Graph Theory

 $V = \{a,b,c,d,e,f,g,h,k\}$ E= {(a,b),(a,g),(a,h),(a,k),(b,c),(b,k),...,(h,k)} |E|=16.

Graph or Multi-Graph

We allow loops and multiple edges. $G = (V, E.\psi)$

 $V = \{a, b, c, d, e\}, E = \{e_1, e_2, \dots, e_8\}.$ t 1 2 3 4 5 6 7 8 $\psi(t)$ ab ae be bb bc cd de de

Eulerian Graphs

Can you draw the diagram below without taking your pen off the paper or going over the same line twice?

Bipartite Graphs

G is bipartite if $V = X \cup Y$ where *X* and *Y* are disjoint and every edge is of the form (x, y) where $x \in X$ and $y \in Y$.

In the diagram below, A,B,C,D are women and a,b,c,d are men. T here is an edge joining x and y iff x and y like each other. The red edges form a "perfect matching" enabling everybody to be paired with someone they like. Not all graphs will have perfect matching!

Colours {R,B,G}

Let $C = \{colours\}$. A vertex colouring of G is a map $f : V \to C$. We say that $v \in V$ gets coloured with f(v).

The colouring is proper iff $(a, b) \in E \Rightarrow f(a) \neq f(b)$.

The *Chromatic Number* $\chi(G)$ is the minimum number of colours in a proper colouring.

Application: $V = \{exams\}$. (a, b) is an edge iff there is some student who needs to take both exams. $\chi(G)$ is the minimum number of periods required in order that no student is scheduled to take two exams at once.

Subgraphs

G' = (V', E') is a subgraph of G = (V, E) if $V' \subseteq V$ and $E' \subseteq E$.

G' is a *spanning* subgraph if V' = V.

If $V' \subseteq V$ then

 $G[V'] = (V', \{(u, v) \in E : u, v \in V'\})$ is the subgraph of *G* induced by *V'*.

 $G[\{a,b,c,d,e\}]$

Similarly, if $E_1 \subseteq E$ then $G[E_1] = (V_1, E_1)$ where $V_1 = \{v \in V_1 : \exists e \in E_1 \text{ such that } v \in e\}$ is also induced (by E_1).

 $E_1 = \{(a,b), (a,d)\}$

Isomorphism for Simple Graphs

 $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic if there exists a bijection $f : V_1 \to V_2$ such that

 $(v,w) \in E_1 \leftrightarrow (f(v), f(w)) \in E_2.$

Isomorphism for Graphs

 $G_1 = (V_1, E_1, \psi_1)$ and $G_2 = (V_2, E_2, \psi_2)$ are *iso-morphic* if there exist bijections $f : V_1 \rightarrow V_2$ and $g : E_1 \rightarrow E_2$ such that

$$\psi_1(e) = ab \leftrightarrow \psi_2(g(e)) = f(a)f(b).$$

Complete Graphs

$$K_n = ([n], \{(i, j) : 1 \le i < j \le n\})$$

is the complete graph on n vertices.

 $K_{m,n} = ([m] \cup [n], \{(i,j) : i \in [m], j \in [n]\})$

is the complete bipartite graph on m + n vertices. (The notation is a little imprecise but hopefully clear.)

 K_5

Sfrag replacements

*K*_{2,3}

Vertex Degrees

If $V = \{1, 2, ..., n\}$ then $d = d_1, d_2, ..., d_n$ where $d_j = d_G(j)$ is called the degree sequence of G.

Matrices and Graphs

Incidence matrix M: $V \times E$ matrix.

$$M(v,e) = \begin{cases} 1 & v \in e \\ 0 & v \notin e \end{cases}$$

	e_1	e_2	e_3	e_{4}	e_{5}	e_{6}	e_{7}	e_8
a		1	1				1	
b	1	1			1			
c	1			1		1		
PSfrag replacement	ents		1	1				1
e					1	1	1	1

Adjacency matrix $A: V \times V$ matrix.

A(v, w) = number of v, w edges.

PSfrag replacements

	\boldsymbol{a}	b	С	d	e
\boldsymbol{a}		1		1	1
b	1		1		1
c		1		1	1
d	1		1		1
e	1	1	1	1	

Theorem 1

$$\sum_{v \in V} d_G(v) = 2|E|$$

Proof Consider the incidence matrix M. Row v has $d_G(v)$ 1's. So

1's in matrix
$$M$$
 is $\sum_{v \in V} d_G(v)$.

Column e has two 1's. So

1's in matrix M is 2|E|.

Corollary 1 In any graph, the number of vertices of odd degree, is even.

Proof Let $ODD = \{ \text{odd degree vertices} \}$ and $EVEN = V \setminus ODD$.

$$\sum_{v \in ODD} d(v) = 2|E| - \sum_{v \in EVEN} d(v)$$

is even.

So |ODD| is even.

Paths and Walks

 $W = (v_1, v_2, ..., v_k)$ is a walk in G if $(v_i, v_{i+1}) \in E$ for $1 \le i < k$.

A path is a walk in which the vertices are distinct.

 W_1 is a path, but W_2, W_3 are not.

frag replacements

$$W_1 = a,b,c,e,d$$

 $W_2 = a,b,a,c,e$
 $W_3 = g,f,c,e,f$

A walk is closed if $v_1 = v_k$. A cycle is a closed walk in which the vertices are distinct except for v_1, v_k .

b, c, e, d, b is a cycle.

b, c, a, b, d, e, c, b is not a cycle.

