Directed graphs

Digraph $D=(V, A)$.
$V=\{$ vertices $\}, A=\{\operatorname{arcs}\}$

$\mathrm{V}=\{\mathrm{a}, \mathrm{b}, \ldots, \mathrm{h}\}, \quad \mathrm{A}=\{(\mathrm{a}, \mathrm{b}),(\mathrm{b}, \mathrm{a}), \ldots\}$
(2 arcs with endpoints (c,d))

Thus a digraph is a graph with oriented edges.
D is strict if there are no loops or repeated edges.

Digraph $D: G(D)$ is the underlying graph obtained by replaced each arc (a, b) by an edge $\{a, b\}$.

The graph underlying the digraph on previous slide

Graph G : an orientation of G is obtained by replacing each edge $\{a, b\}$ by (a, b) or (b, a).

G

Orientation of G

There are $2^{|E|}$ distinct orientations of G.

Walks, trails, paths, cycles now have directed counterparts.

Directed Walk: (c, d,e,f,a,b,g,f).
Directed Path: (a,b,g,f).
Directed Cycle: (g,a,b,a)
(e,f,g,a) is not a directed walk -- there is no $\operatorname{arc}(f, g)$.

The indegree $d_{D}^{-}(v)$ of vertex v is the number of arcs $(x, v), x \in V$. The outdegree $d_{D}^{+}(v)$ of vertex v is the number of $\operatorname{arcs}(v, x), x \in V$.

$$
\begin{array}{lllllllll}
& b & b & d & e & f & g & h \\
d^{+} & 2 & 2 & 4 & 1 & 2 & 0 & 2 & 2 \\
d^{-} & 2 & 1 & 0 & 2 & 3 & 5 & 2 & 0
\end{array}
$$

Note that since each arc contributes one to a vertex outdegree and one to a vertex indegree,

$$
\sum_{v \in V} d^{+}(v)=\sum_{v \in V} d^{-}(v)=|A| .
$$

Strong Connectivity or Diconnectivity

Given digraph D we define the relation \sim on V by $v \sim w$ iff there is a directed walk from v to w and a directed walk from w to v.

This is an equivalence relation (proof same as directed case) and the equivalence classes are called strong components or dicomponents.

Here the strong components are

$$
\{a, b, g\},\{c\},\{d\},\{e, f, h\} .
$$

A graph is strongly connected if it has one strong component i.e. if there is a directed walk between each pair of vertices.

For a set $S \subseteq V$ let

$$
\begin{aligned}
& \left.N^{+}(S)=\{w \notin S: \exists v \in S \text { s.t. }(v, w) \in A)\right\} . \\
& \left.N^{-}(S)=\{w \notin S: \exists v \in S \text { s.t. }(w, v) \in A)\right\} .
\end{aligned}
$$

Theorem $1 D$ is strongly connected iff there does not exist $S \subseteq V, S \neq \emptyset, V$ such that $N^{+}(S)=\emptyset$.

Proof Only if: suppose there is such an S and $x \in S, y \in V \backslash S$ and suppose there is a directed walk W from x to y. Let ($v_{1}=x, v_{2}, \ldots, v_{k}=y$) be the sequence of vertices traversed by W. Let v_{i} be the first vertex of this sequence which is not in S. Then $v_{i} \in N^{+}(S)$, contradiction, since arc $\left(v_{i-1}, v_{i}\right)$ exists.

If: suppose that D is not strongly connected and that there is no directed walk from x to y. Let $S=\{v \in$ $V: \exists$ a directed walk from x to $v\}$.

$$
S \neq \emptyset \text { as } x \in S \text { and } S \neq V \text { as } y \notin S .
$$

S
V/S

Then $N^{+}(S)=\emptyset$. If $z \in N^{+}(S)$ then there exists $w \in S$ such that $(w, z) \in A$. But then since $w \in$ S there is a directed walk from x to w which can be extended to z, contradicting the fact that $z \notin S$.

A Directed Acyclic Graph (DAG) is a digraph without any directed cycles.

Lemma 1 If D is a DAG then D has at least one source (vertex of indegree 0) and at least one sink (vertex of outdegree 0).

Proof Let $P=\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ be a directed path of maximum length in D. Then v_{1} is a source and v_{k} is a sink.

Suppose for example that there is an edge $x v_{1}$. Then either
(a) $x \notin\left\{v_{2}, v_{3}, \ldots, v_{k}\right\}$. But then (x, P) is a longer directed path than P - contradiction.
(b) $x=v_{i}$ for some $i \neq 1$ and D contains the cycle $v_{1}, v_{2}, \ldots, v_{i}, v_{1}$.

A topological ordering $v_{1}, v_{2}, \ldots, v_{\nu}$ of the vertex set of a digraph D is one in which

$$
v_{i} v_{j} \in A \text { implies } i<j \text {. }
$$

Theorem $2 D$ has a topological ordering iff D is a DAG.

