
GENERATING FUNCTIONS AND RECURRENCE
RELATIONS

Generating Functions



Recurrence Relations

Suppose a0,a1,a2, . . . ,an, . . . ,is an infinite sequence.
A recurrence recurrence relation is a set of equations

an = fn(an−1,an−2, . . . ,an−k ). (1)

The whole sequence is determined by (6) and the values of
a0,a1, . . . ,ak−1.
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Linear Recurrence

Fibonacci Sequence

an = an−1 + an−2 n ≥ 2.

a0 = a1 = 1.
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bn = |Bn| = |{x ∈ {a,b, c}n : aa does not occur in x}|.

b1 = 3 : a b c

b2 = 8 : ab ac ba bb bc ca cb cc

bn = 2bn−1 + 2bn−2 n ≥ 2.
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bn = 2bn−1 + 2bn−2 n ≥ 2.

Let
Bn = B(b)

n ∪ B(c)
n ∪ B(a)

n

where B(α)
n = {x ∈ Bn : x1 = α} for α = a,b, c.

Now |B(b)
n | = |B(c)

n | = |Bn−1|. The map f : B(b)
n → Bn−1,

f (bx2x3 . . . xn) = x2x3 . . . xn is a bijection.

B(a)
n = {x ∈ Bn : x1 = a and x2 = b or c}. The map

g : B(a)
n → B(b)

n−1 ∪ B(c)
n−1,

g(ax2x3 . . . xn) = x2x3 . . . xn is a bijection.

Hence, |B(a)
n | = 2|Bn−2|.
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Towers of Hanoi

Peg 1 Peg 2 Peg 3

Hn is the minimum number of moves needed to shift

n rings from Peg 1 to Peg 2. One is not allowed to 

place a larger ring on top of a smaller ring.
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xxx

H n-1 moves

1 move

H n-1 moves
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We see that H1 = 1 and Hn = 2Hn−1 + 1 for n ≥ 2.

So,
Hn

2n −
Hn−1

2n−1 =
1
2n .

Summing these equations give

Hn

2n −
H1

2
=

1
2n +

1
2n−1 + · · ·+ 1

4
=

1
2
− 1

2n .

So
Hn = 2n − 1.
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A has n dollars. Everyday A buys one of a Bun (1 dollar), an
Ice-Cream (2 dollars) or a Pastry (2 dollars). How many ways
are there (sequences) for A to spend his money?
Ex. BBPIIPBI represents “Day 1, buy Bun. Day 2, buy Bun etc.”.

un = number of ways
= un,B + un,I + un,P

where un,B is the number of ways where A buys a Bun on day
1 etc.
un,B = un−1, un,I = un,P = un−2.
So

un = un−1 + 2un−2,

and
u0 = u1 = 1.
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If a0,a1, . . . ,an is a sequence of real numbers then its
(ordinary) generating function a(x) is given by

a(x) = a0 + a1x + a2x2 + · · · anxn + · · ·

and we write

an = [xn]a(x).

For more on this subject see Generatingfunctionology by the
late Herbert S. Wilf. The book is available from
https://www.math.upenn.edu// wilf/DownldGF.html
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an = 1

a(x) =
1

1− x
= 1 + x + x2 + · · ·+ xn + · · ·

an = n + 1.

a(x) =
1

(1− x)2 = 1 + 2x + 3x2 + · · ·+ (n + 1)xn + · · ·

an = n.

a(x) =
x

(1− x)2 = x + 2x2 + 3x3 + · · ·+ nxn + · · ·
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Generalised binomial theorem:

an =
(
α
n

)
a(x) = (1 + x)α =

∞∑
n=0

(
α

n

)
xn.

where (
α

n

)
=
α(α− 1)(α− 2) · · · (α− n + 1)

n!
.

an =
(m+n−1

n

)
a(x) =

1
(1− x)m =

∞∑
n=0

(
−m
n

)
(−x)n =

∞∑
n=0

(
m + n − 1

n

)
xn.
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General view.

Given a recurrence relation for the sequence (an), we

(a) Deduce from it, an equation satisfied by the generating
function a(x) =

∑
n anxn.

(b) Solve this equation to get an explicit expression for the
generating function.

(c) Extract the coefficient an of xn from a(x), by expanding a(x)
as a power series.
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Solution of linear recurrences

an − 6an−1 + 9an−2 = 0 n ≥ 2.

a0 = 1,a1 = 9.

