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Subgraph counts

A copy of a graph G in another graph F is a (weak)
subgraph G′ of F isomorphic to G.

Given graph G with v = vG vertices and e = eG

edges, let
XG(n, p) = XG = X

be the number of copies of G in G(n, p).

The expectation:

EX = N(n, G)pe =

(

n

v

)

v!

aut(G)
pe
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1st moment method

By Markov’s inequality

p � n−v/e ⇒ P(X > 0) ≤ EX → 0

Note that

p � n−v/e ⇔ EX →∞

Is it true that P(X > 0) → 1 if EX →∞ ???
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Example - the diamond

G = D, the diamond, that is D = K4 −K2.

EXD = 6

(

n

4

)

p5 → 0 ⇐ p = o(n−4/5)

Let p � n−4/5, D1, . . . , D6(n
4)

be all copies of D in Kn,

Ii = 1 if G(n, p) ⊃ Di and 0 otherwise. Write i ∼ j if
E(Di) ∩ E(Dj) 6= ∅.
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The variance

Then

var(XD) =

var

(

∑

i

Ii

)

=

∑

i

∑

j∼i

cov(Ii, Ij)≤
∑

i

∑

j∼i

E(IiIj)≤

O(n6p9 + n5p8 + n5p7 + n4p6 + n4p5)
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2nd moment method

Hence,

P(XD = 0) ≤ var(XD)

(EXD)2
≤

O

(

1

n2p
+

1

n3p2
+

1

n3p3
+

1

n4p4
+

1

n4p5

)

= o(1)

provided p � n−4/5. Indeed, e.g.,

n2p = (np1/2)2 ≥ (np5/4)2 →∞.

Is it true that P(X > 0) → 1 if EX →∞ ???
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Counterexample

“Conjecture”: p0(there is a copy of G) = n−vG/eG

IS FALSE!!!

n−5/6 � p = n−9/11 � n−4/5

P(XK > 0) ≤ P(XD > 0) = o(1)
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Threshold - general case

In general, let

dH =
eH

vH
and mG = max

H⊆G
dH .
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Threshold - general case

In general, let

dH =
eH

vH
and mG = max

H⊆G
dH .

Theorem (Bollobás, 1981) For every graph G with
eG > 0,

p0(there is a copy of G) = n−1/mG,

that is,

P(XG > 0) =

{

0 if p � n−1/mG

1 if p � n−1/mG

MAA 2005, Atlanta – p. 8/49



Proof

Proof: Let npmG → 0 and let H ⊆ G be such that
dH = mG. Then

P(XG > 0) ≤ P(XH > 0) ≤ EXH

=O(nvHpeH) = (npdH)vH = o(1). Let npmG →∞. Then,
for every H ⊆ G,

nvHpeH = (npdH)vH →∞
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Proof
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P(XG > 0) ≤ P(XH > 0) ≤ EXH

= O(nvHpeH) = (npdH)vH = o(1).

Let npmG →∞. Then, for every H ⊆ G,

nvHpeH = (npdH)vH →∞
and

P(XG = 0) ≤ var(XG)

(EXG)2
= O

(

∑

H⊆G

1

nvHpeH

)

= o(1).
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At the threshold

p = Θ(n−1/mG), or npmG → c > 0.

Theorem (Bollobás (81), Karoński, Ruciński (83)) If
G is strictly balanced, that is, for all H ⊂ G we have
dH < dG, and npmG → c > 0then XG has asymptotically
Poisson distribution with expectation
λ = cv/aut(G),that is, for every i ≥ 0 we have

lim
n→∞

P(XG = i) = e−λλi

i!
.
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The method of moments

If for every k ≥ 1

E(Xn)k = EXn(Xn − 1) · · · (Xn − k + 1) → λk

then Xn has asymptotically Poisson distribution with
expectation λ.

Note: (XG)k counts ordered k-tuples of distinct copies of
G in G(n, p).
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Proof for triangles

Set G = K3, the triangle, for convenience.

