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The WWW is an example of a large real-world network.

It grows unpredictably (at least not by formal design)

Other examples:

• Internet

• Metabolic Networks

• Social networks

• Neural Networks

• Peer to Peer Networks
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We assume that they arise via some random process.

We model them as random graphs

Classical Erdős and Rényi Model: Gn,m

Vertex set {1, 2, . . . , n}, N =
(n
2

)

Each of the
(N
m

)

graphs with m edges is equally likely.
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Problem

Suppose that m = cn, c constant.
For small k, the number nk of vertices of degree k satisfies

nk ∼ cke−c

k!
n whp

In many real world cases

nk ∼ A

kα
n power law

for some constants A, α e.g. Faloutsos,Faloutsos,Faloutsos
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Fixed (expected) degree sequence models.

Choose a degree sequence d1, d2, . . . , dn and then choose a
graph G uniformly from graphs with this degree sequence.

Bender and Canfield
McKay,Wormald
Bollobás
Molloy and Reed
Let Θ =

∑

i di(di − 2).

Θ < 0 implies all components of G are small whp

Θ > 0 implies G contains a giant component (size Ω(n)) whp
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Digraphs with a fixed degree sequence: Cooper and Frieze

Consider a random digraph D with n vertices and `i,j

vertices of in-degree i and out-degree j.

θn =
∑

i,j i`i,j is the number of arcs in D.
d =

∑

i,j ij`i,j/(θn) is the expected out-degree of a randomly
chosen arc. Then whp

θ < 0 implies all strong components of G are small

θ > 0 implies G has a giant strong component S (size Ω(n))
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More on d > 1.
Let L+ be the set of vertices with a giant “fan-out” and L−

be the set of vertices with a giant “fan-in”. Then whp

S = L+ ∩ L−

temp.gif (GIF Image, 522x394 pixels) file:///home/alan/texfiles/webgraph/talk/temp.gif

1 of 1 09/05/2004 09:38 PM
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Eigenvalues – Mihail and Papadimitriou
Chung,Lu and Vu.

Faloutsos,Faloutsos,Faloutsos observed that the largest
eigenvalues of the adjacency matrix followed a power law.

Expected degree model
Fix a1, a2, . . . , an. Let A = a1 + · · · + an. Then put an edge
between i and j with probability aiaj/A.

Let λ1 ≥ λ2 ≥ · · · be the largest eigenvalues of the
adjacency matrix of the graph produced.
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Suppose that ai = a1

iα , 1/2 < α < 1 for 1 ≤ i ≤ nβ, β

sufficiently small.

(1 − o(1))
√

ai ≤ λi ≤ (1 + o(1))
√

ai whp

for i ≤ nβ.

PSfrag replacements

Star of degree d:
largest eigenvalue d1/2
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Dynamic models: Preferential Attachment Model (PAM).
Barabasi and Albert

We build the graph dynamically:
At time t:

Add a new vertex vt.

Connect vt to m randomly chosen vertices u1, . . . , um in
{v1, . . . , vt−1}.

Pr(ui = u) =
degt−1(u)

2m(t − 1)

The rich get richer in the WWW world.
Preferential attachment also used in models by Yule 1925
and Simon 1955.
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Let dk(t) denote the expected number of vertices of degree
k at time t.

dk(t+1) = dk(t)+m
(k − 1)dk−1(t)

2mt
−m

kdk(t)

2mt
+1k=m+error terms.

Assume that dk(t) ∼ dkt. Then

dk

(

k

2
+ 1

)

∼ dk−1
k − 1

2
+ 1k=m

dk ∼ 2m(m + 1)

(k + 2)(k + 1)k
t for k ≥ m.

Bollobás,Riordan,Spencer,Tusnady
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Diameter: Bollobás,Riordan.

Diameter ∼ log t

log log t

Expected degree of vertex vs at time t is ∼ m
√

t/s.
If i < j,

Pr(Edge (vi, vj) exists) ≤ ω ·
√

j/i

2mj
≤ ω√

ij

where ω → ∞ slowly.

