SMALL SUBGRAPHS OF RANDOM GRAPHS

Andrzej Ruciński

Adam Mickiewicz University, Poznań, Poland,
Emory University

Subgraph counts

- A copy of a graph G in another graph F is a (weak) subgraph G^{\prime} of F isomorphic to G.

Subgraph counts

- A copy of a graph G in another graph F is a (weak) subgraph G^{\prime} of F isomorphic to G.
$■$ Given graph G with $v=v_{G}$ vertices and $e=e_{G}$ edges, let

$$
X_{G}(n, p)=X_{G}=X
$$

be the number of copies of G in $G(n, p)$.

Subgraph counts

- A copy of a graph G in another graph F is a (weak) subgraph G^{\prime} of F isomorphic to G.
■ Given graph G with $v=v_{G}$ vertices and $e=e_{G}$ edges, let

$$
X_{G}(n, p)=X_{G}=X
$$

be the number of copies of G in $G(n, p)$.

- The expectation:

$$
\mathbf{E} X=N(n, G) p^{e}=\binom{n}{v} \frac{v!}{\operatorname{aut}(G)} p^{e}
$$

1st moment method

By Markov's inequality

1st moment method

By Markov's inequality

$$
p \ll n^{-v / e} \quad \Rightarrow \quad \mathbf{P}(X>0) \leq \mathbf{E} X \rightarrow 0
$$

1st moment method

By Markov's inequality

$$
p \ll n^{-v / e} \quad \Rightarrow \quad \mathbf{P}(X>0) \leq \mathbf{E} X \rightarrow 0
$$

Note that

$$
p \gg n^{-v / e} \quad \Leftrightarrow \quad \mathbf{E} X \rightarrow \infty
$$

1st moment method

By Markov's inequality

$$
p \ll n^{-v / e} \quad \Rightarrow \quad \mathbf{P}(X>0) \leq \mathbf{E} X \rightarrow 0
$$

Note that

$$
p \gg n^{-v / e} \quad \Leftrightarrow \quad \mathbf{E} X \rightarrow \infty
$$

Is it true that $\mathbf{P}(X>0) \rightarrow 1$ if $\mathbf{E} X \rightarrow \infty$???

Example - the diamond

$$
G=D, \text { the diamond, that is } D=K_{4}-K_{2} .
$$

Example - the diamond

$G=D$, the diamond, that is $D=K_{4}-K_{2}$.

Example - the diamond

$G=D$, the diamond, that is $D=K_{4}-K_{2}$.

$$
\mathbf{E} X_{D}=6\binom{n}{4} p^{5} \rightarrow 0
$$

Example - the diamond

$G=D$, the diamond, that is $D=K_{4}-K_{2}$.

$$
\mathbf{E} X_{D}=6\binom{n}{4} p^{5} \rightarrow 0 \quad \Leftarrow \quad p=o\left(n^{-4 / 5}\right)
$$

Example - the diamond

$G=D$, the diamond, that is $D=K_{4}-K_{2}$.

$$
\mathbf{E} X_{D}=6\binom{n}{4} p^{5} \rightarrow 0 \quad \Leftarrow \quad p=o\left(n^{-4 / 5}\right)
$$

Let $p \gg n^{-4 / 5}, D_{1}, \ldots, D_{6\binom{n}{4}}$ be all copies of D in K_{n},

Example - the diamond

$G=D$, the diamond, that is $D=K_{4}-K_{2}$.

$$
\mathbf{E} X_{D}=6\binom{n}{4} p^{5} \rightarrow 0 \quad \Leftarrow \quad p=o\left(n^{-4 / 5}\right)
$$

Let $p \gg n^{-4 / 5}, D_{1}, \ldots, D_{6\binom{n}{4}}$ be all copies of D in K_{n}, $I_{i}=1$ if $G(n, p) \supset D_{i}$ and 0 otherwise.

Example - the diamond

$G=D$, the diamond, that is $D=K_{4}-K_{2}$.

$$
\mathbf{E} X_{D}=6\binom{n}{4} p^{5} \rightarrow 0 \quad \Leftarrow \quad p=o\left(n^{-4 / 5}\right)
$$

Let $p \gg n^{-4 / 5}, D_{1}, \ldots, D_{6\binom{n}{4}}$ be all copies of D in K_{n}, $I_{i}=1$ if $G(n, p) \supset D_{i}$ and 0 otherwise. Write $i \sim j$ if $E\left(D_{i}\right) \cap E\left(D_{j}\right) \neq \emptyset$.

The variance

Then

$$
\operatorname{var}\left(X_{D}\right)=
$$

The variance

Then

$$
\begin{gathered}
\operatorname{var}\left(X_{D}\right)=\operatorname{var}\left(\sum_{i} I_{i}\right)= \\
\sum_{i} \sum_{j \sim i} \operatorname{cov}\left(I_{i}, I_{j}\right)
\end{gathered}
$$

The variance

Then

$$
\begin{aligned}
\operatorname{var}\left(X_{D}\right) & =\operatorname{var}\left(\sum_{i} I_{i}\right)= \\
\sum_{i} \sum_{j \sim i} \operatorname{cov}\left(I_{i}, I_{j}\right) & \leq \sum_{i} \sum_{j \sim i} \mathbf{E}\left(I_{i} I_{j}\right)
\end{aligned}
$$

The variance

Then

$$
\begin{array}{r}
\operatorname{var}\left(X_{D}\right)=\operatorname{var}\left(\sum_{i} I_{i}\right)= \\
\sum_{i} \sum_{j \sim i} \operatorname{cov}\left(I_{i}, I_{j}\right) \leq \sum_{i} \sum_{j \sim i} \mathbf{E}\left(I_{i} I_{j}\right) \leq \\
O\left(n^{6} p^{9}+n^{5} p^{8}+n^{5} p^{7}+n^{4} p^{6}+n^{4} p^{5}\right)
\end{array}
$$

The variance

Then

$$
\begin{array}{r}
\operatorname{var}\left(X_{D}\right)=\operatorname{var}\left(\sum_{i} I_{i}\right)= \\
\sum_{i} \sum_{j \sim i} \operatorname{cov}\left(I_{i}, I_{j}\right) \leq \sum_{i} \sum_{j \sim i} \mathbf{E}\left(I_{i} I_{j}\right) \leq \\
O\left(n^{6} p^{9}+n^{5} p^{8}+n^{5} p^{7}+n^{4} p^{6}+n^{4} p^{5}\right)
\end{array}
$$

2nd moment method

Hence,

$$
\mathbf{P}\left(X_{D}=0\right) \leq \frac{\operatorname{var}\left(X_{D}\right)}{\left(\mathbf{E} X_{D}\right)^{2}} \leq
$$

2nd moment method

Hence,

$$
\begin{aligned}
& \mathbf{P}\left(X_{D}=0\right) \leq \frac{\operatorname{var}\left(X_{D}\right)}{\left(\mathbf{E} X_{D}\right)^{2}} \leq \\
& O\left(\frac{1}{n^{2} p}+\frac{1}{n^{3} p^{2}}+\frac{1}{n^{3} p^{3}}+\frac{1}{n^{4} p^{4}}+\frac{1}{n^{4} p^{5}}\right)=o(1)
\end{aligned}
$$

2nd moment method

Hence,

$$
\begin{aligned}
& \mathbf{P}\left(X_{D}=0\right) \leq \frac{\operatorname{var}\left(X_{D}\right)}{\left(\mathbf{E} X_{D}\right)^{2}} \leq \\
& O\left(\frac{1}{n^{2} p}+\frac{1}{n^{3} p^{2}}+\frac{1}{n^{3} p^{3}}+\frac{1}{n^{4} p^{4}}+\frac{1}{n^{4} p^{5}}\right)=o(1)
\end{aligned}
$$

provided $p \gg n^{-4 / 5}$.

