GENERATING FUNCTIONS AND RECURRENCE RELATIONS

Recurrence Relations

Suppose $a_{0}, a_{1}, a_{2}, \ldots, a_{n}, \ldots$, is an infinite sequence. A recurrence recurrence relation is a set of equations

$$
\begin{equation*}
a_{n}=f_{n}\left(a_{n-1}, a_{n-2}, \ldots, a_{n-k}\right) \tag{1}
\end{equation*}
$$

The whole sequence is determined by (6) and the values of $a_{0}, a_{1}, \ldots, a_{k-1}$.

Linear Recurrence

Fibonacci Sequence

$$
a_{n}=a_{n-1}+a_{n-2} \quad n \geq 2
$$

$$
a_{0}=a_{1}=1
$$

$$
b_{n}=\left|B_{n}\right|=\mid\left\{x \in\{a, b, c\}^{n}: \text { aa does not occur in } x\right\} \mid \text {. }
$$

$b_{1}=3: a b c$
$b_{2}=8: a b a c b a b b b c c a c b c c$

$$
b_{n}=2 b_{n-1}+2 b_{n-2} \quad n \geq 2 .
$$

$$
b_{n}=2 b_{n-1}+2 b_{n-2} \quad n \geq 2
$$

Let

$$
B_{n}=B_{n}^{(b)} \cup B_{n}^{(c)} \cup B_{n}^{(a)}
$$

where $B_{n}^{(\alpha)}=\left\{x \in B_{n}: x_{1}=\alpha\right\}$ for $\alpha=a, b, c$.

Now $\left|B_{n}^{(b)}\right|=\left|B_{n}^{(c)}\right|=\left|B_{n-1}\right|$. The map $f: B_{n}^{(b)} \rightarrow B_{n-1}$,

$$
f\left(b x_{2} x_{3} \ldots x_{n}\right)=x_{2} x_{3} \ldots x_{n} \text { is a bijection. }
$$

$B_{n}^{(a)}=\left\{x \in B_{n}: x_{1}=a\right.$ and $x_{2}=b$ or $\left.c\right\}$. The map $g: B_{n}^{(a)} \rightarrow B_{n-1}^{(b)} \cup B_{n-1}^{(c)}$,

$$
g\left(a x_{2} x_{3} \ldots x_{n}\right)=x_{2} x_{3} \ldots x_{n} \text { is a bijection. }
$$

Hence, $\left|B_{n}^{(a)}\right|=2\left|B_{n-2}\right|$.

Towers of Hanoi

H_{n} is the minimum number of moves needed to shift n rings from Peg 1 to Peg 2. One is not allowed to place a larger ring on top of a smaller ring.

XXX

$\mathrm{H}_{\mathrm{n}-1}$ moves

$\mathrm{H}_{\mathrm{n}-1}$ moves

Generating Functions

We see that $H_{1}=1$ and $H_{n}=2 H_{n-1}+1$ for $n \geq 2$.

So,

$$
\frac{H_{n}}{2^{n}}-\frac{H_{n-1}}{2^{n-1}}=\frac{1}{2^{n}} .
$$

Summing these equations give

$$
\frac{H_{n}}{2^{n}}-\frac{H_{1}}{2}=\frac{1}{2^{n}}+\frac{1}{2^{n-1}}+\cdots+\frac{1}{4}=\frac{1}{2}-\frac{1}{2^{n}}
$$

So

$$
H_{n}=2^{n}-1
$$

A has n dollars. Everyday A buys one of a Bun (1 dollar), an Ice-Cream (2 dollars) or a Pastry (2 dollars). How many ways are there (sequences) for A to spend his money?
Ex. BBPIIPBI represents "Day 1, buy Bun. Day 2, buy Bun etc.".