Let k = (1 − ε) log t/ log log t

Pr(∃Path length k, t → t − 1) ≤
∑

t0=t,...,tk=t−1

k
∏

i=1

ω√
ti−1ti

≤ ωk 1

t(t − 1)

(

k
∑

i=1

1

i

)k

= o(1).

Upper bound is harder

. – p.12



Diameter: Bollobás,Riordan.

Diameter ∼ log t

log log t

Expected degree of vertex vs at time t is ∼ m
√

t/s.

If i < j,

Pr(Edge (vi, vj) exists) ≤ ω ·
√

j/i

2mj
≤ ω√

ij

where ω → ∞ slowly.

Let k = (1 − ε) log t/ log log t

Pr(∃Path length k, t → t − 1) ≤
∑

t0=t,...,tk=t−1

k
∏

i=1

ω√
ti−1ti

≤ ωk 1

t(t − 1)

(

k
∑

i=1

1

i

)k

= o(1).

Upper bound is harder

. – p.12



Diameter: Bollobás,Riordan.

Diameter ∼ log t

log log t

Expected degree of vertex vs at time t is ∼ m
√

t/s.
If i < j,

Pr(Edge (vi, vj) exists) ≤ ω ·
√

j/i

2mj
≤ ω√

ij

where ω → ∞ slowly.

Let k = (1 − ε) log t/ log log t

Pr(∃Path length k, t → t − 1) ≤
∑

t0=t,...,tk=t−1

k
∏

i=1

ω√
ti−1ti

≤ ωk 1

t(t − 1)

(

k
∑

i=1

1

i

)k

= o(1).

Upper bound is harder

. – p.12



Diameter: Bollobás,Riordan.

Diameter ∼ log t

log log t

Expected degree of vertex vs at time t is ∼ m
√

t/s.
If i < j,

Pr(Edge (vi, vj) exists) ≤ ω ·
√

j/i

2mj
≤ ω√

ij

where ω → ∞ slowly.

Let k = (1 − ε) log t/ log log t

Pr(∃Path length k, t → t − 1) ≤
∑

t0=t,...,tk=t−1

k
∏

i=1

ω√
ti−1ti

≤ ωk 1

t(t − 1)

(

k
∑

i=1

1

i

)k

= o(1).

Upper bound is harder

. – p.12



Diameter: Bollobás,Riordan.

Diameter ∼ log t

log log t

Expected degree of vertex vs at time t is ∼ m
√

t/s.
If i < j,

Pr(Edge (vi, vj) exists) ≤ ω ·
√

j/i

2mj
≤ ω√

ij

where ω → ∞ slowly.

Let k = (1 − ε) log t/ log log t

Pr(∃Path length k, t → t − 1) ≤
∑

t0=t,...,tk=t−1

k
∏

i=1

ω√
ti−1ti

≤ ωk 1

t(t − 1)

(

k
∑

i=1

1

i

)k

= o(1).

Upper bound is harder

. – p.12



Copying Model

Communities: A large dense bipartite sub-graph of the
WWW indicates a “community”. Experiments indicate a
larger number of communities than you would get say from
the simple model PAM.

The next model does give many. It is due to
Kumar,Raghavan,Sivakumar,Upfal

The edges of these bipartite cliques are oriented the same
way.

. – p.13
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As in PAM, at each stage we add a new vertex vt and give it
m edges.
Its construction rests on a parameter 0 < α, 1.

A vertex u is chosen uniformly at random from {v1, . . . , vt−1}
and then for i = 1, . . . , m we

1. With probability α we create edge (vt, x) where x is
chosen uniformly at random.

2. With probability 1 − α we create edge (vt, y) where y is
the ith choice of u.

. – p.14
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Whp the degree sequence has a power law with exponent
2−α
1−α .

Whp the number of copies of Kr,r, r ≤ m is Ω(te−r)

This contrasts with PAM which has O(1) in expectation.
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Deletions: Bollobás and Riordan
Robustness: Suppose we build our PAM graph and then
delete the first ct vertices. What remains has a giant (Ω(t)
size) component iff

c <
m − 1

m + 1
.