Let T1, T2, . . .
be all triangles in Kn and I1, I2, . . . the corresponding
indicators. Then

(XK3
)k =

∑

(i1,...,ik)

Ii1 · · · Iik

and

E(XK3
)k =

∑

(i1,...,ik)

E(Ii1 · · · Iik) = E
′
k + E

′′
k

where the sum splits over disjoint and not disjoint
k-tuples.
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Proof for triangles – cont.

E
′
k =

(

n

3, . . . , 3, n− 3k

)

p3k ∼
(

1

6
n3p3

)k

∼ (EXK3
)k

Let F be a union of k not all disjoint triangles. Then
eF > vF .

E
′′
k = O

(

∑

F

nvF peF

)

= O

(

∑

F

(np)vF peF−vF

)

= O(p)

By monotonicity assume that p = o(1). Then

E(XK3
)k = E

′
k + E

′′
k ∼ (EXK3

)k + O(p) → λk
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)k = E

′
k + E

′′
k ∼ (EXK3

)k + O(p) → λk
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Beyond the threshold

npmG →∞

Question 1: Asymptotic distribution of XG

Question 2: The rate of decay of P(XG = 0)

Theorem (Ruciński (1988)) For every graph G with
eG > 0,

XG − EXG
√

var(XG)
→ N (0, 1) as n →∞

if and only if npmG →∞ and n2(1− p) →∞.
Proof: By the method of moments (details omitted).
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Theorem (Ruciński (1988)) For every graph G with
eG > 0,

XG − EXG
√

var(XG)
→ N (0, 1) as n →∞

if and only if npmG →∞ and n2(1− p) →∞.
Proof: By the method of moments (details omitted).

MAA 2005, Atlanta – p. 14/49



FKG-inequality

P(XG = 0) ≥ max
H⊆G

P(XH = 0)

By FKG

P(XH = 0) ≥
N(n,H)
∏

i=1

P(Ii = 0) = (1− peH)N(n,H)

Finally, with ΨH = nvHpeH and p = p(n) < c < 1,

P(XG = 0) ≥ max
H⊆G

exp

{

−EXH

1− p

}

= exp

{

−Θ

(

min
H⊆G

ΨH

)}
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Random subsets

Γ - finite set, Γp - a random binomial subset of Γ (each
element included independently with probability p),

S - family of subsets of Γ,for each A ∈ S , IA is the
indicator of A in Γp,

X =
∑

A∈S
IA

By FKG, P(X = 0) ≥ exp{−EX/(1− p)}.

Example. Γ =
(

[n]
2

)

, Γp = G(n, p), S – all copies of G in
Kn, X = XG.
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The Janson inequality

λ = EX, ∆̄ =
∑ ∑

A∩B 6=∅
E(IAIB)

φ(x) = (1 + x) log(1 + x)− x, x ≥ −1

Theorem (Janson,1990) For all 0 ≤ t ≤ λ

P(X ≤ λ− t) ≤ exp

{

−φ(−t/λ)λ2

∆̄

}

≤ exp

{

− t2

2∆̄

}

Proof: by Laplace transforms, FKG and Jensen
inequalities (omitted).
Note: for disjoint A’s, IA’s are independent and we get
the (lower tail) Chernoff bound.
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The rate of decay of P(X = 0)

Corollary (Janson, Łuczak, Ruciński, 1990)

P(X = 0) ≤ exp

{

−λ2

∆̄

}

Proof: (Weaker version – Boppana, Spencer, 1989): let

∆ =
1

2

∑

A6=B

∑

A∩B 6=∅
E(IAIB),

thus ∆̄ = λ + 2∆.
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Proof of weaker version

First show: P(X = 0) ≤ exp {−λ + ∆}.

Enumerate S = {A1, . . . , Ak}, denote
Bi = {Γp ⊇ Ai}.Then

λ =
k
∑

i=1

P(Bi) and ∆ =
1

2

∑

i∼j

∑

i6=j

P(Bi ∩Bj)

By the chain formula

P(X = 0) = P

(

k
⋂

i=1

B̄i

)

=
k
∏

i=1

P

(

B̄i |
i−1
⋂

j=1

B̄j

)
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Probability calculus

Notation: For i 6= j, i ∼ j if Ai ∩ Aj 6= ∅, that is, if Bi

and Bj are dependent.