$$
\begin{aligned}
u_{n} & =\text { number of ways } \\
& =u_{n, B}+u_{n, l}+u_{n, P}
\end{aligned}
$$

where $u_{n, B}$ is the number of ways where A buys a Bun on day 1 etc.
$u_{n, B}=u_{n-1}, u_{n, l}=u_{n, P}=u_{n-2}$.
So

$$
u_{n}=u_{n-1}+2 u_{n-2}
$$

and

$$
u_{0}=u_{1}=1
$$

If $a_{0}, a_{1}, \ldots, a_{n}$ is a sequence of real numbers then its (ordinary) generating function $a(x)$ is given by

$$
a(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots a_{n} x^{n}+\cdots
$$

and we write

$$
a_{n}=\left[x^{n}\right] a(x)
$$

For more on this subject see Generatingfunctionology by the late Herbert S. Wilf. The book is available from https://www.math.upenn.edu// wilf/DownldGF.html
$a_{n}=1$

$$
a(x)=\frac{1}{1-x}=1+x+x^{2}+\cdots+x^{n}+\cdots
$$

$$
a_{n}=n+1
$$

$$
a(x)=\frac{1}{(1-x)^{2}}=1+2 x+3 x^{2}+\cdots+(n+1) x^{n}+\cdots
$$

$a_{n}=n$.

$$
a(x)=\frac{x}{(1-x)^{2}}=x+2 x^{2}+3 x^{3}+\cdots+n x^{n}+\cdots
$$

Generalised binomial theorem:

$$
a_{n}=\binom{\alpha}{n} \quad a(x)=(1+x)^{\alpha}=\sum_{n=0}^{\infty}\binom{\alpha}{n} x^{n} .
$$

where

$$
\binom{\alpha}{n}=\frac{\alpha(\alpha-1)(\alpha-2) \cdots(\alpha-n+1)}{n!} .
$$

$a_{n}=\binom{m+n-1}{n}$
$a(x)=\frac{1}{(1-x)^{m}}=\sum_{n=0}^{\infty}\binom{-m}{n}(-x)^{n}=\sum_{n=0}^{\infty}\binom{m+n-1}{n} x^{n}$.

General view.

Given a recurrence relation for the sequence $\left(a_{n}\right)$, we
(a) Deduce from it, an equation satisfied by the generating function $a(x)=\sum_{n} a_{n} x^{n}$.
(b) Solve this equation to get an explicit expression for the generating function.
(c) Extract the coefficient a_{n} of x^{n} from $a(x)$, by expanding $a(x)$ as a power series.

Solution of linear recurrences

$$
a_{n}-6 a_{n-1}+9 a_{n-2}=0 \quad n \geq 2
$$

$a_{0}=1, a_{1}=9$.

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(a_{n}-6 a_{n-1}+9 a_{n-2}\right) x^{n}=0 \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
\sum_{n=2}^{\infty} a_{n} x^{n} & =a(x)-a_{0}-a_{1} x \\
& =a(x)-1-9 x . \\
\sum_{n=2}^{\infty} 6 a_{n-1} x^{n} & =6 x \sum_{n=2}^{\infty} a_{n-1} x^{n-1} \\
& =6 x\left(a(x)-a_{0}\right) \\
& =6 x(a(x)-1) . \\
\sum_{n=2}^{\infty} 9 a_{n-2} x^{n} & =9 x^{2} \sum_{n=2}^{\infty} a_{n-2} x^{n-2} \\
& =9 x^{2} a(x) .
\end{aligned}
$$

$$
a(x)-1-9 x-6 x(a(x)-1)+9 x^{2} a(x)=0
$$

or

$$
\begin{aligned}
& a(x)\left(1-6 x+9 x^{2}\right)-(1+3 x)=0 \\
a(x)= & \frac{1+3 x}{1-6 x+9 x^{2}}=\frac{1+3 x}{(1-3 x)^{2}} \\
= & \sum_{n=0}^{\infty}(n+1) 3^{n} x^{n}+3 x \sum_{n=0}^{\infty}(n+1) 3^{n} x^{n} \\
= & \sum_{n=0}^{\infty}(n+1) 3^{n} x^{n}+\sum_{n=0}^{\infty} n 3^{n} x^{n} \\
= & \sum_{n=0}^{\infty}(2 n+1) 3^{n} x^{n} \\
& a_{n}=(2 n+1) 3^{n} .
\end{aligned}
$$