If vertices are deleted randomly with probability p < 1
constant. Then there is a giant component for any p.

What about deletions during the growing phase?

. – p.16
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Random deletion in a scale free random graph

We consider a model where edges are added using
preferential attachment and vertices/edges are deleted
randomly. Flaxman, Frieze, Vera

Same model considered by Chung and Lu.
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Gt = (Vt, Et) denotes the graph at time t.

Initialisation: Start with G1 with vertices x1 and no edges.
Step t ≥ 2

A Probability 1 − α − α0: delete a randomly chosen
vertex.

B Probability α0 we delete m randomly chosen edges.

C Probability α1: add new vertex xt and m random
neighbours w1, . . . , wm.

Pr(wi = w) =
d(w, t − 1)

2et−1
. (-3)

D Probability α − α1: Add m random edges with
endpoints chosen independently as in (-3).

. – p.18
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D Probability α − α1: Add m random edges with
endpoints chosen independently as in (-3).
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We skip over details of what to do
if there are no vertices to delete or
what to do with multiple edges etc.
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Dk(t) is the number of vertices of degree k in Gt and
Dk(t) = E(Dk(t)).

β =
2(α − α0)

3α − 1 − α1 − α0

Theorem
Under natural restrictions on the parameters, there exists a
constant C = C(m, α, α0, α1) such that for k ≥ 1,

∣

∣

∣

∣

Dk(t)

t
− Ck−1−β

∣

∣

∣

∣

= O
(

t−ε
)

+ O
(

k−2−β
)

.
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Suppose that vt, et denote the number of vertices and
edges in Gt.

Dk(t + 1) = Dk(t)+

(2α − α1)mE

(

−kDk(t)

2et
+

(k − 1)Dk−1(t)

2et

∣

∣

∣

∣

et > 0

)

Pr(et > 0)

+ (1 − α)(k + 1)E

(

Dk+1(t) − Dk(t)

vt

∣

∣

∣

∣

et > 0

)

Pr(et > 0)

+ α11k=m + error terms.
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Let

ν = α + α0 + α1 − 1 > 0 and η =
m(α − α0)ν

1 + α1 − α − α0
.

We show

|vt − νt| ≤ t1/2 log t, qs.

Pr(|et − ηt| ≥ t1−ε) = O(t−ε).

We used Chebychef to handle et. Chung and Lu modify
Azuma’s inequality, avoids constraint on edge deletion prob.
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As a consequence we can write

Dk(t + 1) = Dk(t) + (A2(k + 1) + B2)
Dk+1(t)

t
+

(A1k+B1+1)
Dk(t)

t
+(A0(k−1)+B0)

Dk−1(t)

t
+α11k=m+O(t−ε).

A2 =
1 − α − α0

ν
+

mα0

η
B2 = 0

A1 = −(2α − α1 + 2α0)m

2η
− 1 − α − α0

ν
B1 = −1 − 1 − α − α0

ν

A0 =
(2α − α1)m

2η
B0 = 0

. – p.23



Assume Dk(t) ∼ dkt. d−1 = 0 and for k ≥ −1,

(A2(k + 2) + B2)dk+2 + (A1(k + 1) + B1)dk+1 + (A0k + B0)dk

= −α11k=m−1. (-2)

We first tackle homogeneous equation: for k ≥ 1

(A2(k+2)+B2)ek+2 +(A1(k+1)+B1)ek+1 +(A0k+B0)ek = 0,

We use Laplace’s method and make the substitution

ek =

∫ t=b

t=a
tk−1v(t)dt

for a, b, v(t) to be determined.
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Integrating by parts

kek = [tkv(t)]ba −
∫ t=b

t=a
tkv′(t)dt

Let

φ1(t) = A2t
2 + A1t + A0, φ0(t) = B2t

2 + B1t + B0

Substituting gives

[tkφ1(t)v(t)]ba −
∫ b

a
tkφ1(t)v

′(t)dt +

∫ b

a
tk−1φ0(t)v(t)dt = 0.
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So, v(t) will give a solution to the homogeneous equation if

[tkv(t)φ1(t)]
b
a = 0 and

v′(t)

v(t)
=

φ0(t)

tφ1(t)
.