P

(

Bi |
i−1
⋂

j=1

B̄j

)

≥ P



Bi ∩
⋂

j∼i

B̄j |
⋂

j 6∼i

B̄j



 ≥

P
(

Bi |
⋂

j 6∼i B̄j

)

−P

(

Bi ∩
⋃

j∼i Bj |
⋂

j 6∼i B̄j

)

≥
P(Bi)−

∑

j∼i P(Bi ∩Bj) by FKG
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Putting together

P

(

k
⋂

i=1

B̄i

)

≤
k
∏

i=1

(

1−P(Bi) +
∑

j∼i,j<i

P(Bi ∩Bj)

)

≤

exp{−λ + ∆} ≤ exp

{

− λ2

2(λ + 2∆)

}

provided λ ≥ 2∆. Otherwise ...

Note that above is true for any subset of indices from [k].
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The probabilistic method

Set

q =
λ

2∆

and R = [k]q.

Let Ii = 1 if i ∈ R and Ii = 0
otherwise.Let

Y = − lnP

(

⋂

i∈R

B̄i

)

and

Z =
k
∑

i=1

P(Bi)Ii −
1

2

∑

i∼j

∑

i6=j

P(Bi ∩Bj)IiIj
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The probabilistic method – cont.

Thus

Y ≥ Z and EY ≥ EZ

= λq −∆q2 =
λ2

4∆

So, there is S ⊆ [k] such that

Y (S) = − lnP

(

⋂

i∈S

B̄i

)

≥ λ2

4∆
and

P

(

k
⋂

i=1

B̄i

)

≤ exp

{

− λ2

4∆

}

≤ exp

{

− λ2

2(λ + 2∆)

}
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2(λ + 2∆)

}
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Back to subgraphs

∆̄ =
∑

H⊆G

∑

Gi∩Gj=H

p2eG−eH

= Θ

(

(EXG)2

minH ΨH

)

so

P(XG = 0) = exp

{

−Θ

(

min
H⊆G

ΨH

)}

(recall ΨH = nvHpeH )
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Two milestones

min
H

ΨH = Ω(n) iff p = Ω
(

n−1/m
(1)
G

)

,

where
m

(1)
G = max

H⊆G

eH

vH − 1

min
H

ΨH = Ω(n2p) iff p = Ω
(

n−1/m
(2)
G

)

,

where

m
(2)
G = max

H⊆G

eH − 1

vH − 2
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Almost perfect G-factors

Set G = K3, m
(1)
K3

= 3/2.

Proposition Fix ε > 0 and let p ≥ Cεn
−2/3.Then, a.a.s.,

all but at most εn vertices of G(n, p) can be covered by
vertex-disjoint triangles.
Proof: The probability of opposite event can be
bounded by

P(there is an εn-subset with no triangle) ≤
(

n

εn

)

P(G(εn, p) 6⊃ K3) < 2n
P(XK3

(εn, p) = 0) ≤

2ne−Θ(n) → 0
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Open problem

Find the threshold for the existence of a perfect
triangle-factor in G(n, p).

Conjecture The threshold is

p0 = n−2/3 log1/3 n

Krivelevich: p0 ≤ n−3/5 (Ω(n) copies of the diamond).

Kim: even better

Alon-Yuster, Ruciński: p0 = n−2/3 is the threshold for a
perfect (K4 −K1,2)-factor.
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Alon-Yuster, Ruciński: p0 = n−2/3 is the threshold for a
perfect (K4 −K1,2)-factor.

MAA 2005, Atlanta – p. 27/49



Open problem

Find the threshold for the existence of a perfect
triangle-factor in G(n, p).

Conjecture The threshold is

p0 = n−2/3 log1/3 n

Krivelevich: p0 ≤ n−3/5 (Ω(n) copies of the diamond).

Kim: even better
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Vertex-partition properties

Arrow notation: F → (G)v
r means that every r-coloring

of the vertices of F results in a monochromatic copy of
G.