2nd moment method

Hence,

$$
\begin{aligned}
& \mathbf{P}\left(X_{D}=0\right) \leq \frac{\operatorname{var}\left(X_{D}\right)}{\left(\mathbf{E} X_{D}\right)^{2}} \leq \\
& O\left(\frac{1}{n^{2} p}+\frac{1}{n^{3} p^{2}}+\frac{1}{n^{3} p^{3}}+\frac{1}{n^{4} p^{4}}+\frac{1}{n^{4} p^{5}}\right)=o(1)
\end{aligned}
$$

provided $p \gg n^{-4 / 5}$. Indeed, e.g.,

$$
n^{2} p=\left(n p^{1 / 2}\right)^{2} \geq\left(n p^{5 / 4}\right)^{2} \rightarrow \infty
$$

2nd moment method

Hence,

$$
\begin{aligned}
& \mathbf{P}\left(X_{D}=0\right) \leq \frac{\operatorname{var}\left(X_{D}\right)}{\left(\mathbf{E} X_{D}\right)^{2}} \leq \\
& O\left(\frac{1}{n^{2} p}+\frac{1}{n^{3} p^{2}}+\frac{1}{n^{3} p^{3}}+\frac{1}{n^{4} p^{4}}+\frac{1}{n^{4} p^{5}}\right)=o(1)
\end{aligned}
$$

provided $p \gg n^{-4 / 5}$. Indeed, e.g.,

$$
n^{2} p=\left(n p^{1 / 2}\right)^{2} \geq\left(n p^{5 / 4}\right)^{2} \rightarrow \infty
$$

Is it true that $\mathbf{P}(X>0) \rightarrow 1$ if $\mathbf{E} X \rightarrow \infty$???

Counterexample

"Conjecture": $p_{0}($ there is a copy of $G)=n^{-v_{G} / e_{G}}$

Counterexample

"Conjecture": $p_{0}($ there is a copy of $G)=n^{-v_{G} / e_{G}}$ IS FALSE!!!

Counterexample

"Conjecture": $p_{0}($ there is a copy of $G)=n^{-v_{G} / e_{G}}$
IS FALSE!!!
Counterexample: $H=K$, the kite,

Counterexample

"Conjecture": $p_{0}($ there is a copy of $G)=n^{-v_{G} / e_{G}}$
IS FALSE!!!
Counterexample: $H=K$, the kite,

$$
n^{-5 / 6} \ll p=n^{-9 / 11} \ll n^{-4 / 5}
$$

Counterexample

"Conjecture": $p_{0}($ there is a copy of $G)=n^{-v_{G} / e_{G}}$
IS FALSE!!!
Counterexample: $H=K$, the kite,

$$
\begin{gathered}
n^{-5 / 6} \ll p=n^{-9 / 11} \ll n^{-4 / 5} \\
\mathbf{P}\left(X_{K}>0\right) \leq \mathbf{P}\left(X_{D}>0\right)=o(1)
\end{gathered}
$$

Threshold - general case

In general, let

$$
d_{H}=\frac{e_{H}}{v_{H}} \quad \text { and } \quad m_{G}=\max _{H \subseteq G} d_{H} .
$$

Threshold - general case

In general, let

$$
d_{H}=\frac{e_{H}}{v_{H}} \quad \text { and } \quad m_{G}=\max _{H \subseteq G} d_{H} .
$$

Theorem (Bollobás, 1981) For every graph G with $e_{G}>0$,

$$
p_{0}(\text { there is a copy of } G)=n^{-1 / m_{G}}
$$

Threshold - general case

In general, let

$$
d_{H}=\frac{e_{H}}{v_{H}} \quad \text { and } \quad m_{G}=\max _{H \subseteq G} d_{H} .
$$

Theorem (Bollobás, 1981) For every graph G with $e_{G}>0$,

$$
p_{0}(\text { there is a copy of } G)=n^{-1 / m_{G}},
$$

that is,

$$
\mathbf{P}\left(X_{G}>0\right)=\left\{\begin{array}{l}
0 \text { if } p \ll n^{-1 / m_{G}} \\
1 \text { if } p \gg n^{-1 / m_{G}}
\end{array}\right.
$$

Proof

Proof: Let $n p^{m_{G}} \rightarrow 0$ and let $H \subseteq G$ be such that $d_{H}=m_{G}$. Then

Proof

Proof: Let $n p^{m_{G}} \rightarrow 0$ and let $H \subseteq G$ be such that $d_{H}=m_{G}$. Then

$$
\mathbf{P}\left(X_{G}>0\right) \leq \mathbf{P}\left(X_{H}>0\right) \leq \mathbf{E} X_{H}
$$

Proof

Proof: Let $n p^{m_{G}} \rightarrow 0$ and let $H \subseteq G$ be such that

 $d_{H}=m_{G}$. Then$$
\begin{aligned}
& \mathbf{P}\left(X_{G}>0\right) \leq \mathbf{P}\left(X_{H}>0\right) \leq \mathbf{E} X_{H} \\
& \quad=O\left(n^{v_{H}} p^{e_{H}}\right)=\left(n p^{d_{H}}\right)^{v_{H}}=o(1) .
\end{aligned}
$$

Proof

Proof: Let $n p^{m_{G}} \rightarrow 0$ and let $H \subseteq G$ be such that

 $d_{H}=m_{G}$. Then$$
\begin{aligned}
& \mathbf{P}\left(X_{G}>0\right) \leq \mathbf{P}\left(X_{H}>0\right) \leq \mathbf{E} X_{H} \\
& \quad=O\left(n^{v_{H}} p^{e_{H}}\right)=\left(n p^{d_{H}}\right)^{v_{H}}=o(1) .
\end{aligned}
$$

Let $n p^{m_{G}} \rightarrow \infty$.