Fibonacci sequence:

$$
\begin{gathered}
\sum_{n=2}^{\infty}\left(a_{n}-a_{n-1}-a_{n-2}\right) x^{n}=0 . \\
\sum_{n=2}^{\infty} a_{n} x^{n}-\sum_{n=2}^{\infty} a_{n-1} x^{n}-\sum_{n=2}^{\infty} a_{n-2} x^{n}=0 . \\
\left(a(x)-a_{0}-a_{1} x\right)-\left(x\left(a(x)-a_{0}\right)\right)-x^{2} a(x)=0 . \\
a(x)=\frac{1}{1-x-x^{2}} .
\end{gathered}
$$

$$
\begin{aligned}
a(x) & =-\frac{1}{\left(\xi_{1}-x\right)\left(\xi_{2}-x\right)} \\
& =\frac{1}{\xi_{1}-\xi_{2}}\left(\frac{1}{\xi_{1}-x}-\frac{1}{\xi_{2}-x}\right) \\
& =\frac{1}{\xi_{1}-\xi_{2}}\left(\frac{\xi_{1}^{-1}}{1-x / \xi_{1}}-\frac{\xi_{2}^{-1}}{1-x / \xi_{2}}\right)
\end{aligned}
$$

where

$$
\xi_{1}=-\frac{\sqrt{5}+1}{2} \text { and } \xi_{2}=\frac{\sqrt{5}-1}{2}
$$

are the 2 roots of

$$
x^{2}+x-1=0
$$

Therefore,

$$
\begin{aligned}
a(x) & =\frac{\xi_{1}^{-1}}{\xi_{1}-\xi_{2}} \sum_{n=0}^{\infty} \xi_{1}^{-n} x^{n}-\frac{\xi_{2}^{-1}}{\xi_{1}-\xi_{2}} \sum_{n=0}^{\infty} \xi_{2}^{-n} x^{n} \\
& =\sum_{n=0}^{\infty} \frac{\xi_{1}^{-n-1}-\xi_{2}^{-n-1}}{\xi_{1}-\xi_{2}} x^{n}
\end{aligned}
$$

and so

$$
\begin{aligned}
a_{n} & =\frac{\xi_{1}^{-n-1}-\xi_{2}^{-n-1}}{\xi_{1}-\xi_{2}} \\
& =\frac{1}{\sqrt{5}}\left(\left(\frac{\sqrt{5}+1}{2}\right)^{n+1}-\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}\right) .
\end{aligned}
$$

Inhomogeneous problem

$$
a_{n}-3 a_{n-1}=n^{2} \quad n \geq 1
$$

$a_{0}=1$.

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left(a_{n}-3 a_{n-1}\right) x^{n} & =\sum_{n=1}^{\infty} n^{2} x^{n} \\
\sum_{n=1}^{\infty} n^{2} x^{n} & =\sum_{n=2}^{\infty} n(n-1) x^{n}+\sum_{n=1}^{\infty} n x^{n} \\
& =\frac{2 x^{2}}{(1-x)^{3}}+\frac{x}{(1-x)^{2}} \\
& =\frac{x+x^{2}}{(1-x)^{3}} \\
& =a(x)-1-3 x a(x) \\
\sum_{n=1}^{\infty}\left(a_{n}-3 a_{n-1}\right) x^{n} & =a(x)(1-3 x)-1
\end{aligned}
$$

$$
\begin{aligned}
a(x) & =\frac{x+x^{2}}{(1-x)^{3}(1-3 x)}+\frac{1}{1-3 x} \\
& =\frac{A}{1-x}+\frac{B}{(1-x)^{2}}+\frac{C}{(1-x)^{3}}+\frac{D+1}{1-3 x}
\end{aligned}
$$

where

$$
\begin{aligned}
& x+x^{2} \cong A(1-x)^{2}(1-3 x)+B(1-x)(1-3 x) \\
&+C(1-3 x)+D(1-x)^{3} .
\end{aligned}
$$

Then

$$
A=-1 / 2, B=0, C=-1, D=3 / 2 .
$$

So

$$
\begin{aligned}
a(x) & =\frac{-1 / 2}{1-x}-\frac{1}{(1-x)^{3}}+\frac{5 / 2}{1-3 x} \\
& =-\frac{1}{2} \sum_{n=0}^{\infty} x^{n}-\sum_{n=0}^{\infty}\binom{n+2}{2} x^{n}+\frac{5}{2} \sum_{n=0}^{\infty} 3^{n} x^{n}
\end{aligned}
$$