∞∑
n=2

(an − 6an−1 + 9an−2)xn = 0. (2)
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∞∑
n=2

anxn = a(x)− a0 − a1x

= a(x)− 1− 9x .
∞∑

n=2

6an−1xn = 6x
∞∑

n=2

an−1xn−1

= 6x(a(x)− a0)

= 6x(a(x)− 1).
∞∑

n=2

9an−2xn = 9x2
∞∑

n=2

an−2xn−2

= 9x2a(x).
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a(x)− 1− 9x − 6x(a(x)− 1) + 9x2a(x) = 0
or

a(x)(1− 6x + 9x2)− (1 + 3x) = 0.

a(x) =
1 + 3x

1− 6x + 9x2 =
1 + 3x

(1− 3x)2

=
∞∑

n=0

(n + 1)3nxn + 3x
∞∑

n=0

(n + 1)3nxn

=
∞∑

n=0

(n + 1)3nxn +
∞∑

n=0

n3nxn

=
∞∑

n=0

(2n + 1)3nxn.

an = (2n + 1)3n.
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Fibonacci sequence:

∞∑
n=2

(an − an−1 − an−2)xn = 0.

∞∑
n=2

anxn −
∞∑

n=2

an−1xn −
∞∑

n=2

an−2xn = 0.

(a(x)− a0 − a1x)− (x(a(x)− a0))− x2a(x) = 0.

a(x) =
1

1− x − x2 .
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a(x) = − 1
(ξ1 − x)(ξ2 − x)

=
1

ξ1 − ξ2

(
1

ξ1 − x
− 1
ξ2 − x

)
=

1
ξ1 − ξ2

(
ξ−1

1
1− x/ξ1

−
ξ−1

2
1− x/ξ2

)

where

ξ1 = −
√

5 + 1
2

and ξ2 =

√
5− 1
2

are the 2 roots of
x2 + x − 1 = 0.
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Therefore,

a(x) =
ξ−1

1
ξ1 − ξ2

∞∑
n=0

ξ−n
1 xn −

ξ−1
2

ξ1 − ξ2

∞∑
n=0

ξ−n
2 xn

=
∞∑

n=0

ξ−n−1
1 − ξ−n−1

2
ξ1 − ξ2

xn

and so

an =
ξ−n−1

1 − ξ−n−1
2

ξ1 − ξ2

=
1√
5

(√5 + 1
2

)n+1

−

(
1−
√

5
2

)n+1
 .
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Inhomogeneous problem

an − 3an−1 = n2 n ≥ 1.

a0 = 1.
∞∑

n=1

(an − 3an−1)xn =
∞∑

n=1

n2xn

∞∑
n=1

n2xn =
∞∑

n=2

n(n − 1)xn +
∞∑

n=1

nxn

=
2x2

(1− x)3 +
x

(1− x)2

=
x + x2

(1− x)3

∞∑
n=1

(an − 3an−1)xn = a(x)− 1− 3xa(x)

= a(x)(1− 3x)− 1.
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a(x) =
x + x2

(1− x)3(1− 3x)
+

1
1− 3x

=
A

1− x
+

B
(1− x)2 +

C
(1− x)3 +

D + 1
1− 3x

where

x + x2 ∼= A(1− x)2(1− 3x) + B(1− x)(1− 3x)

+ C(1− 3x) + D(1− x)3.

Then
A = −1/2, B = 0, C = −1, D = 3/2.
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So

a(x) =
−1/2
1− x

− 1
(1− x)3 +

5/2
1− 3x

= −1
2

∞∑
n=0

xn −
∞∑

n=0

(
n + 2

2

)
xn +

5
2

∞∑
n=0

3nxn

So

an = −1
2
−
(

n + 2
2

)
+

5
2

3n

= −3
2
− 3n

2
− n2

2
+

5
2

3n.
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General case of linear recurrence

an + c1an−1 + · · ·+ ckan−k = un, n ≥ k .

u0,u1, . . . ,uk−1 are given.∑
(an + c1an−1 + · · ·+ ckan−k − un) xn = 0

It follows that for some polynomial r(x),

a(x) =
u(x) + r(x)

q(x)

where

q(x) = 1 + c1x + c2x2 + · · ·+ ckxk =
k∏

i=1

(1− αix)

and α1, α2, . . . , αk are the roots of p(x) = 0 where
p(x) = xkq(1/x) = xk + c1xk−1 + · · ·+ c0.
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Products of generating functions

a(x) =
∞∑

n=0

anxn, b(x)) =
∞∑

n=0

bnxn.