Theorem (Łuczak, Ruciński, Voigt (1992)) For every

r ≥ 2, p0 = n−1/m
(1)
G is the threshold for the property

G(n, p) → (G)v
r .

Proof: (the easy part)

P (G(n, p) 6→ (G)v
r) ≤

(

n

dn/re

)

P (G(dn/re, p) 6⊃ G) .

Note: this threshold is sharp (Friedgut, Krivelevich,
1999)

MAA 2005, Atlanta – p. 28/49



Vertex-partition properties

Arrow notation: F → (G)v
r means that every r-coloring

of the vertices of F results in a monochromatic copy of
G.
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A question of Erdős

Pigeon-hole: K5 → (K3)
v
2.

Easy: K1 + C2
7 → (K3)

v
2. Note: K1 + C2

7 6⊃ K5.

Erdős: Does there exist an F such that F 6⊃ K4 and
F → (K3)

v
2?

YES!!! (Erdős, Rogers (1962) and Folkman (1970)).
Set p = Cn−2/3, so that
P (G(n, p) → (K3)

v
2) = 1− o(1).

We know: P(XK4
= 0) ∼ e−λ ∼ c0 > 0

Switching to the model G(n, M): about c0

( (n
2)

(C/2)n4/3

)

graphs with n vertices and M = (C/2)n4/3 edges are
such.

MAA 2005, Atlanta – p. 29/49



A question of Erdős
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Pigeon-hole: K5 → (K3)
v
2.

Easy: K1 + C2
7 → (K3)

v
2. Note: K1 + C2

7 6⊃ K5.
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Erdős: Does there exist an F such that F 6⊃ K4 and
F → (K3)

v
2?
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YES!!! (Erdős, Rogers (1962) and Folkman (1970)).
Set p = Cn−2/3, so that
P (G(n, p) → (K3)

v
2) = 1− o(1).

We know: P(XK4
= 0) ∼ e−λ ∼ c0 > 0

Switching to the model G(n, M): about c0

( (n
2)

(C/2)n4/3

)

graphs with n vertices and M = (C/2)n4/3 edges are
such.

MAA 2005, Atlanta – p. 29/49



A question of Erdős
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Ramsey properties

F → (G)e
r means that every r-coloring of the edges of F

results in a monochromatic copy of G.

Theorem (Rödl, Ruciński (1995)) For every r ≥ 2,

p0 = n−1/m
(2)
G is the threshold for the property

G(n, p) → (G)e
r.

Proof: see J. AMS (1995)

Theorem (Friedgut,Rödl, Ruciński,Tetali (2005)) The
property G(n, p) → (K3)

e
2 has a sharp threshold.

Proof: 99 pages long proof omitted.
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Turán properties

ex(n, G) = max{eF : G 6⊆ F ⊆ Kn}

=

(

1− 1

χ(G)− 1
+ o(1)

)(

n

2

)

(Turán, Erdős, Stone, Simonovits 1941-1966)

If p � n−1/m
(2)
G then minH ΨH � n2pand

for some H ⊆ G, a.a.s XH � n2p.
It is then possible to destroy all copies of G by deleting
o(n2p) edges– the Turán property does not hold for
G(n, p) in this case.
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It is then possible to destroy all copies of G by deleting
o(n2p) edges– the Turán property does not hold for
G(n, p) in this case.
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Turán properties for G(n, p)

Conjecture For every η > 0 there is C > 0 such that if

p ≥ Cn−1/m
(2)
G then a.a.s. every subgraph of G(n, p) with

at least
(

1− 1

χ(G)− 1
+ η

)(

n

2

)

p

edges contains a copy of G.

True for G = K3, K4, K5, K6 and for all cycles G = Ck.
(Frankl, Füredi, Gerke, Haxell, Kohayakawa, Kreuter,
Łuczak, Rödl, Sabo, Schacht, Steger, Taraz, Vu, ...)
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Upper tails - early results (Vu 2001)

P(XG ≥ tEXG)

For all balanced graphs G

P(XG ≥ tEXG) ≤ exp
{

−cεΨ
1/(vG−1)
G

}

For all graphs G

P(XG ≥ tEXG) ≥ exp
{

−CεΨ
1/α∗G
G log(1/p)

}

,

where α∗G is the fractional independence number of G.
These bounds are far apart (they essentially match each
other only for stars K1,k).

