Graph Theory

Simple Graph $G=(V, E)$.
$V=\{$ vertices $\}, E=\{$ edges $\}$.

$$
\begin{aligned}
& \mathrm{V}=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f}, \mathrm{~g}, \mathrm{~h}, \mathrm{k}\} \\
& \mathrm{E}=\{(\mathrm{a}, \mathrm{~b}),(\mathrm{a}, \mathrm{~g}),(\mathrm{a}, \mathrm{~h}),(\mathrm{a}, \mathrm{k}),(\mathrm{b}, \mathrm{c}),(\mathrm{b}, \mathrm{k}), \ldots,(\mathrm{h}, \mathrm{k})\} \quad|\mathrm{E}|=16 .
\end{aligned}
$$

Graph or Multi-Graph

We allow loops and multiple edges.
$G=(V, E . \psi)$

$V=\{a, b, c, d, e\}, E=\left\{e_{1}, e_{2}, \ldots, e_{8}\right\}$.
$\begin{array}{lllllllll}\mathrm{t} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$ $\psi(\mathrm{t}) \mathrm{ab}$ ae be bb bc cd de de

Eulerian Graphs

Can you draw the diagram below without taking your pen off the paper or going over the same line twice?

Bipartite Graphs

G is bipartite if $V=X \cup Y$ where X and Y are disjoint and every edge is of the form (x, y) where $x \in X$ and $y \in Y$.

In the diagram below, A, B, C, D are women and a, b, c, d are men. T here is an edge joining x and y iff x and y like each other. The red edges form a "perfect matching" enabling everybody to be paired with someone they like. Not all graphs will have perfect matching!

Vertex Colouring

Colours $\{\mathrm{R}, \mathrm{B}, \mathrm{G}\}$

Let $C=\{$ colours $\}$. A vertex colouring of G is a map $f: V \rightarrow C$. We say that $v \in V$ gets coloured with $f(v)$.

The colouring is proper iff $(a, b) \in E \Rightarrow f(a) \neq f(b)$.
The Chromatic Number $\chi(G)$ is the minimum number of colours in a proper colouring.

Application: $V=\{$ exams $\}$. (a, b) is an edge iff there is some student who needs to take both exams. $\chi(G)$ is the minimum number of periods required in order that no student is scheduled to take two exams at once.

Subgraphs

$G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a subgraph of $G=(V, E)$ if $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$. G^{\prime} is a spanning subgraph if $V^{\prime}=V$.

NOT SPANNING

SPANNING

If $V^{\prime} \subseteq V$ then

$$
G\left[V^{\prime}\right]=\left(V^{\prime},\left\{(u, v) \in E: u, v \in V^{\prime}\right\}\right)
$$

is the subgraph of G induced by V^{\prime}.

G[\{a,b,c,d,e\}]

Similarly, if $E_{1} \subseteq E$ then $G\left[E_{1}\right]=\left(V_{1}, E_{1}\right)$ where

$$
V_{1}=\left\{v \in V_{1}: \exists e \in E_{1} \text { such that } v \in e\right\}
$$

is also induced (by E_{1}).

$$
E_{1}=\{(\mathrm{a}, \mathrm{~b}),(\mathrm{a}, \mathrm{~d})\}
$$

$\mathrm{G}\left[E_{1}\right]$

Isomorphism for Simple Graphs

$G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are isomorphic if there exists a bijection $f: V_{1} \rightarrow V_{2}$ such that

$$
(v, w) \in E_{1} \leftrightarrow(f(v), f(w)) \in E_{2} .
$$

C

C

$$
\mathrm{f}(\mathrm{a})=\mathrm{A} \text { etc. }
$$

Isomorphism for Graphs

$G_{1}=\left(V_{1}, E_{1}, \psi_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}, \psi_{2}\right)$ are isomorphic if there exist bijections $f: V_{1} \rightarrow V_{2}$ and $g: E_{1} \rightarrow E_{2}$ such that

$$
\psi_{1}(e)=a b \leftrightarrow \psi_{2}(g(e))=f(a) f(b) .
$$

Complete Graphs

$$
K_{n}=([n],\{(i, j): 1 \leq i<j \leq n\})
$$

is the complete graph on n vertices.

$$
K_{m, n}=([m] \cup[n],\{(i, j): i \in[m], j \in[n]\})
$$

is the complete bipartite graph on $m+n$ vertices.
(The notation is a little imprecise but hopefully clear.)