Proof Only if: Suppose there is a topological ordering and a directed cycle $v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{k}}$. Then

$$
i_{1}<i_{2}<\cdots<i_{k}<i_{1}
$$

which is absurd.
if: By induction on ν. Suppose that D is a DAG. The result is true for $\nu=1$ since D has no loops. Suppose that $\nu>1, v_{\nu}$ is any sink of D and let $D^{\prime}=D-v_{\nu}$.
D^{\prime} is a DAG and has a topological ordering v_{1}, v_{2}, \ldots, $v_{\nu-1}$, induction. $v_{1}, v_{2}, \ldots, v_{\nu}$ is a topological ordering of D. For if there is an edge $v_{i} v_{j}$ with $i>j$ then (i) it cannot be in D^{\prime} and (ii) $i \neq \nu$ since v_{ν} is a sink.

Theorem 3 Let $G=G(D)$. Then D contains a directed path of length $\chi(G)-1$.

Proof Let $D=(V, A)$ and $A^{\prime} \subseteq A$ be a minimal set of edges such that $D^{\prime}=D-A$ is a DAG.

Let k be the length of the longest directed path in D^{\prime}.

Define $c(v)=$ length of longest path from v in D^{\prime}. $c(v) \in\{0,1,2, \ldots, k\}$. We claim that $c(v)$ is a proper colouring of G, proving the theorem.

Note first that if D^{\prime} contains a path $P=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ then

$$
\begin{equation*}
c\left(x_{1}\right) \geq c\left(x_{k}\right)+k-1 . \tag{1}
\end{equation*}
$$

(We can add the longest path Q from x_{k} to P to create a path (P, Q). This uses the fact that D^{\prime} is a DAG.)

Suppose c is not a proper colouring of G and there exists an edge $v w \in G$ with $c(v)=c(w)$. Suppose $v w \in A$ i.e. it is directed from v to w.

Case 1: $v w \notin A^{\prime}$. (1) implies $c(v) \geq c(w)+1-$ contradiction.

Case 2: $v w \in A^{\prime}$. There is a cycle in $D^{\prime}+v w$ which contains $v w$, by the minimality of A^{\prime}. Suppose that C has $\ell \geq 2$ edges. Then (1) implies that $c(w) \geq$ $c(v)+\ell-1$.

Tournaments

A tournament is an orientation of a complete graph K_{n}.

$1,2,5,4,3$ is a directed Hamilton Path
Corollary 1 A tournament T contains a directed Hamilton path.

Proof $\quad \chi(G(T))=n$. Now apply Theorem 3 .

Theorem 4 If D is a strongly connected tournament with $\nu \geq 3$ then D contains a directed cycle of size k for all $3 \leq k \leq \nu$.

Proof By induction on k.
$k=3$.
Choose $v \in V$ and let $S=N^{+}(V), T=N^{-}(v)=$ $V \backslash(S \cup\{v\})$.

$S \neq \emptyset$ since D is strongly connected. Similarly, $S \neq$ $V \backslash\{v\}$ else $N^{+}(V \backslash\{v\})=\emptyset$.

Thus $N^{+}(S) \neq \emptyset . v \notin N^{+}(S)$ and so $N^{+}(S)=T$. Thus $\exists x \in S, y \in T$ with $x y \in A$.

Suppose now that there exists a directed cycle $C=$ $\left(v_{1}, v_{2}, \ldots, v_{k}, v_{1}\right)$.

Case 1: $\exists w \notin C$ and $i \neq j$ such that $v_{i} w \in A, w v_{j} \in$ A.

It follows that there exists ℓ with $v_{\ell} w \in A, w v_{\ell+1} \in$ A.
$C^{\prime}=\left(w, v_{\ell+1}, \ldots, v_{\ell}, v_{1}, \ldots, v_{\ell}, w\right)$ is a cycle of length $k+1$.

Case $2 V \backslash C=S \cup T$ where
$w \in S$ implies $w v_{i} \in A, 1 \leq i \leq k$.
$w \in T$ implies $v_{i} w \in A, 1 \leq i \leq k$.

$S=\emptyset$ implies $T=\emptyset$ (and C is a Hamilton cycle) or $N^{+}(T)=\emptyset$.
$T=\emptyset$ implies $N^{+}(C)=\emptyset$.
Thus we can assume
$S, T \neq \emptyset$ and $N^{+}(T) \neq \emptyset$.
$N^{+}(T) \cap C=\emptyset$ and so $N^{+}(T) \cap S \neq \emptyset$.

Thus $\exists x \in T, y \in S$ such that $x y \in A$.

The cycle ($v_{1}, x, y, v_{3}, \ldots, v_{k}, v_{1}$) is a cycle of length $k+1$.

Robbin's Theorem

Theorem 5 A connected graph G has an orientation which is strongly connected iff G is 2-edge connected.

Only if: Suppose that G has a cut edge $e=x y$.

If we orient e from x to y (resp. y to x) then there is no directed path from y to x (resp. x to y).

If: Suppose G is 2 -edge connected. It contains a cycle C which we can orient to produce a directed cycle.

At a general stage of the process we have a set of vertices $S \supseteq C$ and an orientation of the edges of $G[S]$ which is strongly connected.