MAA 2005, Atlanta – p. 33/49



Upper tails - early results (Vu 2001)

P(XG ≥ tEXG)

For all balanced graphs G

P(XG ≥ tEXG) ≤ exp
{

−cεΨ
1/(vG−1)
G

}

For all graphs G

P(XG ≥ tEXG) ≥ exp
{

−CεΨ
1/α∗G
G log(1/p)

}

,

where α∗G is the fractional independence number of G.
These bounds are far apart (they essentially match each
other only for stars K1,k).

MAA 2005, Atlanta – p. 33/49



Upper tails - early results (Vu 2001)

P(XG ≥ tEXG)

For all balanced graphs G

P(XG ≥ tEXG) ≤ exp
{

−cεΨ
1/(vG−1)
G

}

For all graphs G

P(XG ≥ tEXG) ≥ exp
{

−CεΨ
1/α∗G
G log(1/p)

}

,

where α∗G is the fractional independence number of G.
These bounds are far apart (they essentially match each
other only for stars K1,k).

MAA 2005, Atlanta – p. 33/49



Upper tails - early results (Vu 2001)

P(XG ≥ tEXG)

For all balanced graphs G

P(XG ≥ tEXG) ≤ exp
{

−cεΨ
1/(vG−1)
G

}

For all graphs G

P(XG ≥ tEXG) ≥ exp
{

−CεΨ
1/α∗G
G log(1/p)

}

,

where α∗G is the fractional independence number of G.

These bounds are far apart (they essentially match each
other only for stars K1,k).

MAA 2005, Atlanta – p. 33/49



Upper tails - early results (Vu 2001)

P(XG ≥ tEXG)

For all balanced graphs G

P(XG ≥ tEXG) ≤ exp
{

−cεΨ
1/(vG−1)
G

}

For all graphs G

P(XG ≥ tEXG) ≥ exp
{

−CεΨ
1/α∗G
G log(1/p)

}

,

where α∗G is the fractional independence number of G.
These bounds are far apart (they essentially match each
other only for stars K1,k).

MAA 2005, Atlanta – p. 33/49



Fractional independence number

α∗G is the largest value of
∑

v αv over all weightings
αv ∈ [0, 1] of V (G) satisfying:

αv + αw ≤ 1 for all vw ∈ E(G)

Properties (assume eG > 0):

for regular G, α∗G = vG/2

for bipartite G, α∗G = αG

for all G,

1 ≤ 1

2
vG ≤ α∗G ≤ vG −

eG

∆G
≤ vG − 1
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Toward a general, tight upper tail

N(F, G) – the number of copies of G in F

(so,
N(Kn, G) = N(n, G)).
N(n, m, G) – the maximum of N(F, G) over all graphs
F with vF ≤ n and eF ≤ m.

Recall
ΨH = nvHpeH

MAA 2005, Atlanta – p. 35/49



Toward a general, tight upper tail

N(F, G) – the number of copies of G in F (so,
N(Kn, G) = N(n, G)).

N(n, m, G) – the maximum of N(F, G) over all graphs
F with vF ≤ n and eF ≤ m.

Recall
ΨH = nvHpeH

MAA 2005, Atlanta – p. 35/49



Toward a general, tight upper tail

N(F, G) – the number of copies of G in F (so,
N(Kn, G) = N(n, G)).
N(n, m, G) – the maximum of N(F, G) over all graphs
F with vF ≤ n and eF ≤ m.

Recall
ΨH = nvHpeH

MAA 2005, Atlanta – p. 35/49



Toward a general, tight upper tail

N(F, G) – the number of copies of G in F (so,
N(Kn, G) = N(n, G)).
N(n, m, G) – the maximum of N(F, G) over all graphs
F with vF ≤ n and eF ≤ m.

M ∗
G = M ∗

G(n, p) :=
{

max{m ≤
(

n
2

)

: ∀H ⊆ G N(n, m, H) ≤ ΨH} p ≥ n−2,

1 p < n−2.