a(x)b(x) = (a0 + a1x + a2x2 + · · · )×
(b0 + b1x + b2x2 + · · · )

= a0b0 + (a0b1 + a1b0)x +

(a0b2 + a1b1 + a2b0)x2 + · · ·

=
∞∑

n=0

cnxn

where

cn =
n∑

k=0

akbn−k .
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Derangements

n! =
n∑

k=0

(
n
k

)
dn−k .

Explanation:
(n

k

)
dn−k is the number of permutations with

exactly k cycles of length 1. Choose k elements (
(n

k

)
ways) for

which π(i) = i and then choose a derangement of the
remaining n − k elements.
So

1 =
n∑

k=0

1
k !

dn−k

(n − k)!

∞∑
n=0

xn =
∞∑

n=0

(
n∑

k=0

1
k !

dn−k

(n − k)!

)
xn. (3)
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Let

d(x) =
∞∑

m=0

dm

m!
xm.

From (3) we have

1
1− x

= exd(x)

d(x) =
e−x

1− x

=
∞∑

n=0

n∑
k=0

(
(−1)k

k !

)
xn.

So
dn

n!
=

n∑
k=0

(−1)k

k !
.
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Triangulation of n-gon

Let

an = number of triangulations of Pn+1

=
n∑

k=0

akan−k n ≥ 2 (4)

a0 = 0, a1 = a2 = 1.

+1

1
n+1

k
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Explanation of (4):
akan−k counts the number of triangulations in which edge
1,n + 1 is contained in triangle 1, k + 1,n + 1.
There are ak ways of triangulating 1,2, . . . , k + 1,1 and for
each such there are an−k ways of triangulating
k + 1, k + 2, . . . ,n + 1, k + 1.
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x +
∞∑

n=2

anxn = x +
∞∑

n=2

(
n∑

k=0

akan−k

)
xn.

But,

x +
∞∑

n=2

anxn = a(x)

since a0 = 0,a1 = 1.

∞∑
n=2

(
n∑

k=0

ak an−k

)
xn =

∞∑
n=0

(
n∑

k=0

ak an−k

)
xn

= a(x)2.

Generating Functions



So
a(x) = x + a(x)2

and hence

a(x) =
1 +
√

1− 4x
2

or
1−
√

1− 4x
2

.

But a(0) = 0 and so

a(x) =
1−
√

1− 4x
2

=
1
2
− 1

2

(
1 +

∞∑
n=1

(−1)n−1

n22n−1

(
2n − 2
n − 1

)
(−4x)n

)

=
∞∑

n=1

1
n

(
2n − 2
n − 1

)
xn.

So

an =
1
n

(
2n − 2
n − 1

)
.
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1−
√

1− 4x
2

= −1
2

∞∑
n=1

(1
2
n

)
(−4x)n

= −1
2

∞∑
n=1

(1
2

) (1
2 − 1

)
· · ·
(1

2 − n + 1
)

n!
(−4x)n

=
∞∑

n=1

1 · 3 · 5 · · · (2n − 3)

2n+1n!
(4x)n

=
∞∑

n=1

(2n − 2)!

n!(n − 1)!
xn

=
∞∑

n=1

1
n

(
2n − 2
n − 1

)
xn.
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Exponential Generating Functions

Given a sequence an,n ≥ 0, its exponential generating function
(e.g.f.) ae(x) is given by

ae(x) =
∞∑

n=0

an

n!
xn

an = 1,n ≥ 0 implies ae(x) = ex .

an = n!,n ≥ 0 implies ae(x) =
1

1− x
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Products of Exponential Generating Functions

Let ae(x),be(x) be the e.g.f.’s respectively for (an), (bn)
respectively. Then

ce(x) = ae(x)be(x) =
∞∑

n=0

(
n∑

k=0

ak

k !

bn−k

(n − k)!

)
xn

=
n∑

k=0

cn

n!
xn

where

cn =

(
n
k

)
akbn−k .
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Interpretation

Suppose that we have a collection of labelled objects and each
object has a “size” k , where k is a non-negative integer. Each
object is labelled by a set of size k .
Suppose that the number of labelled objects of size k is ak .