So

$$
\begin{aligned}
a_{n} & =-\frac{1}{2}-\binom{n+2}{2}+\frac{5}{2} 3^{n} \\
& =-\frac{3}{2}-\frac{3 n}{2}-\frac{n^{2}}{2}+\frac{5}{2} 3^{n}
\end{aligned}
$$

General case of linear recurrence

$$
a_{n}+c_{1} a_{n-1}+\cdots+c_{k} a_{n-k}=u_{n}, \quad n \geq k
$$

$u_{0}, u_{1}, \ldots, u_{k-1}$ are given.

$$
\sum\left(a_{n}+c_{1} a_{n-1}+\cdots+c_{k} a_{n-k}-u_{n}\right) x^{n}=0
$$

It follows that for some polynomial $r(x)$,

$$
a(x)=\frac{u(x)+r(x)}{q(x)}
$$

where

$$
q(x)=1+c_{1} x+c_{2} x^{2}+\cdots+c_{k} x^{k}=\prod_{i=1}^{k}\left(1-\alpha_{i} x\right)
$$

and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are the roots of $p(x)=0$ where $p(x)=x^{k} q(1 / x)=x^{k}+c_{1} x^{k-1}+\cdots+c_{0}$.

Products of generating functions

$$
\begin{gathered}
\left.a(x)=\sum_{n=0}^{\infty} a_{n} x^{n}, b(x)\right)=\sum_{n=0}^{\infty} b_{n} x^{n} . \\
a(x) b(x)= \\
=\quad\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots\right) \times \\
\quad\left(b_{0}+b_{1} x+b_{2} x^{2}+\cdots\right) \\
= \\
=a_{n=0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0} x^{n} \quad\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right) x^{2}+\cdots\right.
\end{gathered}
$$

where

$$
c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k} .
$$

Derangements

$$
n!=\sum_{k=0}^{n}\binom{n}{k} d_{n-k} .
$$

Explanation: $\binom{n}{k} d_{n-k}$ is the number of permutations with exactly k cycles of length 1 . Choose k elements $\binom{n}{k}$ ways) for which $\pi(i)=i$ and then choose a derangement of the remaining $n-k$ elements.
So

$$
\begin{align*}
1 & =\sum_{k=0}^{n} \frac{1}{k!} \frac{d_{n-k}}{(n-k)!} \\
\sum_{n=0}^{\infty} x^{n} & =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} \frac{1}{k!} \frac{d_{n-k}}{(n-k)!}\right) x^{n} . \tag{3}
\end{align*}
$$

Let

$$
d(x)=\sum_{m=0}^{\infty} \frac{d_{m}}{m!} x^{m}
$$

From (3) we have

$$
\begin{aligned}
\frac{1}{1-x} & =e^{x} d(x) \\
d(x) & =\frac{e^{-x}}{1-x} \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{n}\left(\frac{(-1)^{k}}{k!}\right) x^{n}
\end{aligned}
$$

So

$$
\frac{d_{n}}{n!}=\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}
$$

Triangulation of n-gon

Let

$$
\begin{align*}
a_{n} & =\text { number of triangulations of } P_{n+1} \\
& =\sum_{k=0}^{n} a_{k} a_{n-k} \quad n \geq 2 \tag{4}
\end{align*}
$$

$a_{0}=0, a_{1}=a_{2}=1$.

Explanation of (4):

$a_{k} a_{n-k}$ counts the number of triangulations in which edge

 $1, n+1$ is contained in triangle $1, k+1, n+1$.There are a_{k} ways of triangulating $1,2, \ldots, k+1,1$ and for each such there are a_{n-k} ways of triangulating $k+1, k+2, \ldots, n+1, k+1$.

$$
x+\sum_{n=2}^{\infty} a_{n} x^{n}=x+\sum_{n=2}^{\infty}\left(\sum_{k=0}^{n} a_{k} a_{n-k}\right) x^{n}
$$

But,

$$
x+\sum_{n=2}^{\infty} a_{n} x^{n}=a(x)
$$

since $a_{0}=0, a_{1}=1$.

