Introduction

m indistinguishable balls, each given one of n distinct colours.

f(n,m) = # possible colourings.Ex. n = m = 3 $3R \quad 2R+1B \quad 2R+1W$ $3B \quad 2B+1R \quad 2B+1W$ $3W \quad 2W+1R \quad 2W+1B$ 1R+1B+1Wf(3,3) = 10.

Alternatively, if x_i denotes the number of balls coloured i then

$x_1 + x_2 + \cdots + x_n = m$

and f(n,m) is the number of non-negative integer solutions to the above equation.

Special Cases:

• f(1,m) = 1

•
$$f(n, 1) = n$$

• f(2,m) = m + 1

General approach needed to find f(n,m)

Approach 1: Recurrence

$$f(n,m) = f(n-1,m) + f(n,m-1).$$
 (1)

• *n*th colour not used: f(n-1,m) ways.

• *n*th colour used: f(n, m - 1) ways.

Given f(1,m) = 1 and f(n,1) = n for all n,mwe can use (1) to compute f(n,m) for any m,n. More examples of recurrence relations:

Fibonacci sequence: 1,1,2,3,5,8,13,21,34,55,...

 $a_0 = 1, a_1 = 1$ boundary condition $a_n = a_{n-1} + a_{n-2}.$

 a_n is number of rabbits at the end of n periods. Each rabbit born in period n - 2 starts producing rabbits, one per period, when it is 2 periods old.

Simpler example: Suppose $a_1 = 1$ and

$$a_{n+1} = na_n$$

= $n(n-1)a_{n-1}$
:
= $n(n-1)(n-2)...2a_1$
= $n!$

4

Approach 2: Generating Functions

Consider $(1-x)^{-n} = (1 + x + x^2 + \cdots) \times (1 + x + x^2 + \cdots) \times \cdots \times (1 + x + x^2 + \cdots).$

What is the coefficient of x^m ?

Each term is obtained by taking x^{t_1} from the first bracket, taking x^{t_2} from the second bracket, ..., taking x^{t_n} from the *n*th bracket so that $t_1 + t_2 + \cdots + t_n = m$.

Thus this coefficient is f(n,m) and we write

$$f(n,m) = [x^m](1-x)^{-n}$$

= $[x^m](1+nx+\frac{n(n+1)}{2}x^2\cdots)$

5

Approach 3: Injective Mapping:

Put m X's and n-1 O's in a line:

XXOXOXOOX

Corresponds to $x_1 = 2, x_2 = 1, x_3 = 1, x_4 = 0, x_5 = 1$. In general there is a 1-1 correspondence between

$$\{ ext{colourings of balls} \}$$
 and $\{ ext{sequences of } m \ X ext{'s and } n - 1 \ O ext{'s} \}.$

Number of sequences of m X's and n - 1 O's is number of ways of choosing n - 1 positions (for the O's) from n + m - 1 positions or

$$\binom{n+m-1}{n-1}$$