Proof

Proof: Let $n p^{m_{G}} \rightarrow 0$ and let $H \subseteq G$ be such that $d_{H}=m_{G}$. Then

$$
\begin{aligned}
& \mathbf{P}\left(X_{G}>0\right) \leq \mathbf{P}\left(X_{H}>0\right) \leq \mathbf{E} X_{H} \\
& \quad=O\left(n^{v_{H}} p^{e_{H}}\right)=\left(n p^{d_{H}}\right)^{v_{H}}=o(1) .
\end{aligned}
$$

Let $n p^{m_{G}} \rightarrow \infty$. Then, for every $H \subseteq G$,

$$
n^{v_{H}} p^{e_{H}}=\left(n p^{d_{H}}\right)^{v_{H}} \rightarrow \infty
$$

Proof

Proof: Let $n p^{m_{G}} \rightarrow 0$ and let $H \subseteq G$ be such that $d_{H}=m_{G}$. Then

$$
\begin{aligned}
& \mathbf{P}\left(X_{G}>0\right) \leq \mathbf{P}\left(X_{H}>0\right) \leq \mathbf{E} X_{H} \\
& =O\left(n^{v_{H}} p^{e_{H}}\right)=\left(n p^{d_{H}}\right)^{v_{H}}=o(1) .
\end{aligned}
$$

Let $n p^{m_{G}} \rightarrow \infty$. Then, for every $H \subseteq G$,

$$
n^{v_{H}} p^{e_{H}}=\left(n p^{d_{H}}\right)^{v_{H}} \rightarrow \infty
$$

and

$$
\mathbf{P}\left(X_{G}=0\right) \leq \frac{\operatorname{var}\left(X_{G}\right)}{\left(\mathbf{E} X_{G}\right)^{2}}=O\left(\sum_{H \subseteq G} \frac{1}{n^{v_{H}} p^{e_{H}}}\right)=o(1)
$$

At the threshold

$$
p=\Theta\left(n^{-1 / m_{G}}\right), \text { or } n p^{m_{G}} \rightarrow c>0
$$

At the threshold

$p=\Theta\left(n^{-1 / m_{G}}\right)$, or $n p^{m_{G}} \rightarrow c>0$.
Theorem (Bollobás (81), Karoński, Ruciński (83)) If G is strictly balanced, that is, for all $H \subset G$ we have $d_{H}<d_{G}$,

At the threshold

$p=\Theta\left(n^{-1 / m_{G}}\right)$, or $n p^{m_{G}} \rightarrow c>0$.
Theorem (Bollobás (81), Karoński, Ruciński (83)) If G is strictly balanced, that is, for all $H \subset G$ we have $d_{H}<d_{G}$, and $n p^{m_{G}} \rightarrow c>0$

At the threshold

$p=\Theta\left(n^{-1 / m_{G}}\right)$, or $n p^{m_{G}} \rightarrow c>0$.
Theorem (Bollobás (81), Karoński, Ruciński (83)) If G is strictly balanced, that is, for all $H \subset G$ we have $d_{H}<d_{G}$, and $n p^{m_{G}} \rightarrow c>0$ then X_{G} has asymptotically Poisson distribution with expectation
$\lambda=c^{v} / \operatorname{aut}(G)$,

At the threshold

$p=\Theta\left(n^{-1 / m_{G}}\right)$, or $n p^{m_{G}} \rightarrow c>0$.
Theorem (Bollobás (81), Karoński, Ruciński (83)) If G is strictly balanced, that is, for all $H \subset G$ we have $d_{H}<d_{G}$, and $n p^{m_{G}} \rightarrow c>0$ then X_{G} has asymptotically Poisson distribution with expectation
$\lambda=c^{v} / \operatorname{aut}(G)$, that is, for every $i \geq 0$ we have

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left(X_{G}=i\right)=e^{-\lambda} \frac{\lambda^{i}}{i!}
$$

The method of moments

If for every $k \geq 1$

$$
\mathbf{E}\left(X_{n}\right)_{k}=\mathbf{E} X_{n}\left(X_{n}-1\right) \cdots\left(X_{n}-k+1\right) \rightarrow \lambda^{k}
$$

The method of moments

If for every $k \geq 1$

$$
\mathbf{E}\left(X_{n}\right)_{k}=\mathbf{E} X_{n}\left(X_{n}-1\right) \cdots\left(X_{n}-k+1\right) \rightarrow \lambda^{k}
$$

then X_{n} has asymptotically Poisson distribution with expectation λ.

The method of moments

If for every $k \geq 1$

$$
\mathbf{E}\left(X_{n}\right)_{k}=\mathbf{E} X_{n}\left(X_{n}-1\right) \cdots\left(X_{n}-k+1\right) \rightarrow \lambda^{k}
$$

then X_{n} has asymptotically Poisson distribution with expectation λ.

Note: $\left(X_{G}\right)_{k}$ counts ordered k-tuples of distinct copies of G in $G(n, p)$.

Proof for triangles

Set $G=K_{3}$, the triangle, for convenience.

Proof for triangles

Set $G=K_{3}$, the triangle, for convenience. Let T_{1}, T_{2}, \ldots be all triangles in K_{n} and I_{1}, I_{2}, \ldots the corresponding indicators.

Proof for triangles

Set $G=K_{3}$, the triangle, for convenience. Let T_{1}, T_{2}, \ldots be all triangles in K_{n} and I_{1}, I_{2}, \ldots the corresponding indicators. Then

$$
\left(X_{K_{3}}\right)_{k}=\sum_{\left(i_{1}, \ldots, i_{k}\right)} I_{i_{1}} \cdots I_{i_{k}}
$$

Proof for triangles

Set $G=K_{3}$, the triangle, for convenience. Let T_{1}, T_{2}, \ldots be all triangles in K_{n} and I_{1}, I_{2}, \ldots the corresponding indicators. Then

$$
\left(X_{K_{3}}\right)_{k}=\sum_{\left(i_{1}, \ldots, i_{k}\right)} I_{i_{1}} \cdots I_{i_{k}}
$$

and

$$
\mathbf{E}\left(X_{K_{3}}\right)_{k}=\sum_{\left(i_{1}, \ldots, i_{k}\right)} \mathbf{E}\left(I_{i_{1}} \cdots I_{i_{k}}\right)=\mathbf{E}_{k}^{\prime}+\mathbf{E}_{k}^{\prime \prime}
$$

Proof for triangles

Set $G=K_{3}$, the triangle, for convenience. Let T_{1}, T_{2}, \ldots be all triangles in K_{n} and I_{1}, I_{2}, \ldots the corresponding indicators. Then

$$
\left(X_{K_{3}}\right)_{k}=\sum_{\left(i_{1}, \ldots, i_{k}\right)} I_{i_{1}} \cdots I_{i_{k}}
$$

and

$$
\mathbf{E}\left(X_{K_{3}}\right)_{k}=\sum_{\left(i_{1}, \ldots, i_{k}\right)} \mathbf{E}\left(I_{i_{1}} \cdots I_{i_{k}}\right)=\mathbf{E}_{k}^{\prime}+\mathbf{E}_{k}^{\prime \prime}
$$

where the sum splits over disjoint and not disjoint k-tuples.