$$
\begin{aligned}
\sum_{n=2}^{\infty}\left(\sum_{k=0}^{n} a_{k} a_{n-k}\right) x^{n} & =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} a_{k} a_{n-k}\right) x^{n} \\
& =a(x)^{2}
\end{aligned}
$$

So

$$
a(x)=x+a(x)^{2}
$$

and hence

$$
a(x)=\frac{1+\sqrt{1-4 x}}{2} \text { or } \frac{1-\sqrt{1-4 x}}{2} .
$$

But $a(0)=0$ and so

$$
\begin{aligned}
a(x) & =\frac{1-\sqrt{1-4 x}}{2} \\
& =\frac{1}{2}-\frac{1}{2}\left(1+\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n 2^{2 n-1}}\binom{2 n-2}{n-1}(-4 x)^{n}\right) \\
& =\sum_{n=1}^{\infty} \frac{1}{n}\binom{2 n-2}{n-1} x^{n}
\end{aligned}
$$

So

$$
a_{n}=\frac{1}{n}\binom{2 n-2}{n-1} .
$$

$$
\begin{aligned}
\frac{1-\sqrt{1-4 x}}{2} & =-\frac{1}{2} \sum_{n=1}^{\infty}\binom{\frac{1}{2}}{n}(-4 x)^{n} \\
& =-\frac{1}{2} \sum_{n=1}^{\infty} \frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right) \cdots\left(\frac{1}{2}-n+1\right)}{n!}(-4 x)^{n} \\
& =\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-3)}{2^{n+1} n!}(4 x)^{n} \\
& =\sum_{n=1}^{\infty} \frac{(2 n-2)!}{n!(n-1)!} x^{n} \\
& =\sum_{n=1}^{\infty} \frac{1}{n}\binom{2 n-2}{n-1} x^{n} .
\end{aligned}
$$

Exponential Generating Functions

Given a sequence $a_{n}, n \geq 0$, its exponential generating function (e.g.f.) $a_{e}(x)$ is given by

$$
a_{e}(x)=\sum_{n=0}^{\infty} \frac{a_{n}}{n!} x^{n}
$$

$$
\begin{gathered}
a_{n}=1, n \geq 0 \text { implies } a_{e}(x)=e^{x} . \\
a_{n}=n!, n \geq 0 \text { implies } a_{e}(x)=\frac{1}{1-x}
\end{gathered}
$$

Products of Exponential Generating Functions

Let $a_{e}(x), b_{e}(x)$ be the e.g.f.'s respectively for $\left(a_{n}\right),\left(b_{n}\right)$ respectively. Then

$$
\begin{aligned}
c_{e}(x)=a_{e}(x) b_{e}(x) & =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} \frac{a_{k}}{k!} \frac{b_{n-k}}{(n-k)!}\right) x^{n} \\
& =\sum_{k=0}^{n} \frac{c_{n}}{n!} x^{n}
\end{aligned}
$$

where

$$
c_{n}=\binom{n}{k} a_{k} b_{n-k}
$$

Interpretation

Suppose that we have a collection of labelled objects and each object has a "size" k, where k is a non-negative integer. Each object is labelled by a set of size k.
Suppose that the number of labelled objects of size k is a_{k}.

Examples:

(a): Each object is a directed path with k vertices and its vertices are labelled by $1,2, \ldots, k$ in some order. Thus $a_{k}=k!$.
(b): Each object is a directed cycle with k vertices and its vertices are labelled by $1,2, \ldots, k$ in some order. Thus $a_{k}=(k-1)!$.

Now take example (a) and let $a_{e}(x)=\frac{1}{1-x}$ be the e.g.f. of this family. Now consider

$$
c_{e}(x)=a_{e}(x)^{2}=\sum_{n=0}^{\infty}(n+1) x^{n} \text { with } c_{n}=(n+1) \times n!.
$$

c_{n} is the number of ways of choosing an object of weight k and another object of weight $n-k$ and a partition of $[n]$ into two sets A_{1}, A_{2} of size k and labelling the first object with A_{1} and the second with A_{2}.

Here $(n+1) \times n$! represents taking a permutation and choosing $0 \leq k \leq n$ and putting the first k labels onto the first path and the second $n-k$ labels onto the second path.