Recall
ΨH = nvHpeH

MAA 2005, Atlanta – p. 35/49



Toward a general, tight upper tail

N(F, G) – the number of copies of G in F (so,
N(Kn, G) = N(n, G)).
N(n, m, G) – the maximum of N(F, G) over all graphs
F with vF ≤ n and eF ≤ m.

M ∗
G = M ∗

G(n, p) :=
{

max{m ≤
(

n
2

)

: ∀H ⊆ G N(n, m, H) ≤ ΨH} p ≥ n−2,

1 p < n−2.

Recall
ΨH = nvHpeH

MAA 2005, Atlanta – p. 35/49



Upper tail – new result

Theorem (Janson, Oleszkiewicz, Ruciński (2004))
For every graph G and for every t > 1 there exist
constants c(t, G) > 0 and C(t, G) > 0 such that for all
n ≥ vG and p ∈ (0, 1)

P(XG ≥ tEXG) ≤ exp {−c(t, G)M ∗
G(n, p)} ,

and, provided tEXG ≤ N(n, G),

P(XG ≥ tEXG) ≥ pC(t,G)M∗

G(n,p).

If tEXG > N(n, G), the probability is trivially 0.
If tEXG ≤ N(n, G) then tpeG ≤ 1, so p ≤ t−1/eG < 1.
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N(n, m, H) explicitly

Theorem For every graph H without isolated vertices,
and for all m ≥ eH and n ≥ vH , we have,

N(n, m, H) =







Θ(mα∗H) if m ≤ n (Alon 1981)
Θ(mvH−α∗Hn2α∗H−vH) if n ≤ m ≤

(

n
2

)

Θ(nvH) if m ≥
(

n
2

)

(trivial).

Theorem For every graph G and n ≥ vG we have

M ∗
G(n, p) =











Θ(1) if p ≤ n−1/mG

Θ
(

minH⊆G Ψ
1/α∗H
H

)

if n−1/mG ≤ p ≤ n−1/∆G

Θ(n2p∆G) if p ≥ n−1/∆G.
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Special cases: regular graphs, stars

Corollary If G is a k-regular graph, then
M ∗

G = Θ(n2pk) for all p ≥ n−1/mG = n−2/k .

Corollary Let G be the k-armed star K1,k, with k ≥ 1,
and assume p ≥ n−1/mG = n−1−1/k. Then

M ∗
G =

{

Θ(n1+1/kp) if p ≤ n−1/k,

Θ(n2pk) if p ≥ n−1/k.
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Special cases: paths

Corollary Let Pk be the path on k vertices and assume
p ≥ n−1/mPk = n−1−1/(k−1). Then, if k ≥ 3 is odd,

M ∗
Pk

=

{

Θ
(

n2 k
k+1p2k−1

k+1

)

if p ≤ n−1/2,

Θ
(

n2p2
)

if p ≥ n−1/2,

and, if k ≥ 4 is even,

M ∗
Pk

=











Θ
(

n2p2k−1
k

)

if p ≤ n−1,

Θ
(

n2k−1
k p2k−2

k

)

if n−1 ≤ p ≤ n−1/2,

Θ
(

n2p2
)

if p ≥ n−1/2.
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Graphs with many phases

Let T k be the tree obtained by taking k stars K1,i,
i = 1, . . . k, and tying them up by merging one pendant
vertex from each star into one vertex.

Proposition For every k ≥ 2, the graph T k described
above has k + 1 phases for the upper tail.
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Idea of proof : lower bound

P(XG ≥ tEXG) ≥ pC(t,G)M∗

G(n,p)

By the definition of M ∗
G there is H ⊆ G:

N(n, M ∗
G+1, H) > ΨH ⇒ N(n, CtM

∗
G, H) > tΨH

For simplicity, say, H = G, and take m = CtM
∗
G.Then

∃F ⊆ Kn, eF ≤ m : N(F, G) > tΨG > tEXG

Finally,

P(XG ≥ tEXG) ≥ P (G(n, p) ⊇ F ) = peF ≥ pm.
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Idea of proof : upper bound

