e from x to y (resp. y to x) then there is
no directed path from y to x (resp. x to y).
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If: Suppose G is 2-edge connected. It contains a cy-
cle C which we can orient to produce a directed cycle.

At a general stage of the process we have a set of
vertices S ⊇ C and an orientation of the edges of
G[S] which is strongly connected.

x y

P

P

a

a

1

2

2

1

If S 6= V choose x ∈ S, y /∈ S.
There are 2 edge disjoint paths P1, P2 joining y to x.
Let ai be the first vertex of Pi which is in S.
Orient P1[y, a1] from y to a1.
Orient P2[y, a2] from a2 to y.
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Claim: The subgraph G[S ∪P1∪P2] is strongly con-
nected.

Let S′ = S ∪ P1 ∪ P2. We must show that there is a
directed path from α to β for all α, β ∈ S ′.

(i) α, β ∈ S: ∃ a directed path from α to β in S.
(ii) α ∈ S, β ∈ P1 \ S: Go from α to a2 in S, from a2

to y on P2, from y to β along P1.
(iii) α ∈ S, β ∈ P2 \ S: Go from α to a2 in S, from a2

to β on P2.
(iv) α ∈ P1 \ S, β ∈ S: Go from α to α1 on P1, from
a1 to β in S.
(v) α ∈ P2 \ S, β ∈ S: Go from α to y on P1, from y

to a1 on P1, from a1 to β in S.

Continuing in this way we can orient the whole graph.
2
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Directed Euler Tours

An Euler tour of a digraph D is a directed walk which
traverses each arc of D exactly once.

Theorem 6 A digraph D has an Euler tour iff G(D)

is connected and d+(v) = d−(v) for all v ∈ V .

Proof This is similar to the undirected case.
If: Suppose W = (v1, v2, . . . , vm, v1)

(m = |A|) is an Euler Tour. Fix v ∈ V . Whenever W

visits v it enters through a new arc and leaves through
a new arc. Thus each visit requires one entering arc
and one leaving arc. Thus d+(v) = d−(v).

Only if: We use induction on the number of arcs. D is
not a DAG as it has no sources or sinks. Thus it must
have a directed cycle C. Now remove the edges of C.
Each component Ci of G(D−C) satisfies the degree
conditions and so contains an Euler tour Wi. Now, as
in the undirected case, go round the cycle C and the
first time you vist Ci add the tour Wi. This produces
an Euler tour of the whole digraph D.
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As a simple application of the previous theorem we
consider the following problem. A 0-1 sequence x =

(x1, x2, . . . , xm) has proprty Pn if for every 0-1 se-
quence y = (y1, y2, . . . , yn there is an index k such
that xk = y1, xk+1 = y2, . . . , xk+n−1 = yn. Here
xt = xm+1−t if t > m.

Note that we must have m ≥ 2n in order to have a
distinct k for each possible x.

Theorem 7 There exists a sequence of length 2n with
property Pn.

Proof Define the digraph Dn with vertex set
{0,1}n−1 and 2n directed arcs of the form
((p1, p2, . . . , pn−1), (p2, p3, . . . , pn)).
G(Dn) is connected as we can join (p1, p2, . . . , pn−1)

to (q1, q2, . . . , qn−1) by the path (p1, p2, . . . , pn−1),

(p2, p3 . . . , pn−1, q1), (p3, p4, . . . , pn−1, q1, q2), . . . ,

(q1, q2, . . . , qn−1). Each vertex of Dn has indegree
and outdegree 2 and so it has an Euler tour W .
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Suppose that W visits the vertices of Dn in the se-
quence (v1, v2, . . . , v2n . Let xi be the first bit of
vi. We claim that x1, x2, . . . , x2n has property Pn.
Give arc ((p1, p2, . . . , pn−1), (p2, p3, . . . , pn)) the la-
bel (p1, p2, . . . , pn). No other arc has this label.

Given (y1, y2, . . . , yn) let k be such that (vk, vk+1)

has this label. Then vk = (y1, y2, . . . , yn−1) and
vk+1 = (y2, y3, . . . , yn) and then xk = y1, xk+1 =

y2, . . . , xk+n−1 = yn. 2
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