$$
K_{5}
$$

$$
K_{2,3}
$$

Vertex Degrees

$$
\begin{aligned}
d_{G}(v) & =\text { degree of vertex } v \text { in } G \\
& =\text { number of edges incident with } v \\
\delta(G) & =\min _{v} d_{G}(v) \\
\Delta(G) & =\max _{v} d_{G}(v)
\end{aligned}
$$

G

$$
d_{G}(a)=2, d_{G}(g)=4 \text { etc. }
$$

$$
\delta(G)=2, \Delta(G)=4
$$

If $V=\{1,2, \ldots, n\}$ then $\mathrm{d}=d_{1}, d_{2}, \ldots, d_{n}$ where $d_{j}=d_{G}(j)$ is called the degree sequence of G.

Matrices and Graphs

Incidence matrix $M: V \times E$ matrix.

$$
M(v, e)= \begin{cases}1 & v \in e \\ 0 & v \notin e\end{cases}
$$

	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}
a		1	1				1	
b	1	1			1			
c	1			1		1		
d			1	1				1
e					1	1	1	1

Adjacency matrix A : $V \times V$ matrix.

$A(v, w)=$ number of v, w edges.

$$
\begin{array}{llllll}
& a & b & c & d & e \\
a & & 1 & & 1 & 1 \\
b & 1 & & 1 & & 1 \\
c & & 1 & & 1 & 1 \\
d & 1 & & 1 & & 1 \\
e & 1 & 1 & 1 & 1 &
\end{array}
$$

Theorem 1

$$
\sum_{v \in V} d_{G}(v)=2|E|
$$

Proof Consider the incidence matrix M. Row v has $d_{G}(v) 1$'s. So

$$
\text { \# 1's in matrix } M \text { is } \sum_{v \in V} d_{G}(v) \text {. }
$$

Column e has two 1's. So
\# 1's in matrix M is $2|E|$.

Corollary 1 In any graph, the number of vertices of odd degree, is even.

Proof Let $O D D=\{$ odd degree vertices $\}$ and $E V E N=V \backslash O D D$.

$$
\sum_{v \in O D D} d(v)=2|E|-\sum_{v \in E V E N} d(v)
$$

is even.

So $|O D D|$ is even.

Paths and Walks

$W=\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ is a walk in G if $\left(v_{i}, v_{i+1}\right) \in E$ for $1 \leq i<k$.

A path is a walk in which the vertices are distinct.
W_{1} is a path, but W_{2}, W_{3} are not.

$$
\begin{aligned}
& W_{1}=\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{e}, \mathrm{~d} \\
& W_{2}=\mathrm{a}, \mathrm{~b}, \mathrm{a}, \mathrm{c}, \mathrm{e} \\
& W_{3}=\mathrm{g}, \mathrm{f}, \mathrm{c}, \mathrm{e}, \mathrm{f}
\end{aligned}
$$

A walk is closed if $v_{1}=v_{k}$. A cycle is a closed walk in which the vertices are distinct except for v_{1}, v_{k}.
b, c, e, d, b is a cycle.
b, c, a, b, d, e, c, b is not a cycle.

Connected components

We define a relation \sim on V.
$a \sim b$ iff there is a walk from a to b.

$a \sim b$ but $a \nsim d$.

Claim: \sim is an equivalence relation.

Reflexivity $v \sim v$ as v is a (trivial) walk from v to v.

Symmetry $u \sim v$ implies $v \sim u$.
($u=u_{1}, u_{2} \ldots, u_{k}=v$) is a walk from u to v implies $\left(u_{k}, u_{k-1}, \ldots, u_{1}\right)$ is a walk from v to u.

Transitivity $u \sim v$ and $v \sim w$ implies $u \sim w$.
$W_{1}=\left(u=u_{1}, u_{2} \ldots, u_{k}=v\right)$ is a walk from u to v and $W_{2}=\left(v_{1}=v, v_{2}, v_{3}, \ldots, v_{\ell}=w\right)$ is a walk from v to w imples that $\left(W_{1}, W_{2}\right)=\left(u_{1}, u_{2} \ldots, u_{k}, v_{2}, v_{3}, \ldots, v_{\ell}\right)$ is a walk from u to w.

The equivalence classes of \sim are called connected components.

In general $V=C_{1} \cup V_{2} \cup \cdots \cup C_{r}$ where C_{1}, C_{2}, \ldots, C_{r} are the connected comonents.

We let $\omega(G)(=r)$ be the number of components of G.
G is connected iff $\omega(G)=1$ i.e. there is a walk between every pair of vertices.