Proof for triangles - cont.

$$
\mathbf{E}_{k}^{\prime}=\binom{n}{3, \ldots, 3, n-3 k} p^{3 k} \sim\left(\frac{1}{6} n^{3} p^{3}\right)^{k} \sim\left(\mathbf{E} X_{K_{3}}\right)^{k}
$$

Proof for triangles - cont.

$$
\mathbf{E}_{k}^{\prime}=\binom{n}{3, \ldots, 3, n-3 k} p^{3 k} \sim\left(\frac{1}{6} n^{3} p^{3}\right)^{k} \sim\left(\mathbf{E} X_{K_{3}}\right)^{k}
$$

Let F be a union of k not all disjoint triangles. Then $e_{F}>v_{F}$.

Proof for triangles - cont.

$$
\mathbf{E}_{k}^{\prime}=\binom{n}{3, \ldots, 3, n-3 k} p^{3 k} \sim\left(\frac{1}{6} n^{3} p^{3}\right)^{k} \sim\left(\mathbf{E} X_{K_{3}}\right)^{k}
$$

Let F be a union of k not all disjoint triangles. Then $e_{F}>v_{F}$.

$$
\mathbf{E}_{k}^{\prime \prime}=O\left(\sum_{F} n^{v_{F}} p^{e_{F}}\right)=O\left(\sum_{F}(n p)^{v_{F}} p^{e_{F}-v_{F}}\right)=O(p)
$$

Proof for triangles - cont.

$$
\mathbf{E}_{k}^{\prime}=\binom{n}{3, \ldots, 3, n-3 k} p^{3 k} \sim\left(\frac{1}{6} n^{3} p^{3}\right)^{k} \sim\left(\mathbf{E} X_{K_{3}}\right)^{k}
$$

Let F be a union of k not all disjoint triangles. Then $e_{F}>v_{F}$.
$\mathbf{E}_{k}^{\prime \prime}=O\left(\sum_{F} n^{v_{F}} p^{e_{F}}\right)=O\left(\sum_{F}(n p)^{v_{F}} p^{e_{F}-v_{F}}\right)=O(p)$
By monotonicity assume that $p=o(1)$.

Proof for triangles - cont.

$$
\mathbf{E}_{k}^{\prime}=\binom{n}{3, \ldots, 3, n-3 k} p^{3 k} \sim\left(\frac{1}{6} n^{3} p^{3}\right)^{k} \sim\left(\mathbf{E} X_{K_{3}}\right)^{k}
$$

Let F be a union of k not all disjoint triangles. Then $e_{F}>v_{F}$.

$$
\mathbf{E}_{k}^{\prime \prime}=O\left(\sum_{F} n^{v_{F}} p^{e_{F}}\right)=O\left(\sum_{F}(n p)^{v_{F}} p^{e_{F}-v_{F}}\right)=O(p)
$$

By monotonicity assume that $p=o(1)$. Then

$$
\mathbf{E}\left(X_{K_{3}}\right)_{k}=\mathbf{E}_{k}^{\prime}+\mathbf{E}_{k}^{\prime \prime} \sim\left(\mathbf{E} X_{K_{3}}\right)^{k}+O(p) \rightarrow \lambda^{k}
$$

Beyond the threshold

$$
n p^{m_{G}} \longrightarrow \infty
$$

Beyond the threshold

$n p^{m_{G}} \rightarrow \infty$
Question 1: Asymptotic distribution of X_{G}

Beyond the threshold

$n p^{m_{G}} \rightarrow \infty$
Question 1: Asymptotic distribution of X_{G}
Question 2: The rate of decay of $\mathbf{P}\left(X_{G}=0\right)$

Beyond the threshold

$n p^{m_{G}} \rightarrow \infty$
Question 1: Asymptotic distribution of X_{G}
Question 2: The rate of decay of $\mathbf{P}\left(X_{G}=0\right)$
Theorem (Ruciński (1988)) For every graph G with $e_{G}>0$,

$$
\frac{X_{G}-\mathbf{E} X_{G}}{\sqrt{\operatorname{var}\left(X_{G}\right)}} \rightarrow \mathcal{N}(0,1) \text { as } n \rightarrow \infty
$$

if and only if $n p^{m_{G}} \rightarrow \infty$ and $n^{2}(1-p) \rightarrow \infty$.

Beyond the threshold

$n p^{m_{G}} \rightarrow \infty$
Question 1: Asymptotic distribution of X_{G}
Question 2: The rate of decay of $\mathbf{P}\left(X_{G}=0\right)$
Theorem (Ruciński (1988)) For every graph G with $e_{G}>0$,

$$
\frac{X_{G}-\mathbf{E} X_{G}}{\sqrt{\operatorname{var}\left(X_{G}\right)}} \rightarrow \mathcal{N}(0,1) \text { as } n \rightarrow \infty
$$

if and only if $n p^{m_{G}} \rightarrow \infty$ and $n^{2}(1-p) \rightarrow \infty$.
Proof: By the method of moments (details omitted).

FKG-inequality

$$
\mathbf{P}\left(X_{G}=0\right) \geq \max _{H \subseteq G} \mathbf{P}\left(X_{H}=0\right)
$$

FKG-inequality

$$
\mathbf{P}\left(X_{G}=0\right) \geq \max _{H \subseteq G} \mathbf{P}\left(X_{H}=0\right)
$$

By FKG

$$
\mathbf{P}\left(X_{H}=0\right) \geq \prod_{i=1}^{N(n, H)} \mathbf{P}\left(I_{i}=0\right)=\left(1-p^{e_{H}}\right)^{N(n, H)}
$$

FKG-inequality

$$
\mathbf{P}\left(X_{G}=0\right) \geq \max _{H \subseteq G} \mathbf{P}\left(X_{H}=0\right)
$$

By FKG

$$
\mathbf{P}\left(X_{H}=0\right) \geq \prod_{i=1}^{N(n, H)} \mathbf{P}\left(I_{i}=0\right)=\left(1-p^{e_{H}}\right)^{N(n, H)}
$$

Finally, with $\Psi_{H}=n^{v_{H}} p^{e_{H}}$ and $p=p(n)<c<1$,
$\mathbf{P}\left(X_{G}=0\right) \geq \max _{H \subseteq G} \exp \left\{-\frac{\mathbf{E} X_{H}}{1-p}\right\}$

FKG-inequality

$$
\mathbf{P}\left(X_{G}=0\right) \geq \max _{H \subseteq G} \mathbf{P}\left(X_{H}=0\right)
$$

By FKG

$$
\mathbf{P}\left(X_{H}=0\right) \geq \prod_{i=1}^{N(n, H)} \mathbf{P}\left(I_{i}=0\right)=\left(1-p^{e_{H}}\right)^{N(n, H)}
$$

Finally, with $\Psi_{H}=n^{v_{H}} p^{e_{H}}$ and $p=p(n)<c<1$,
$\mathbf{P}\left(X_{G}=0\right) \geq \max _{H \subseteq G} \exp \left\{-\frac{\mathbf{E} X_{H}}{1-p}\right\}=\exp \left\{-\Theta\left(\min _{H \subseteq G} \Psi_{H}\right)\right.$