We will now use this machinery to count the number s_{n} of permutations that have an even number of cycles all of which have odd lengths:
Cycles of a permutation
Let $\pi: D \rightarrow D$ be a permutation of the finite set D. Consider the digraph $\Gamma_{\pi}=(D, A)$ where $A=\{(i, \pi(i)): i \in D\} . \Gamma_{\pi}$ is a collection of vertex disjoint cycles. Each $x \in D$ being on a unique cycle. Here a cycle can consist of a loop i.e. when
$\pi(x)=x$.
Example: $D=[10]$.

i	1	2	3	4	5	6	7	8	9	10
$\pi(i)$	6	2	7	10	3	8	9	1	5	4

The cycles are (1,6, 8), (2), (3, 7, 9, 5), (4, 10).

In general consider the sequence $i, \pi(i), \pi^{2}(i), \ldots$, .
Since D is finite, there exists a first pair $k<\ell$ such that $\pi^{k}(i)=\pi^{\ell}(i)$. Now we must have $k=0$, since otherwise putting
$x=\pi^{k-1}(i) \neq y=\pi^{\ell-1}(i)$ we see that $\pi(x)=\pi(y)$, contradicting the fact that π is a permutation.

So i lies on the cycle $C=\left(i, \pi(i), \pi^{2}(i), \ldots, \pi^{k-1}(i), i\right)$.
If j is not a vertex of C then $\pi(j)$ is not on C and so we can repeat the argument to show that the rest of D is partitioned into cycles.

Now consider

$$
a_{e}(x)=\sum_{m=0}^{\infty} \frac{(2 m)!}{(2 m+1)!} x^{2 m+1}
$$

Here

$$
a_{n}= \begin{cases}0 & n \text { is even } \\ (n-1)! & n \text { is odd }\end{cases}
$$

Thus each object is an odd length cycle C, labelled by $[|C|]$.

Note that

$$
\begin{aligned}
a_{e}(x) & =\left(x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4}+\cdots\right)-\left(\frac{x^{2}}{2}+\frac{x^{4}}{4}+\cdots\right) \\
& =\log \left(\frac{1}{1-x}\right)-\frac{1}{2} \log \left(\frac{1}{1-x^{2}}\right) \\
& =\log \sqrt{\frac{1+x}{1-x}}
\end{aligned}
$$

Now consider $a_{e}(x)^{\ell}$. The coefficient of x^{n} in this series is $\frac{c_{n}}{n!}$ where c_{n} is the number of ways of choosing an ordered sequence of ℓ cycles of lengths $a_{1}, a_{2}, \ldots, a_{\ell}$ where $a_{1}+a_{2}+\cdots+a_{\ell}=n$. And then a partition of $[n]$ into $A_{1}, A_{2}, \ldots, A_{\ell}$ where $\left|A_{i}\right|=a_{i}$ for $i=1,2, \ldots, \ell$. And then labelling the i th cycle with A_{i} for $i=1,2, \ldots, \ell$.

We looked carefully at the case $\ell=2$ and this needs a simple inductive step.

It follows that the coefficient of x^{n} in $\frac{a_{e}(x)^{\ell}}{\ell!}$ is $\frac{c_{n}}{n!}$ where c_{n} is the number of ways of choosing a set (unordered sequence) of ℓ cycles of lengths $a_{1}, a_{2}, \ldots, a_{\ell} \ldots$

What we therefore want is the coefficient of x^{n} in $1+\frac{a_{e}(x)^{2}}{2!}+\frac{a(x)^{4}}{4!}+\cdots$.