Thus $C_{1}, C_{2}, \ldots, C_{r}$ induce connected subgraphs $G\left[C_{1}\right], \ldots, G\left[C_{r}\right]$ of G

Paths and walks

For a walk W we let $\ell(W)=$ no. of edges in W.

Lemma 1 Suppose W is a walk from vertex a to vertex b and that W minimises ℓ over all walks from a to b. Then W is a path.

Proof Suppose $W=\left(a=a_{0}, a_{1}, \ldots, a_{k}=b\right)$ and $a_{i}=a_{j}$ where $0 \leq i<j \leq k$. Then $W^{\prime}=$ ($a_{0}, a_{1}, \ldots, a_{i}, a_{j+1}, \ldots, a_{k}$) is also a walk from a to b and $\ell\left(W^{\prime}\right)=\ell(W)-(j-i)<\ell(W)$ - contradiction.

Corollary 2 If $a \sim b$ then there is a path from a to b.
So G is connected $\leftrightarrow \forall a, b \in V$ there is a path from a to b.

Walks and powers of matrices

Theorem $2 A^{k}(v, w)=$ number of walks of length k from v to w with k edges.

Proof By induction on k. Trivially true for $k=1$. Assume true for some $k \geq 1$.

Let $N_{t}(v, w)$ be the number of walks from v to w with t edges.
Let $N_{t}(v, w ; u)$ be the number of walks from v to w with t edges whose penultimate vertex is u.

$$
\begin{align*}
N_{k+1}(v, w) & =\sum_{u \in V} N_{k+1}(v, w ; u) \\
& =\sum_{u \in V} N_{k}(v, u) A(u, w) \\
& =\sum_{u \in V} A^{k}(v, u) A(u, w) \tag{induction}\\
& =A^{k+1}(v, w)
\end{align*}
$$

Breadth First Search - BFS

Fix $v \in V$. For $w \in V$ let
$d(v, w)=$ minimum number of edges in a path from v to w.
For $t=0,1,2, \ldots$, let

$$
A_{t}=\{w \in V: d(v, w)=t\} .
$$

In BFS we construct $A_{0}, A_{1}, A_{2}, \ldots$, by

$$
\begin{aligned}
A_{t+1}= & \left\{w \notin A_{0} \cup A_{1} \cup \cdots \cup A_{t}: \exists\right. \text { an edge } \\
& \left.(u, w) \text { such that } u \in A_{t}\right\} .
\end{aligned}
$$

Note : no edges (a, b) between A_{k} and A_{ℓ}

$$
\text { for } \ell-k \geq 2 \text {, else } w \in A_{k+1} \neq A_{\ell} \text {. }
$$

(1)

In this way we can find all vertices in the same component C as v.

By repeating for $v^{\prime} \notin C$ we find another component etc.

Characterisation of bipartite graphs

Theorem $3 G$ is bipartite $\leftrightarrow G$ has no cycles of odd length.

Proof $\quad \rightarrow: G=(X \cup Y, E)$.

Suppose $C=\left(u_{1}, u_{2}, \ldots, u_{k}, u_{1}\right)$ is a cycle. Suppose $u_{1} \in X$. Then $u_{2} \in Y, u_{3} \in X, \ldots, u_{k} \in Y$ implies k is even.
\leftarrow Assume G is connected, else apply following argument to each component.
Choose $v \in V$ and construct $A_{0}, A_{1}, A_{2}, \ldots$, by BFS. $X=A_{0} \cup A_{2} \cup A_{4} \cup \cdots$ and $Y=A_{1} \cup A_{3} \cup A_{5} \cup \cdots$

We need only show that X and Y contain no edges and then all edges must join X and Y. Suppose X contains edge (a, b) where $a \in A_{k}$ and $b \in A_{\ell}$.
(i) If $k \neq \ell$ then $|k-\ell| \geq 2$ which contradicts (1)
(ii) $k=\ell$:

There exist paths ($v=v_{0}, v_{1}, v_{2}, \ldots, v_{k}=a$) and $\left(v=w_{0}, w_{1}, w_{2}, \ldots, w_{k}=b\right)$.

Let $j=\max \left\{t: v_{t}=w_{t}\right\}$.

$$
\left(v_{j}, v_{j+1}, \ldots, v_{k}, w_{k}, w_{k-1}, \ldots, w_{j}\right)
$$

is an odd cycle - length $2(k-j)+1$ - contradiction.