Random subsets

Γ - finite set, Γ_{p} - a random binomial subset of Γ (each element included independently with probability p),

Random subsets

Γ - finite set, Γ_{p} - a random binomial subset of Γ (each element included independently with probability p), \mathcal{S} - family of subsets of Γ,

Random subsets

Γ - finite set, Γ_{p} - a random binomial subset of Γ (each element included independently with probability p), \mathcal{S} - family of subsets of Γ, for each $A \in \mathcal{S}, I_{A}$ is the indicator of A in Γ_{p},

Random subsets

Γ - finite set, Γ_{p} - a random binomial subset of Γ (each element included independently with probability p), \mathcal{S} - family of subsets of Γ, for each $A \in \mathcal{S}, I_{A}$ is the indicator of A in Γ_{p},

$$
X=\sum_{A \in \mathcal{S}} I_{A}
$$

Random subsets

Γ - finite set, Γ_{p} - a random binomial subset of Γ (each element included independently with probability p), \mathcal{S} - family of subsets of Γ, for each $A \in \mathcal{S}, I_{A}$ is the indicator of A in Γ_{p},

$$
X=\sum_{A \in \mathcal{S}} I_{A}
$$

By FKG, $\mathbf{P}(X=0) \geq \exp \{-\mathbf{E} X /(1-p)\}$.

Random subsets

Γ - finite set, Γ_{p} - a random binomial subset of Γ (each element included independently with probability p), \mathcal{S} - family of subsets of Γ, for each $A \in \mathcal{S}, I_{A}$ is the indicator of A in Γ_{p},

$$
X=\sum_{A \in \mathcal{S}} I_{A}
$$

By FKG, $\mathbf{P}(X=0) \geq \exp \{-\mathbf{E} X /(1-p)\}$.
Example. $\Gamma=\binom{[n]}{2}, \Gamma_{p}=G(n, p), \mathcal{S}-$ all copies of G in $K_{n}, X=X_{G}$.

The Janson inequality

$$
\lambda=\mathbf{E} X, \quad \bar{\Delta}=\sum \sum_{A \cap B \neq \emptyset} \mathbf{E}\left(I_{A} I_{B}\right)
$$

The Janson inequality

$$
\begin{aligned}
\lambda & =\mathbf{E} X, \quad \bar{\Delta}=\sum \sum_{A \cap B \neq \emptyset} \mathbf{E}\left(I_{A} I_{B}\right) \\
\phi(x) & =(1+x) \log (1+x)-x, \quad x \geq-1
\end{aligned}
$$

The Janson inequality

$$
\begin{aligned}
\lambda & =\mathbf{E} X, \quad \bar{\Delta}=\sum \sum_{A \cap B \neq \emptyset} \mathbf{E}\left(I_{A} I_{B}\right) \\
\phi(x) & =(1+x) \log (1+x)-x, \quad x \geq-1
\end{aligned}
$$

Theorem (Janson, 1990) For all $0 \leq t \leq \lambda$

$$
\mathbf{P}(X \leq \lambda-t) \leq \exp \left\{-\frac{\phi(-t / \lambda) \lambda^{2}}{\bar{\Delta}}\right\} \leq \exp \left\{-\frac{t^{2}}{2 \bar{\Delta}}\right\}
$$

The Janson inequality

$$
\begin{aligned}
\lambda & =\mathbf{E} X, \quad \bar{\Delta}=\sum \sum_{A \cap B \neq \emptyset} \mathbf{E}\left(I_{A} I_{B}\right) \\
\phi(x) & =(1+x) \log (1+x)-x, \quad x \geq-1
\end{aligned}
$$

Theorem (Janson, 1990) For all $0 \leq t \leq \lambda$
$\mathbf{P}(X \leq \lambda-t) \leq \exp \left\{-\frac{\phi(-t / \lambda) \lambda^{2}}{\bar{\Delta}}\right\} \leq \exp \left\{-\frac{t^{2}}{2 \bar{\Delta}}\right\}$
Proof: by Laplace transforms, FKG and Jensen inequalities (omitted).

The Janson inequality

$$
\begin{aligned}
\lambda & =\mathbf{E} X, \quad \bar{\Delta}=\sum \sum_{A \cap B \neq \emptyset} \mathbf{E}\left(I_{A} I_{B}\right) \\
\phi(x) & =(1+x) \log (1+x)-x, \quad x \geq-1
\end{aligned}
$$

Theorem (Janson, 1990) For all $0 \leq t \leq \lambda$

$$
\mathbf{P}(X \leq \lambda-t) \leq \exp \left\{-\frac{\phi(-t / \lambda) \lambda^{2}}{\bar{\Delta}}\right\} \leq \exp \left\{-\frac{t^{2}}{2 \bar{\Delta}}\right\}
$$

Proof: by Laplace transforms, FKG and Jensen inequalities (omitted).
Note: for disjoint A 's, I_{A} 's are independent and we get the (lower tail) Chernoff bound.

The rate of decay of $\mathrm{P}(X=0)$

Corollary (Janson, Luczak, Ruciński, 1990)

$$
\mathbf{P}(X=0) \leq \exp \left\{-\frac{\lambda^{2}}{\bar{\Delta}}\right\}
$$

The rate of decay of $\mathrm{P}(X=0)$

Corollary (Janson, Łuczak, Ruciński, 1990)

$$
\mathbf{P}(X=0) \leq \exp \left\{-\frac{\lambda^{2}}{\bar{\Delta}}\right\}
$$

Proof: (Weaker version - Boppana, Spencer, 1989):

The rate of decay of $\mathbf{P}(X=0)$

Corollary (Janson, Łuczak, Ruciński, 1990)

$$
\mathbf{P}(X=0) \leq \exp \left\{-\frac{\lambda^{2}}{\bar{\Delta}}\right\}
$$

Proof: (Weaker version - Boppana, Spencer, 1989): let

$$
\Delta=\frac{1}{2} \sum_{A \neq B} \sum_{A \cap B \neq \emptyset} \mathbf{E}\left(I_{A} I_{B}\right),
$$

The rate of decay of $\mathbf{P}(X=0)$

Corollary (Janson, Luczak, Ruciński, 1990)

$$
\mathbf{P}(X=0) \leq \exp \left\{-\frac{\lambda^{2}}{\bar{\Delta}}\right\}
$$

Proof: (Weaker version - Boppana, Spencer, 1989): let

$$
\Delta=\frac{1}{2} \sum_{A \neq B} \sum_{A \cap B \neq \emptyset} \mathbf{E}\left(I_{A} I_{B}\right),
$$

thus $\bar{\Delta}=\lambda+2 \Delta$.

Proof of weaker version

First show: $\mathbf{P}(X=0) \leq \exp \{-\lambda+\Delta\}$.

Proof of weaker version

First show: $\mathbf{P}(X=0) \leq \exp \{-\lambda+\Delta\}$.
Enumerate $\mathcal{S}=\left\{A_{1}, \ldots, A_{k}\right\}$, denote $B_{i}=\left\{\Gamma_{p} \supseteq A_{i}\right\}$.