The differential equation is homogeneous and can be
integrated to give,

v(t) = C0(t − 1)β (t − A)−β

where A > 1 and C0 6= 0.
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We take a = 0, b = 1 and satisfy [tkv(t)φ1(t)]
b
a = 0.

Substituting we get the following solution to the
homogeneous equation: valid for k ≥ 1,

u1(k) =

∫ 1

0
tk−1

(

1 − t

1 − γt

)β

dt

where
γ < 1.
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We take a = 0, b = 1 and satisfy [tkv(t)φ1(t)]
b
a = 0.

Substituting we get the following solution to the
homogeneous equation: valid for k ≥ 1,

u1(k) =

∫ 1

0
tk−1

(

1 − t

1 − γt

)β

dt

where
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u1(k) =

∫

1

0

tk−1(1− t)β 1

(1− γt)β
dt

=

∫

1

0

tk−1(1− t)β
∞
∑

j=0

(β + j − 1

j

)

(γt)jdt

=

∞
∑

j=0

(β + j − 1

j

)

γj

∫

1

0

tk+j−1(1− t)βdt

=

∞
∑

j=0

(β + j − 1

j

)

γj Γ(k + j)Γ(β + 1)

Γ(k + j + β + 1)

=

∞
∑

j=0

γj Γ(β + j)

Γ(j + 1)Γ(β)

Γ(k + j)Γ(β + 1)

Γ(k + j + β + 1)

assuming k is large, using Stirling for Γ(k + j), Γ(k + j + β + 1), we get

= (1 + O(k−1))β

∞
∑

j=0

γj Γ(j + β)

Γ(j + 1)
(k + β + j)−β−1

= (1 + O(k−1))C1k−1−β
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We need to consider the non-homogeneous equation.

d−1 = 0 and for k ≥ −1,

(A2(k + 2) + B2)dk+2 + (A1(k + 1) + B1)dk+1 + (A0k + B0)dk

= −α11k=m−1. (-2)

We show there is a solution such that

dk = Cu1(k)

for k ≥ m.
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Adversarial deletion in a scale free random graph:
Flaxman, Frieze, Vera

What if an adversary is allowed to delete εn vertices as the
the graph grows.

We show that if m is sufficiently large then the final graph
has a giant component (size Θ(n)) whp.

Bollobás and Riordan allow the adversary to delete vertices
at the end only.

On the other hand, we use their idea of coupling with Gn,p.

. – p.30
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A geometric scale free random graph:
Flaxman, Frieze, Vera.

Vn = {X1, X2, . . . , Xn} are chosen uniformly from the
surface of the unit sphere in R

3

Step t: Add m random edges from

Xt to Y1, Y2, . . . , Ym ∈ {X1, X2, . . . , Xt−1}

where
|Yi − Xt| ≤ r = nε−1/2

and the Yi’s are chosen via preferential attachment.
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Theorem

If m is a sufficiently large constant then there exists a
constant c > 0 such that

dk(n) ∼ cn

k(k + 1)(k + 2)

where dk(n) is the number of vertices of degree k at
time n.

Whp Vn can be partitioned into T, T̄ such that
|T |, |T̄ | ∼ n/2, and there are at most 4

√
πrnm edges

between T and T̄ .

If m ≥ K log n and K is sufficiently large then whp Gn is
connected.
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Heuristically Optimized Trade-offs
Carlson and Doyle; Fabrikant, Koutsoupias and
Papadimitriou

X1, X2, . . . , Xn are chosen uniformly at random in the unit
square [0, 1]2.
After X1, . . . , Xi have beeen generated there is a tree Ti on
them.

Then at step i + 1, Xi+1 is joined by an edge to the vertex
Xj which minimises

α|Xi+1 − Xj | + hj

where hj is the number of edges from Xj to X1 in Ti.
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Theorem
If α < 1/

√
2 then Tn is a star.