Examples:
(a): Each object is a directed path with k vertices and its
vertices are labelled by 1,2, . . . , k in some order. Thus ak = k !.
(b): Each object is a directed cycle with k vertices and its
vertices are labelled by 1,2, . . . , k in some order. Thus
ak = (k − 1)!.
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Now take example (a) and let ae(x) = 1
1−x be the e.g.f. of this

family. Now consider

ce(x) = ae(x)2 =
∞∑

n=0

(n + 1)xn with cn = (n + 1)× n!.

cn is the number of ways of choosing an object of weight k and
another object of weight n − k and a partition of [n] into two
sets A1,A2 of size k and labelling the first object with A1 and
the second with A2.

Here (n + 1)× n! represents taking a permutation and choosing
0 ≤ k ≤ n and putting the first k labels onto the first path and
the second n − k labels onto the second path.
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We will now use this machinery to count the number sn of
permutations that have an even number of cycles all of which
have odd lengths:
Cycles of a permutation
Let π : D → D be a permutation of the finite set D. Consider the
digraph Γπ = (D,A) where A = {(i , π(i)) : i ∈ D}. Γπ is a
collection of vertex disjoint cycles. Each x ∈ D being on a
unique cycle. Here a cycle can consist of a loop i.e. when
π(x) = x .
Example: D = [10].

i 1 2 3 4 5 6 7 8 9 10
π(i) 6 2 7 10 3 8 9 1 5 4

The cycles are (1,6,8), (2), (3,7,9,5), (4,10).
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In general consider the sequence i , π(i), π2(i), . . . ,.

Since D is finite, there exists a first pair k < ` such that
πk (i) = π`(i). Now we must have k = 0, since otherwise putting
x = πk−1(i) 6= y = π`−1(i) we see that π(x) = π(y),
contradicting the fact that π is a permutation.

So i lies on the cycle C = (i , π(i), π2(i), . . . , πk−1(i), i).

If j is not a vertex of C then π(j) is not on C and so we can
repeat the argument to show that the rest of D is partitioned
into cycles.
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Now consider

ae(x) =
∞∑

m=0

(2m)!

(2m + 1)!
x2m+1

Here

an =

{
0 n is even
(n − 1)! n is odd

Thus each object is an odd length cycle C, labelled by [|C|].

Note that

ae(x) =

(
x +

x2

2
+

x3

3
+

x4

4
+ · · ·

)
−
(

x2

2
+

x4

4
+ · · ·

)
= log

(
1

1− x

)
− 1

2
log

(
1

1− x2

)
= log

√
1 + x
1− x
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Now consider ae(x)`. The coefficient of xn in this series is cn
n!

where cn is the number of ways of choosing an ordered
sequence of ` cycles of lengths a1,a2, . . . ,a` where
a1 + a2 + · · ·+ a` = n. And then a partition of [n] into
A1,A2, . . . ,A` where |Ai | = ai for i = 1,2, . . . , `. And then
labelling the i th cycle with Ai for i = 1,2, . . . , `.

We looked carefully at the case ` = 2 and this needs a simple
inductive step.

It follows that the coefficient of xn in ae(x)`
`! is cn

n! where cn is the
number of ways of choosing a set (unordered sequence) of `
cycles of lengths a1,a2, . . . ,a` . . .

What we therefore want is the coefficient of xn in
1 + ae(x)2

2! + a(x)4

4! + · · · .
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Now

∞∑
k=0

ae(x)2k

k !
=

eae(x) + e−ae(x)

2
=

1
2

(√
1 + x
1− x

+

√
1− x
1 + x

)

=
1√

1− x2

Thus

sn = n![xn]
1√

1− x2
=

(
n

n/2

)
n!

2n
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Exponential Families

P is a set referred to a set of pictures.
A card C is a pair S,p, where p ∈ P and S is a set of
labels. The weight of C is n = |S|.
If S = [n] then C is a standard card.
A hand H is a set of cards whose label sets form a partition
of [n] for some n ≥ 1. The weight of H is n.
C′ = (S′,p) is a re-labelling of the card C = (S,p) if
|S′| = |S|.
A deck D is a finite set of standard cards of common
weight n, all of whose pictures are distinct.
An exponential family F is a collection Dn,n ≥ 1, where
the weight of Dn is n.
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Given F let h(n, k) denote the number of hands of weight n
consisting of k cards, such that each card is a re-labelling of
some card in some deck of F .
(The same card can be used for re-labelling more than once.)
Next let the hand enumerator H(x , y) be defined by

H(x , y) =
∑
n≥1
k≥0

h(n, k)
xn

n!
yk , (h(n,0) = 1n=0).