Now

$$
\begin{array}{r}
\sum_{k=0}^{\infty} \frac{a_{e}(x)^{2 k}}{k!}=\frac{e^{a_{e}(x)}+e^{-a_{e}(x)}}{2}=\frac{1}{2}\left(\sqrt{\frac{1+x}{1-x}}+\sqrt{\frac{1-x}{1+x}}\right) \\
\\
=\frac{1}{\sqrt{1-x^{2}}}
\end{array}
$$

Thus

$$
s_{n}=n!\left[x^{n}\right] \frac{1}{\sqrt{1-x^{2}}}=\binom{n}{n / 2} \frac{n!}{2^{n}}
$$

Exponential Families

- P is a set referred to a set of pictures.
- A card C is a pair S, p, where $p \in P$ and S is a set of labels. The weight of C is $n=|S|$. If $S=[n]$ then C is a standard card.
- A hand H is a set of cards whose label sets form a partition of $[n]$ for some $n \geq 1$. The weight of H is n.
- $C^{\prime}=\left(S^{\prime}, p\right)$ is a re-labelling of the card $C=(S, p)$ if $\left|S^{\prime}\right|=|S|$.
- A deck \mathcal{D} is a finite set of standard cards of common weight n, all of whose pictures are distinct.
- An exponential family \mathcal{F} is a collection $\mathcal{D}_{n}, n \geq 1$, where the weight of \mathcal{D}_{n} is n.

Given \mathcal{F} let $h(n, k)$ denote the number of hands of weight n consisting of k cards, such that each card is a re-labelling of some card in some deck of \mathcal{F}.
(The same card can be used for re-labelling more than once.)
Next let the hand enumerator $\mathcal{H}(x, y)$ be defined by

$$
\mathcal{H}(x, y)=\sum_{\substack{n \geq 1 \\ k \geq 0}} h(n, k) \frac{x^{n}}{n!} y^{k}, \quad\left(h(n, 0)=\mathbf{1}_{n=0}\right) .
$$

Let $d_{n}=\left|\mathcal{D}_{n}\right|$ and $\mathcal{D}(x)=\sum_{n=1}^{\infty} \frac{d_{n}}{n!} x^{n}$.
Theorem

$$
\begin{equation*}
\mathcal{H}(x, y)=e^{y \mathcal{D}(x)} . \tag{5}
\end{equation*}
$$

Example 1: Let $P=\{$ directed cycles of all lengths $\}$.

A card is a directed cycle with labelled vertices.

A hand is a set of directed cycles of total length n whose vertex labels partition $[n]$ i.e. it corresponds to a permutation of $[n]$.
$d_{n}=(n-1)!$ and so

$$
\mathcal{D}(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n}=\log \left(\frac{1}{1-x}\right)
$$

and

$$
\mathcal{H}(x, y)=\exp \left\{y \log \left(\frac{1}{1-x}\right)\right\}=\frac{1}{(1-x)^{y}}
$$

Let $\left[\begin{array}{l}n \\ k\end{array}\right]$ denote the number of permutations of $[n]$ with exactly k cycles. Then

$$
\begin{aligned}
\sum_{k=1}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right] y^{k} & =\left[\frac{x^{n}}{n!}\right] \frac{1}{(1-x)^{y}} \\
& =n!\binom{y+n-1}{n} \\
& =y(y+1) \cdots(y+n-1)
\end{aligned}
$$

The values $\left[\begin{array}{l}n \\ k\end{array}\right]$ are referred to as the Stirling numbers of the first kind.

Example 2: Let $P=\{[n], n \geq 1\}$.
A card is a non-empty set of positive integers.
A hand of k cards is a partition of $[n]$ into k non-empty subsets.
$d_{n}=1$ for $n \geq 1$ and so

$$
\mathcal{D}(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n!}=e^{x}-1
$$

and

$$
\mathcal{H}(x, y)=e^{y\left(e^{x}-1\right)}
$$

So, if $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is the number of partitions of $[n]$ into k parts then

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\left[\frac{x^{n}}{n!}\right] \frac{\left(e^{x}-1\right)^{k}}{k!}
$$

The values $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ are referred to as the Stirling numbers of the second kind.

Proof of (5): Let $\mathcal{F}^{\prime}, \mathcal{F}^{\prime \prime}$ be two exponential families whose picture sets are disjoint. We merge them to form $\mathcal{F}=\mathcal{F}^{\prime} \oplus \mathcal{F}^{\prime \prime}$ by taking all d_{n}^{\prime} cards from the deck \mathcal{D}_{n}^{\prime} and adding them to the deck $\mathcal{D}_{n}^{\prime \prime}$ to make a deck of $d_{n}^{\prime \prime}+d_{n}^{\prime \prime}$ cards.