Proof of weaker version

First show: $\mathbf{P}(X=0) \leq \exp \{-\lambda+\Delta\}$.
Enumerate $\mathcal{S}=\left\{A_{1}, \ldots, A_{k}\right\}$, denote $B_{i}=\left\{\Gamma_{p} \supseteq A_{i}\right\}$. Then

$$
\lambda=\sum_{i=1}^{k} \mathbf{P}\left(B_{i}\right) \quad \text { and } \quad \Delta=\frac{1}{2} \sum_{i \sim j} \sum_{i \neq j} \mathbf{P}\left(B_{i} \cap B_{j}\right)
$$

Proof of weaker version

First show: $\mathbf{P}(X=0) \leq \exp \{-\lambda+\Delta\}$.
Enumerate $\mathcal{S}=\left\{A_{1}, \ldots, A_{k}\right\}$, denote $B_{i}=\left\{\Gamma_{p} \supseteq A_{i}\right\}$. Then

$$
\lambda=\sum_{i=1}^{k} \mathbf{P}\left(B_{i}\right) \quad \text { and } \quad \Delta=\frac{1}{2} \sum_{i \sim j} \sum_{i \neq j} \mathbf{P}\left(B_{i} \cap B_{j}\right)
$$

By the chain formula

$$
\mathbf{P}(X=0)=\mathbf{P}\left(\bigcap_{i=1}^{k} \bar{B}_{i}\right)=\prod_{i=1}^{k} \mathbf{P}\left(\bar{B}_{i} \mid \bigcap_{j=1}^{i-1} \bar{B}_{j}\right)
$$

Probability calculus

Notation: For $i \neq j, i \sim j$ if $A_{i} \cap A_{j} \neq \emptyset$, that is, if B_{i} and B_{j} are dependent.

Probability calculus

Notation: For $i \neq j, i \sim j$ if $A_{i} \cap A_{j} \neq \emptyset$, that is, if B_{i} and B_{j} are dependent.

$$
\mathbf{P}\left(B_{i} \mid \bigcap_{j=1}^{i-1} \bar{B}_{j}\right) \geq \mathbf{P}\left(B_{i} \cap \bigcap_{j \sim i} \bar{B}_{j} \mid \bigcap_{j \nsim i} \bar{B}_{j}\right) \geq
$$

Probability calculus

Notation: For $i \neq j, i \sim j$ if $A_{i} \cap A_{j} \neq \emptyset$, that is, if B_{i} and B_{j} are dependent.

$$
\begin{aligned}
& \mathbf{P}\left(B_{i} \mid \bigcap_{j=1}^{i-1} \bar{B}_{j}\right) \geq \mathbf{P}\left(B_{i} \cap \bigcap_{j \sim i} \bar{B}_{j} \mid \bigcap_{j \nsim i} \bar{B}_{j}\right) \geq \\
& \mathbf{P}\left(B_{i} \mid \bigcap_{j \nsim i} \bar{B}_{j}\right)-\mathbf{P}\left(B_{i} \cap \bigcup_{j \sim i} B_{j} \mid \bigcap_{j \nsim i} \bar{B}_{j}\right) \geq
\end{aligned}
$$

Probability calculus

Notation: For $i \neq j, i \sim j$ if $A_{i} \cap A_{j} \neq \emptyset$, that is, if B_{i} and B_{j} are dependent.

$$
\begin{array}{r}
\mathbf{P}\left(B_{i} \mid \bigcap_{j=1}^{i-1} \bar{B}_{j}\right) \geq \mathbf{P}\left(B_{i} \cap \bigcap_{j \sim i} \bar{B}_{j} \mid \bigcap_{j \nsim i} \bar{B}_{j}\right) \geq \\
\mathbf{P}\left(B_{i} \mid \bigcap_{j \nsim i} \bar{B}_{j}\right)-\mathbf{P}\left(B_{i} \cap \bigcup_{j \sim i} B_{j} \mid \bigcap_{j \nsim i} \bar{B}_{j}\right) \geq \\
\mathbf{P}\left(B_{i}\right)-\sum_{j \sim i} \mathbf{P}\left(B_{i} \cap B_{j}\right) \quad \text { by FKG }
\end{array}
$$

Putting together

$$
\begin{aligned}
\mathbf{P}\left(\bigcap_{i=1}^{k} \bar{B}_{i}\right) \leq & \prod_{i=1}^{k}\left(1-\mathbf{P}\left(B_{i}\right)+\sum_{j \sim i, j<i} \mathbf{P}\left(B_{i} \cap B_{j}\right)\right) \leq \\
& \exp \{-\lambda+\Delta\} \leq \exp \left\{-\frac{\lambda^{2}}{2(\lambda+2 \Delta)}\right\}
\end{aligned}
$$

Putting together

$$
\begin{aligned}
\mathbf{P}\left(\bigcap_{i=1}^{k} \bar{B}_{i}\right) \leq & \prod_{i=1}^{k}\left(1-\mathbf{P}\left(B_{i}\right)+\sum_{j \sim i, j<i} \mathbf{P}\left(B_{i} \cap B_{j}\right)\right) \leq \\
& \exp \{-\lambda+\Delta\} \leq \exp \left\{-\frac{\lambda^{2}}{2(\lambda+2 \Delta)}\right\}
\end{aligned}
$$

provided $\lambda \geq 2 \Delta$.

Putting together

$$
\begin{aligned}
\mathbf{P}\left(\bigcap_{i=1}^{k} \bar{B}_{i}\right) \leq & \prod_{i=1}^{k}\left(1-\mathbf{P}\left(B_{i}\right)+\sum_{j \sim i, j<i} \mathbf{P}\left(B_{i} \cap B_{j}\right)\right) \leq \\
& \exp \{-\lambda+\Delta\} \leq \exp \left\{-\frac{\lambda^{2}}{2(\lambda+2 \Delta)}\right\}
\end{aligned}
$$

provided $\lambda \geq 2 \Delta$. Otherwise ...

Putting together

$$
\begin{aligned}
\mathbf{P}\left(\bigcap_{i=1}^{k} \bar{B}_{i}\right) \leq & \prod_{i=1}^{k}\left(1-\mathbf{P}\left(B_{i}\right)+\sum_{j \sim i, j<i} \mathbf{P}\left(B_{i} \cap B_{j}\right)\right) \leq \\
& \exp \{-\lambda+\Delta\} \leq \exp \left\{-\frac{\lambda^{2}}{2(\lambda+2 \Delta)}\right\}
\end{aligned}
$$

provided $\lambda \geq 2 \Delta$. Otherwise ...
Note that above is true for any subset of indices from $[k]$.

The probabilistic method

Set

$$
q=\frac{\lambda}{2 \Delta}
$$

and $R=[k]_{q}$.

The probabilistic method

Set

$$
q=\frac{\lambda}{2 \Delta}
$$

and $R=[k]_{q}$. Let $I_{i}=1$ if $i \in R$ and $I_{i}=0$ otherwise.