Connected components

We define a relation \sim on V. $a \sim b$ iff there is a walk from a to b.

 $a \sim b$ but $a \not\sim d$.

Claim: \sim is an equivalence relation.

Reflexivity $v \sim v$ as v is a (trivial) walk from v to v.

Symmetry $u \sim v$ implies $v \sim u$. $(u = u_1, u_2, \dots, u_k = v)$ is a walk from u to vimplies $(u_k, u_{k-1}, \dots, u_1)$ is a walk from v to u. Transitivity $u \sim v$ and $v \sim w$ implies $u \sim w$.

 $W_1 = (u = u_1, u_2, \dots, u_k = v)$ is a walk from uto v and $W_2 = (v_1 = v, v_2, v_3, \dots, v_\ell = w)$ is a walk from v to w imples that $(W_1, W_2) = (u_1, u_2, \dots, u_k, v_2, v_3, \dots, v_\ell)$ is a walk from u to w.

The equivalence classes of \sim are called *connected components*.

In general $V = C_1 \cup V_2 \cup \cdots \cup C_r$ where C_1, C_2, \ldots, C_r are the connected comonents.

We let $\omega(G)(=r)$ be the number of components of *G*.

G is *connected* iff $\omega(G) = 1$ i.e. there is a walk between every pair of vertices.

Thus C_1, C_2, \ldots, C_r induce connected subgraphs $G[C_1], \ldots, G[C_r]$ of G

Paths and walks

For a walk W we let $\ell(W) = \text{no. of edges in } W$.

Lemma 1 Suppose W is a walk from vertex a to vertex b and that W minimises ℓ over all walks from a to b. Then W is a path.

Proof Suppose $W = (a = a_0, a_1, \dots, a_k = b)$ and $a_i = a_j$ where $0 \le i < j \le k$. Then $W' = (a_0, a_1, \dots, a_i, a_{j+1}, \dots, a_k)$ is also a walk from a to b and $\ell(W') = \ell(W) - (j - i) < \ell(W)$ – contradiction.

Corollary 2 If $a \sim b$ then there is a path from a to b.

So G is connected $\leftrightarrow \forall a, b \in V$ there is a path from a to b.

Walks and powers of matrices

Theorem 2 $A^k(v, w) =$ number of walks of length k from v to w with k edges.

Proof By induction on k. Trivially true for k = 1. Assume true for some $k \ge 1$.

Let $N_t(v, w)$ be the number of walks from v to w with t edges.

Let $N_t(v, w; u)$ be the number of walks from v to w with t edges whose penultimate vertex is u.

$$N_{k+1}(v,w) = \sum_{u \in V} N_{k+1}(v,w;u)$$

=
$$\sum_{u \in V} N_k(v,u)A(u,w)$$

=
$$\sum_{u \in V} A^k(v,u)A(u,w)$$
 induction
=
$$A^{k+1}(v,w).$$

Breadth First Search – BFS

Fix $v \in V$. For $w \in V$ let d(v, w) = minimum number of edges in a path from v to w. For t = 0, 1, 2, ..., let

$$A_t = \{ w \in V : d(v, w) = t \}.$$

 $A_0 = \{v\} \text{ and } v \sim w \leftrightarrow d(v, w) < \infty.$

In BFS we construct A_0, A_1, A_2, \ldots , by

$$A_{t+1} = \{ w \notin A_0 \cup A_1 \cup \dots \cup A_t : \exists \text{ an edge} \\ (u, w) \text{ such that } u \in A_t \}.$$

Note : no edges
$$(a, b)$$
 between A_k and A_ℓ
for $\ell - k \ge 2$, else $w \in A_{k+1} \ne A_\ell$.
(1)

In this way we can find all vertices in the same component C as v.

By repeating for $v' \notin C$ we find another component etc.

Characterisation of bipartite graphs

Theorem 3 *G* is bipartite \leftrightarrow *G* has no cycles of odd length.

Proof \rightarrow : $G = (X \cup Y, E)$.

Suppose $C = (u_1, u_2, \ldots, u_k, u_1)$ is a cycle. Suppose $u_1 \in X$. Then $u_2 \in Y, u_3 \in X, \ldots, u_k \in Y$ implies k is even.

 \leftarrow Assume G is connected, else apply following argument to each component.

Choose $v \in V$ and construct A_0, A_1, A_2, \ldots , by BFS.

 $X = A_0 \cup A_2 \cup A_4 \cup \cdots \text{ and } Y = A_1 \cup A_3 \cup A_5 \cup \cdots$

We need only show that X and Y contain no edges and then all edges must join X and Y. Suppose X contains edge (a, b) where $a \in A_k$ and $b \in A_\ell$.

(i) If $k \neq \ell$ then $|k - \ell| \ge 2$ which contradicts (1) (ii) $k = \ell$:

There exist paths $(v = v_0, v_1, v_2, ..., v_k = a)$ and $(v = w_0, w_1, w_2, ..., w_k = b)$.

Let $j = \max\{t : v_t = w_t\}$.

 $(v_j, v_{j+1}, \ldots, v_k, w_k, w_{k-1}, \ldots, w_j)$

is an odd cycle – length 2(k - j) + 1 – contradiction.