We claim that

$$
\begin{equation*}
\mathcal{H}(x, y)=\mathcal{H}^{\prime}(x, y) \mathcal{H}^{\prime \prime}(x, y) . \tag{6}
\end{equation*}
$$

Indeed, a hand of \mathcal{F} consists of k^{\prime} cards of total weight n^{\prime} together with $k^{\prime \prime}=k-k^{\prime}$ cards of total weight $n^{\prime \prime}=n-n^{\prime}$. The cards of \mathcal{F}^{\prime} will be labelled from an n^{\prime}-subset S of $[n]$. Thus,

$$
h(n, k)=\sum_{n^{\prime}, k^{\prime}}\binom{n}{n^{\prime}} h^{\prime}\left(n^{\prime}, k^{\prime}\right) h^{\prime \prime}\left(n-n^{\prime}, k-k^{\prime}\right) .
$$

But,

$$
\begin{aligned}
\mathcal{H}^{\prime}(x, y) \mathcal{H}^{\prime \prime}(x, y) & =\left(\sum_{n^{\prime}, k^{\prime}} h\left(n^{\prime}, k^{\prime}\right) \frac{x^{n^{\prime}}}{n^{\prime}!} y^{k^{\prime}}\right)\left(\sum_{n^{\prime \prime}, k^{\prime \prime}} h\left(n^{\prime \prime}, k^{\prime \prime}\right) \frac{x^{n^{\prime \prime}}}{n^{\prime \prime!}} y^{k^{\prime \prime}}\right) \\
& =\sum_{n, k}\left(\frac{n!}{n^{\prime}\left(n-n^{\prime}\right)!} h\left(n^{\prime}, k^{\prime}\right) h\left(n^{\prime \prime}, k^{\prime \prime}\right)\right) \frac{x^{n}}{n!} y^{k} .
\end{aligned}
$$

This implies (6).

Now fix positive weights r, d and consider an exponential family $\mathcal{F}_{r, d}$ that has d cards in deck \mathcal{D}_{r} and no other non-empty decks. We claim that the hand enumerator of $\mathcal{F}_{r, d}$ is

$$
\begin{equation*}
\mathcal{H}_{r, d}(x, y)=\exp \left\{\frac{y d x^{r}}{r!}\right\} . \tag{7}
\end{equation*}
$$

We prove this by induction on d.
Base Case $d=1$: A hand consists of $k \geq 0$ copies of the unique standard card that exists. If $n=k r$ then there are

$$
\binom{n!}{r!r!\cdots r!}=\frac{n!}{(r!)^{k}}
$$

choices for the labels of the cards. Then

$$
h(k r, k)=\frac{1}{k!} \frac{n!}{(r!)^{k}}
$$

where we have divided by k ! because the cards in a hand are unordered. If r does not divide n then $h(n, k)_{\Delta}=0$.

Thus,

$$
\begin{aligned}
\mathcal{H}_{r, 1}(x, y) & =\sum_{k=0}^{\infty} \frac{1}{k!} \frac{n!}{(r!)^{k}} \frac{x^{n}}{n!} y^{k} \\
& =\exp \left\{\frac{y x^{r}}{r!}\right\}
\end{aligned}
$$

Inductive Step: $\mathcal{F}_{r, d}=\mathcal{F}_{r, 1} \oplus \mathcal{F}_{r, d-1}$. So,

$$
\begin{aligned}
\mathcal{H}_{r, d}(x, y) & =\mathcal{H}_{r, 1}(x, y) \mathcal{H}_{r, d-1}(x, y) \\
& =\exp \left\{\frac{y x^{r}}{r!}\right\} \exp \left\{\frac{y(d-1) x^{r}}{r!}\right\} \\
& =\exp \left\{\frac{y d x^{r}}{r!}\right\}
\end{aligned}
$$

completing the induction.

Now consider a general deck \mathcal{D} as the union of disjoint decks $\mathcal{D}_{r}, r \geq 1$. then,

$$
\mathcal{H}(x, y)=\prod_{r \geq 1} \mathcal{H}_{r}(x, y)=\prod_{r \geq 1} \exp \left\{\frac{y d x^{r}}{r!}\right\}=e^{y \mathcal{D}(x)}
$$