If α = o(n1/2/(log n)2) then whp Tn has n − o(n) leaves.

If α/(n1/2 log n) → ∞ then A1e
−c1k ≤ ρk ≤ A2e

−c−2k where ρk

is the proportion of vertices of degree k

If α ≥ 4 and α = o(n1/2) then E(ρ≥k) ≥ c(k/n)β.

Some of these results are from
Berger,Bollobás,Borgs,Chayes,Riordan:
Also Berger,Borgs,Chayes,D’Souza,Kleinberg
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Crawling on web graphs
Cooper and Frieze

Sequence of random graphs G(t) : G(t) = G(t − 1) plus
vertex t and m random edges {t, vi}, i = 1, 2, . . . , m.

Model 1: The vertices v1, v2, . . . , vm are chosen uniformly with
replacement from [t − 1].

Model 2 The vertices v1, v2, . . . , vm are chosen proportional to
their degree after step t − 1.

Spider S sits at vertex Xt−1 of G(t − 1). After the addition of
vertex t, and before step t + 1, spider makes a random walk
of length `

. – p.35
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ν`,m(t) is the expected number of vertices not visited by S at
the end of step t.

Theorem
In either model, if m is sufficiently large then,

ν`,m(t) ∼ E
t
∑

s=1

t
∏

τ=s

(

1 − d(s, τ)

2mτ

)`

where d(s, τ) denotes the degree of s in G(τ).

Error in expression of order m−1 omitted.

. – p.36



ν`,m(t) is the expected number of vertices not visited by S at
the end of step t.

Theorem
In either model, if m is sufficiently large then,

ν`,m(t) ∼ E
t
∑

s=1

t
∏

τ=s

(

1 − d(s, τ)

2mτ

)`

where d(s, τ) denotes the degree of s in G(τ).

Error in expression of order m−1 omitted.

. – p.36



Let

η` = lim
m→∞

lim
t→∞

Eν`,m(t)

t
.

(a) For Model 1,

η` =

√

2

`
e(`+2)2/(4`)

∫ ∞

(`+2)/
√

2`
e−y2/2 dy

where Ψ(x) is the standardized Normal cumulate for the
interval (−∞, x].
In particular, η1 = 0.57 · · · and η` ∼ 2/` as ` → ∞.

(b) For Model 2

η` = e`2`2

∫ ∞

`
y−3e−y dy.

In particular, η1 = 0.59 · · · . and η` ∼ 2/` as ` → ∞.
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Further work

Try other models of a random web-graph.

Try non-uniform random walks.

Prove concentration of the number of vertices visited.

The proof technique is robust enough to handle other
models and walks, once one has established rapid mixing.
The calculations for various non-uniform walks can get
tedious.
It should be possible to estimate the variance of the number
of unvisited vertices and apply Chebychef. Stronger
concentration seems more challenging.
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Cover time of preferential attachment graph

G = (V, E) is a connected graph. (|V | = n, |E| = m). For
v ∈ V let Cv be the expected time taken for a simple random
walk W on G starting at v, to visit every vertex of G.

The cover time CG of G is defined as CG = maxv∈V Cv.

(1 − o(1))n log n ≤ CG ≤ (1 + o(1)) 4
27n3: FeigeCooper and Frieze If G is preferential attachment graph

then whp

CG ∼ 2m

m − 1
n log n
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Effect of search engines: Chakrabarti, Frieze, Vera

The model has parameters p, N

At time step t we add vertex vt and m randomly chosen
edges to {u1, . . . , um}. For each i, ui is chosen preferentially
from

With probability p we choose ui from N vertices of
largest degree..

With probability q = 1 − p we choose ui from all vertices.

Supposed to model surfer who obtains links from first N
given by search engine.
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Theorem

(a) For i ≤ N there exists constant αi > 0 such that

E [degn(xi)] = αin + O
(

n1/2
)

(b) There is an absolute constant A1 such that for every

k ≥ m, dk(n) = (1 + o(1))
A1n

k1+2/(1−p)
.

where dk(n) is the expected number of vertices of degree k
outside the N largest vertices.
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