The probabilistic method

Set

$$
q=\frac{\lambda}{2 \Delta}
$$

and $R=[k]_{q}$. Let $I_{i}=1$ if $i \in R$ and $I_{i}=0$ otherwise. Let

$$
Y=-\ln \mathbf{P}\left(\bigcap_{i \in R} \bar{B}_{i}\right)
$$

The probabilistic method

Set

$$
q=\frac{\lambda}{2 \Delta}
$$

and $R=[k]_{q}$. Let $I_{i}=1$ if $i \in R$ and $I_{i}=0$ otherwise.
Let

$$
Y=-\ln \mathbf{P}\left(\bigcap_{i \in R} \bar{B}_{i}\right)
$$

and

$$
Z=\sum_{i=1}^{k} \mathbf{P}\left(B_{i}\right) I_{i}-\frac{1}{2} \sum_{i \sim j} \sum_{i \neq j} \mathbf{P}\left(B_{i} \cap B_{j}\right) I_{i} I_{j}
$$

The probabilistic method - cont.

Thus

$$
Y \geq Z \text { and } \mathbf{E} Y \geq \mathbf{E} Z
$$

The probabilistic method - cont.

Thus

$$
Y \geq Z \text { and } \mathbf{E} Y \geq \mathbf{E} Z=\lambda q-\Delta q^{2}=\frac{\lambda^{2}}{4 \Delta}
$$

The probabilistic method - cont.

Thus

$$
Y \geq Z \text { and } \mathbf{E} Y \geq \mathbf{E} Z=\lambda q-\Delta q^{2}=\frac{\lambda^{2}}{4 \Delta}
$$

So, there is $S \subseteq[k]$ such that

$$
Y(S)=-\ln \mathbf{P}\left(\bigcap_{i \in S} \bar{B}_{i}\right) \geq \frac{\lambda^{2}}{4 \Delta}
$$

The probabilistic method - cont.

Thus

$$
Y \geq Z \text { and } \mathbf{E} Y \geq \mathbf{E} Z=\lambda q-\Delta q^{2}=\frac{\lambda^{2}}{4 \Delta}
$$

So, there is $S \subseteq[k]$ such that

$$
\begin{aligned}
Y(S) & =-\ln \mathbf{P}\left(\bigcap_{i \in S} \bar{B}_{i}\right) \geq \frac{\lambda^{2}}{4 \Delta} \quad \text { and } \\
\mathbf{P}\left(\bigcap_{i=1}^{k} \bar{B}_{i}\right) & \leq \exp \left\{-\frac{\lambda^{2}}{4 \Delta}\right\}
\end{aligned}
$$

The probabilistic method - cont.

Thus

$$
Y \geq Z \text { and } \mathbf{E} Y \geq \mathbf{E} Z=\lambda q-\Delta q^{2}=\frac{\lambda^{2}}{4 \Delta}
$$

So, there is $S \subseteq[k]$ such that

$$
\begin{gathered}
Y(S)=-\ln \mathbf{P}\left(\bigcap_{i \in S} \bar{B}_{i}\right) \geq \frac{\lambda^{2}}{4 \Delta} \text { and } \\
\mathbf{P}\left(\bigcap_{i=1}^{k} \bar{B}_{i}\right) \leq \exp \left\{-\frac{\lambda^{2}}{4 \Delta}\right\} \leq \exp \left\{-\frac{\lambda^{2}}{2(\lambda+2 \Delta)}\right\}
\end{gathered}
$$

Back to subgraphs

$$
\bar{\Delta}=\sum_{H \subseteq G} \sum_{G_{\cap} G_{j}=H} p^{2 e_{G}-e_{H}}
$$

Back to subgraphs

$$
\bar{\Delta}=\sum_{H \subseteq G} \sum_{G_{i} \cap G_{j}=H} p^{2 e_{G}-e_{H}}=\Theta\left(\frac{\left(\mathbf{E} X_{G}\right)^{2}}{\min _{H} \Psi_{H}}\right)
$$

Back to subgraphs

$$
\bar{\Delta}=\sum_{H \subseteq G} \sum_{G_{n} G_{j}=H} p^{2^{2 e_{-G}-e_{H}}}=\Theta\left(\frac{\left(\mathbf{E} X_{G}\right)^{2}}{\min _{H} \Psi_{H}}\right)
$$

SO

$$
\mathbf{P}\left(X_{G}=0\right)=\exp \left\{-\Theta\left(\min _{H \subseteq G} \Psi_{H}\right)\right\}
$$

Back to subgraphs

$$
\bar{\Delta}=\sum_{H \subseteq G} \sum_{G_{n} G_{j}=H} p^{2^{2 e_{-G}-e_{H}}}=\Theta\left(\frac{\left(\mathbf{E} X_{G}\right)^{2}}{\min _{H} \Psi_{H}}\right)
$$

SO

$$
\mathbf{P}\left(X_{G}=0\right)=\exp \left\{-\Theta\left(\min _{H \subseteq G} \Psi_{H}\right)\right\}
$$

$\left(\right.$ recall $\left.\Psi_{H}=n^{v_{H}} p^{e_{H}}\right)$

Two milestones

$$
\min _{H} \Psi_{H}=\Omega(n) \quad \text { iff } \quad p=\Omega\left(n^{-1 / m_{G}^{(1)}}\right)
$$

Two milestones

$$
\min _{H} \Psi_{H}=\Omega(n) \quad \text { iff } \quad p=\Omega\left(n^{-1 / m_{G}^{(1)}}\right)
$$

where

$$
m_{G}^{(1)}=\max _{H \subseteq G} \frac{e_{H}}{v_{H}-1}
$$

Two milestones

$$
\min _{H} \Psi_{H}=\Omega(n) \quad \text { iff } \quad p=\Omega\left(n^{-1 / m_{G}^{(1)}}\right)
$$

where

$$
m_{G}^{(1)}=\max _{H \subseteq G} \frac{e_{H}}{v_{H}-1}
$$

$$
\min _{H} \Psi_{H}=\Omega\left(n^{2} p\right) \quad \text { iff } \quad p=\Omega\left(n^{-1 / m_{G}^{(2)}}\right)
$$

Two milestones

$$
\min _{H} \Psi_{H}=\Omega(n) \quad \text { iff } \quad p=\Omega\left(n^{-1 / m_{G}^{(1)}}\right)
$$

where

$$
m_{G}^{(1)}=\max _{H \subseteq G} \frac{e_{H}}{v_{H}-1}
$$

$$
\min _{H} \Psi_{H}=\Omega\left(n^{2} p\right) \quad \text { iff } \quad p=\Omega\left(n^{-1 / m_{G}^{(2)}}\right)
$$

where

$$
m_{G}^{(2)}=\max _{H \subseteq G} \frac{e_{H}-1}{v_{H}-2}
$$

Almost perfect G-factors

Set $G=K_{3}, m_{K_{3}}^{(1)}=3 / 2$.