Let dn = |Dn| and D(x) =
∑∞

n=1
dn
n! x

n.

Theorem

H(x , y) = eyD(x). (5)
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Example 1: Let P = {directed cycles of all lengths}.

A card is a directed cycle with labelled vertices.

A hand is a set of directed cycles of total length n whose vertex
labels partition [n] i.e. it corresponds to a permutation of [n].

dn = (n − 1)! and so

D(x) =
∞∑

n=1

xn

n
= log

(
1

1− x

)
and

H(x , y) = exp

{
y log

(
1

1− x

)}
=

1
(1− x)y .
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Let
[n

k

]
denote the number of permutations of [n] with exactly k

cycles. Then

n∑
k=1

[n
k

]
yk =

[
xn

n!

]
1

(1− x)y

= n!

(
y + n − 1

n

)
= y(y + 1) · · · (y + n − 1).

The values
[n

k

]
are referred to as the Stirling numbers of the

first kind.
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Example 2: Let P = {[n],n ≥ 1}.
A card is a non-empty set of positive integers.
A hand of k cards is a partition of [n] into k non-empty subsets.
dn = 1 for n ≥ 1 and so

D(x) =
∞∑

n=1

xn

n!
= ex − 1

and
H(x , y) = ey(ex−1).

So, if
{n

k

}
is the number of partitions of [n] into k parts then

{n
k

}
=

[
xn

n!

]
(ex − 1)k

k !
.

The values
{n

k

}
are referred to as the Stirling numbers of the

second kind.
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Proof of (5): Let F ′,F ′′ be two exponential families whose
picture sets are disjoint. We merge them to form F = F ′ ⊕F ′′
by taking all d ′n cards from the deck D′n and adding them to the
deck D′′n to make a deck of d ′n + d ′′n cards.

We claim that

H(x , y) = H′(x , y)H′′(x , y). (6)

Indeed, a hand of F consists of k ′ cards of total weight n′

together with k ′′ = k − k ′ cards of total weight n′′ = n − n′. The
cards of F ′ will be labelled from an n′-subset S of [n]. Thus,

h(n, k) =
∑
n′,k ′

(
n
n′

)
h′(n′, k ′)h′′(n − n′, k − k ′).
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But,

H′(x , y)H′′(x , y) =

∑
n′,k ′

h(n′, k ′)
xn′

n′!
yk ′

∑
n′′,k ′′

h(n′′, k ′′)
xn′′

n′′!
yk ′′


=
∑
n,k

(
n!

n′(n − n′)!
h(n′, k ′)h(n′′, k ′′)

)
xn

n!
yk .

This implies (6).

Generating Functions



Now fix positive weights r ,d and consider an exponential family
Fr ,d that has d cards in deck Dr and no other non-empty decks.
We claim that the hand enumerator of Fr ,d is

Hr ,d (x , y) = exp

{
ydx r

r !

}
. (7)

We prove this by induction on d .
Base Case d = 1: A hand consists of k ≥ 0 copies of the
unique standard card that exists. If n = kr then there are(

n!

r !r ! · · · r !

)
=

n!

(r !)k

choices for the labels of the cards. Then

h(kr , k) =
1
k !

n!

(r !)k

where we have divided by k ! because the cards in a hand are
unordered. If r does not divide n then h(n, k) = 0.
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Thus,

Hr ,1(x , y) =
∞∑

k=0

1
k !

n!

(r !)k
xn

n!
yk

= exp

{
yx r

r !

}
Inductive Step: Fr ,d = Fr ,1 ⊕Fr ,d−1. So,

Hr ,d (x , y) = Hr ,1(x , y)Hr ,d−1(x , y)

= exp

{
yx r

r !

}
exp

{
y(d − 1)x r

r !

}
= exp

{
ydx r

r !

}
,

completing the induction.
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Now consider a general deck D as the union of disjoint decks
Dr , r ≥ 1. then,

H(x , y) =
∏
r≥1

Hr (x , y) =
∏
r≥1

exp

{
ydx r

r !

}
= eyD(x).
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