Introduction

m indistinguishable balls, each given one of n distinct colours.

$$
f(n, m)=\# \text { possible colourings. }
$$

Ex. $n=m=3$

$$
\begin{array}{lll}
3 R & 2 R+1 B & 2 R+1 W \\
3 B & 2 B+1 R & 2 B+1 W \\
3 W & 2 W+1 R & 2 W+1 B
\end{array}
$$

$$
1 R+1 B+1 W
$$

$$
f(3,3)=10
$$

Alternatively, if x_{i} denotes the number of balls coloured i then

$$
x_{1}+x_{2}+\cdots x_{n}=m
$$

and $f(n, m)$ is the number of non-negative integer solutions to the above equation.

Special Cases:

- $f(1, m)=1$
- $f(n, 1)=n$
- $f(2, m)=m+1$

General approach needed to find $f(n, m)$

Approach 1: Recurrence

$$
\begin{equation*}
f(n, m)=f(n-1, m)+f(n, m-1) . \tag{1}
\end{equation*}
$$

- nth colour not used: $f(n-1, m)$ ways.
- nth colour used: $f(n, m-1)$ ways.

Given $f(1, m)=1$ and $f(n, 1)=n$ for all n, m we can use (1) to compute $f(n, m)$ for any m, n.

More examples of recurrence relations:

Fibonacci sequence: $1,1,2,3,5,8,13,21,34,55, \ldots$

$$
\begin{aligned}
& a_{0}=1, a_{1}=1 \quad \text { boundary condition } \\
& a_{n}=a_{n-1}+a_{n-2} .
\end{aligned}
$$

a_{n} is number of rabbits at the end of n periods. Each rabbit born in period $n-2$ starts producing rabbits, one per period, when it is 2 periods old.

Simpler example: Suppose $a_{1}=1$ and

$$
\begin{aligned}
a_{n+1}= & n a_{n} \\
& = \\
& \vdots \\
& =n(n-1) a_{n-1} \\
& =n(n-1)(n-2) \ldots 2 a_{1} \\
& =n!
\end{aligned}
$$

Approach 2: Generating Functions

Consider
$(1-x)^{-n}=\left(1+x+x^{2}+\cdots\right) \times$
$\left(1+x+x^{2}+\cdots\right) \times \cdots \times\left(1+x+x^{2}+\cdots\right)$.

What is the coefficient of x^{m} ?

Each term is obtained by taking $x^{t_{1}}$ from the first bracket, taking $x^{t_{2}}$ from the second bracket, \ldots, taking $x^{t_{n}}$ from the nth bracket so that $t_{1}+t_{2}+\cdots+t_{n}=m$.

Thus this coefficient is $f(n, m)$ and we write

$$
\begin{aligned}
f(n, m) & =\left[x^{m}\right](1-x)^{-n} \\
& =\left[x^{m}\right]\left(1+n x+\frac{n(n+1)}{2} x^{2} \cdots\right)
\end{aligned}
$$

Approach 3: Injective Mapping:

Put m 's and $n-1 O$'s in a line:
XXOXOXOOX

Corresponds to $x_{1}=2, x_{2}=1, x_{3}=1, x_{4}=$ $0, x_{5}=1$. In general there is a $1-1$ corespondence between

\{colourings of balls\}
 and

\{sequences of $m X$'s and $n-1 O$'s\}.

Number of sequences of $m X$'s and $n-1$'s is number of ways of choosing $n-1$ positions (for the O 's) from $n+m-1$ positions or

$$
\binom{n+m-1}{n-1}
$$