By Markov’s inequality, with λG = EXG, for every
m ≥ 1

P(XG ≥ tλG) = P(Xm
G ≥ tmλm

G) ≤ E(Xm
G )

tmλm
G

For suitable choice of c′, with m = c′M ∗
G,

E(Xm
G ) ≤ λm

Gtm/2,

so

P(XG ≥ tλG) ≤ t−m/2 = exp{−(m/2) log t} = exp{−cM ∗
G},

where c = (c′/2) log t.
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The mth moment

We will show by induction on m that

E(Xm
G ) ≤ λm

G

(

1 + 2vG!
∑

H⊆G

N(n, (m− 1)eG, H)

ΨH

)m−1

This is trivially true for m = 1. Assume true for m− 1.

Let G1, · · · , GN(n,G) be all copies of G in G(n, p) and let
Ii be the indicator of presence of Gi in G(n, p).For
m ≥ 2,

E(Xm
G ) =

∑

i1,...,im

E(Ii1 · · · Iim) =
∑

i1,...,im

pe(Gi1
∪···∪Gim)
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Induction step

Set F = F (i1, . . . , im−1) = Gi1 ∪ · · · ∪Gim−1
.

∑

i1,...,im

pe(Gi1
∪···∪Gim) =

∑

i1,...,im−1

pe(F )
∑

im

peG−e(F∩Gim)

≤
∑

i1,...,im−1
pe(F )

(

N(n, G)peG +
∑

H⊆G

∑

Gi∩F∼=H peG−eH
)

≤
∑

i1,...,im−1
pe(F )

(

λG +
∑

H⊆G N(n, (m− 1)eG, H)ΨG

ΨH

)

≤ E(Xm−1
G ) · λG

(

1 + 2vG!
∑

H⊆G
N(n,(m−1)eG,H)

ΨH

)

.
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Bounding the mth moment

With m = c′M ∗
G,

N(n, (m− 1)eG, H) ≤ c′′N(n, M ∗
G, H) < c′′ΨH

and for c′ = c′(G, t) small enough
(

1 + 2vG!
∑

H⊆G

N(n, (m− 1)eG, H)

ΨH

)

≤
√

t

which proves that

E(Xm
G ) ≤ λm

Gtm/2.
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Estimating N(n, m, H)

To prove:

N(n, m, H) = Θ(mvH−α∗Hn2α∗H−vH) if n ≤ m ≤
(

n

2

)

Consider LP: max
∑

v∈V xv

given

0 ≤ xv ≤ log n and ∀vw ∈ E : xv + xw ≤ log m.

Let γ be the value of an optimal solution (xv).
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Computing γ

We have xv ≥ log m− log n.

Write:

xv = log m− log n + (2 log n− log m)αv

where 0 ≤ αv ≤ 1, and ∀vw ∈ E: αv + αw ≤ 1.Then

γ =
∑

v

xv = (log m−log n)vH+(2 log n−log m)
∑

v

αv

so

eγ =
(m

n

)vH

(

n2

m

)α∗H
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Relating γ to N(n, m, H)

Proposition N(n, m, H) = Θ (eγ)

Proof: (only from below)based on an optimal solution
(xv), construct F rich in copies of H .How?
Blow up H , replacing each v by nv = exv/vH vertices
and each vw ∈ E by K(nv, nw).Then
vF =

∑

v nv ≤ n and

eF =
∑

vw∈E

nvnw ≤
∑

vw∈E

m/v2
H < m

But
N(F, H) ≥

∏

v

nv = cvHeγ.
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Open problem

Determine the order of magnitude for

− log P(XG ≥ tEXG)

It is between Θ(M ∗
G) and Θ(M ∗

G log(1/p)).
For G = K2, it is Θ(M ∗

G) (Chernoff).
For G = K4 and n−2/3 log1/6 n � p ≤ n−1/2−ε, there is
an upper bound

P(XG ≥ 2EXG) ≤ exp
{

−cM ∗
G(n, p) log1/2 n

}

,

by the deletion method (Janson, Ruciński (2004)).
Thus, neither end is sharp!
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