If $S \neq V$ choose $x \in S, y \notin S$.
There are 2 edge disjoint paths P_{1}, P_{2} joining y to x.
Let a_{i} be the first vertex of P_{i} which is in S.
Orient $P_{1}\left[y, a_{1}\right]$ from y to a_{1}.
Orient $P_{2}\left[y, a_{2}\right]$ from a_{2} to y.

Claim: The subgraph $G\left[S \cup P_{1} \cup P_{2}\right]$ is strongly connected.

Let $S^{\prime}=S \cup P_{1} \cup P_{2}$. We must show that there is a directed path from α to β for all $\alpha, \beta \in S^{\prime}$.
(i) $\alpha, \beta \in S: \exists$ a directed path from α to β in S.
(ii) $\alpha \in S, \beta \in P_{1} \backslash S$: Go from α to a_{2} in S, from a_{2} to y on P_{2}, from y to β along P_{1}.
(iii) $\alpha \in S, \beta \in P_{2} \backslash S$: Go from α to a_{2} in S, from a_{2} to β on P_{2}.
(iv) $\alpha \in P_{1} \backslash S, \beta \in S$: Go from α to α_{1} on P_{1}, from a_{1} to β in S.
(v) $\alpha \in P_{2} \backslash S, \beta \in S$: Go from α to y on P_{1}, from y to a_{1} on P_{1}, from a_{1} to β in S.

Continuing in this way we can orient the whole graph.

Directed Euler Tours

An Euler tour of a digraph D is a directed walk which traverses each arc of D exactly once.

Theorem 6 A digraph D has an Euler tour iff $G(D)$ is connected and $d^{+}(v)=d^{-}(v)$ for all $v \in V$.

Proof This is similar to the undirected case.
If: Suppose $W=\left(v_{1}, v_{2}, \ldots, v_{m}, v_{1}\right)$
($m=|A|$) is an Euler Tour. Fix $v \in V$. Whenever W visits v it enters through a new arc and leaves through a new arc. Thus each visit requires one entering arc and one leaving arc. Thus $d^{+}(v)=d^{-}(v)$.

Only if: We use induction on the number of arcs. D is not a DAG as it has no sources or sinks. Thus it must have a directed cycle C. Now remove the edges of C. Each component C_{i} of $G(D-C)$ satisfies the degree conditions and so contains an Euler tour W_{i}. Now, as in the undirected case, go round the cycle C and the first time you vist C_{i} add the tour W_{i}. This produces an Euler tour of the whole digraph D.

As a simple application of the previous theorem we consider the following problem. A 0-1 sequence $x=$ ($x_{1}, x_{2}, \ldots, x_{m}$) has proprty P_{n} if for every 0-1 sequence $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right.$ there is an index k such that $x_{k}=y_{1}, x_{k+1}=y_{2}, \ldots, x_{k+n-1}=y_{n}$. Here $x_{t}=x_{m+1-t}$ if $t>m$.

Note that we must have $m \geq 2^{n}$ in order to have a distinct k for each possible x.

Theorem 7 There exists a sequence of length 2^{n} with property P_{n}.

Proof Define the digraph D_{n} with vertex set $\{0,1\}^{n-1}$ and 2^{n} directed arcs of the form $\left(\left(p_{1}, p_{2}, \ldots, p_{n-1}\right),\left(p_{2}, p_{3}, \ldots, p_{n}\right)\right)$. $G\left(D_{n}\right)$ is connected as we can join ($p_{1}, p_{2}, \ldots, p_{n-1}$) to ($q_{1}, q_{2}, \ldots, q_{n-1}$) by the path ($p_{1}, p_{2}, \ldots, p_{n-1}$), $\left(p_{2}, p_{3} \ldots, p_{n-1}, q_{1}\right),\left(p_{3}, p_{4}, \ldots, p_{n-1}, q_{1}, q_{2}\right), \ldots$, $\left(q_{1}, q_{2}, \ldots, q_{n-1}\right)$. Each vertex of D_{n} has indegree and outdegree 2 and so it has an Euler tour W.

Suppose that W visits the vertices of D_{n} in the sequence $\left(v_{1}, v_{2}, \ldots, v_{2^{n}}\right.$. Let x_{i} be the first bit of v_{i}. We claim that $x_{1}, x_{2}, \ldots, x_{2^{n}}$ has property P_{n}. Give $\operatorname{arc}\left(\left(p_{1}, p_{2}, \ldots, p_{n-1}\right),\left(p_{2}, p_{3}, \ldots, p_{n}\right)\right)$ the label $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$. No other arc has this label.

Given $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ let k be such that (v_{k}, v_{k+1}) has this label. Then $v_{k}=\left(y_{1}, y_{2}, \ldots, y_{n-1}\right)$ and $v_{k+1}=\left(y_{2}, y_{3}, \ldots, y_{n}\right)$ and then $x_{k}=y_{1}, x_{k+1}=$ $y_{2}, \ldots, x_{k+n-1}=y_{n}$.