Almost perfect G-factors

Set $G=K_{3}, m_{K_{3}}^{(1)}=3 / 2$.
Proposition Fix $\epsilon>0$ and let $p \geq C_{\epsilon} n^{-2 / 3}$.

Almost perfect G-factors

Set $G=K_{3}, m_{K_{3}}^{(1)}=3 / 2$.
Proposition Fix $\epsilon>0$ and let $p \geq C_{\epsilon} n^{-2 / 3}$. Then, a.a.s., all but at most ϵ n vertices of $G(n, p)$ can be covered by vertex-disjoint triangles.

Almost perfect G-factors

Set $G=K_{3}, m_{K_{3}}^{(1)}=3 / 2$.
Proposition Fix $\epsilon>0$ and let $p \geq C_{\epsilon} n^{-2 / 3}$. Then, a.a.s., all but at most ϵ n vertices of $G(n, p)$ can be covered by vertex-disjoint triangles.
Proof: The probability of opposite event can be bounded by

Almost perfect G-factors

Set $G=K_{3}, m_{K_{3}}^{(1)}=3 / 2$.
Proposition Fix $\epsilon>0$ and let $p \geq C_{\epsilon} n^{-2 / 3}$. Then, a.a.s., all but at most ϵ n vertices of $G(n, p)$ can be covered by vertex-disjoint triangles.
Proof: The probability of opposite event can be bounded by
$\mathbf{P}($ there is an ϵn-subset with no triangle $) \leq$

Almost perfect G-factors

Set $G=K_{3}, m_{K_{3}}^{(1)}=3 / 2$.
Proposition Fix $\epsilon>0$ and let $p \geq C_{\epsilon} n^{-2 / 3}$. Then, a.a.s., all but at most ϵ n vertices of $G(n, p)$ can be covered by vertex-disjoint triangles.
Proof: The probability of opposite event can be bounded by
$\mathbf{P}($ there is an ϵn-subset with no triangle $) \leq$
$\binom{n}{\epsilon n} \mathbf{P}\left(G(\epsilon n, p) \not \supset K_{3}\right)<2^{n} \mathbf{P}\left(X_{K_{3}}(\epsilon n, p)=0\right) \leq$

Almost perfect G-factors

Set $G=K_{3}, m_{K_{3}}^{(1)}=3 / 2$.
Proposition Fix $\epsilon>0$ and let $p \geq C_{\epsilon} n^{-2 / 3}$. Then, a.a.s., all but at most ϵ n vertices of $G(n, p)$ can be covered by vertex-disjoint triangles.
Proof: The probability of opposite event can be bounded by
$\mathbf{P}($ there is an ϵn-subset with no triangle $) \leq$
$\binom{n}{\epsilon n} \mathbf{P}\left(G(\epsilon n, p) \not \supset K_{3}\right)<2^{n} \mathbf{P}\left(X_{K_{3}}(\epsilon n, p)=0\right) \leq$

$$
2^{n} e^{-\Theta(n)} \rightarrow 0
$$

Open problem

Find the threshold for the existence of a perfect triangle-factor in $G(n, p)$.

Open problem

Find the threshold for the existence of a perfect triangle-factor in $G(n, p)$.

Conjecture The threshold is

$$
p_{0}=n^{-2 / 3} \log ^{1 / 3} n
$$

Open problem

Find the threshold for the existence of a perfect triangle-factor in $G(n, p)$.

Conjecture The threshold is

$$
p_{0}=n^{-2 / 3} \log ^{1 / 3} n
$$

Krivelevich: $p_{0} \leq n^{-3 / 5}(\Omega(n)$ copies of the diamond $)$.

Open problem

Find the threshold for the existence of a perfect triangle-factor in $G(n, p)$.

Conjecture The threshold is

$$
p_{0}=n^{-2 / 3} \log ^{1 / 3} n
$$

Krivelevich: $p_{0} \leq n^{-3 / 5}(\Omega(n)$ copies of the diamond).
Kim: even better

Open problem

Find the threshold for the existence of a perfect triangle-factor in $G(n, p)$.

Conjecture The threshold is

$$
p_{0}=n^{-2 / 3} \log ^{1 / 3} n
$$

Krivelevich: $p_{0} \leq n^{-3 / 5}(\Omega(n)$ copies of the diamond).
Kim: even better
Alon-Yuster, Ruciński: $p_{0}=n^{-2 / 3}$ is the threshold for a perfect ($K_{4}-K_{1,2}$)-factor.

Vertex-partition properties

Arrow notation: $F \rightarrow(G)_{r}^{v}$ means that every r-coloring of the vertices of F results in a monochromatic copy of G.

Vertex-partition properties

Arrow notation: $F \rightarrow(G)_{r}^{v}$ means that every r-coloring of the vertices of F results in a monochromatic copy of G.
Theorem (Luczak, Ruciński, Voigt (1992)) For every $r \geq 2, p_{0}=n^{-1 / m_{G}^{(1)}}$ is the threshold for the property $G(n, p) \rightarrow(G)_{r}^{v}$.

Vertex-partition properties

Arrow notation: $F \rightarrow(G)_{r}^{v}$ means that every r-coloring of the vertices of F results in a monochromatic copy of G.
Theorem (Luczak, Ruciński, Voigt (1992)) For every $r \geq 2, p_{0}=n^{-1 / m_{G}^{(1)}}$ is the threshold for the property $G(n, p) \rightarrow(G)_{r}^{v}$.
Proof: (the easy part)

Vertex-partition properties

Arrow notation: $F \rightarrow(G)_{r}^{v}$ means that every r-coloring of the vertices of F results in a monochromatic copy of G.
Theorem (Luczak, Ruciński, Voigt (1992)) For every
$r \geq 2, p_{0}=n^{-1 / m_{G}^{(1)}}$ is the threshold for the property
$G(n, p) \rightarrow(G)_{r}^{v}$.
Proof: (the easy part)
$\mathbf{P}\left(G(n, p) \nrightarrow(G)_{r}^{v}\right) \leq\binom{ n}{\lceil n / r\rceil} \mathbf{P}(G(\lceil n / r\rceil, p) \not \supset G)$.

Vertex-partition properties

Arrow notation: $F \rightarrow(G)_{r}^{v}$ means that every r-coloring of the vertices of F results in a monochromatic copy of G.
Theorem (Luczak, Ruciński, Voigt (1992)) For every $r \geq 2, p_{0}=n^{-1 / m_{G}^{(1)}}$ is the threshold for the property $G(n, p) \rightarrow(G)_{r}^{v}$.
Proof: (the easy part)
$\mathbf{P}\left(G(n, p) \nrightarrow(G)_{r}^{v}\right) \leq\binom{ n}{\lceil n / r\rceil} \mathbf{P}(G(\lceil n / r\rceil, p) \not \supset G)$.
Note: this threshold is sharp (Friedgut, Krivelevich, 1999)

A question of Erdós

Pigeon-hole: $K_{5} \rightarrow\left(K_{3}\right)_{2}^{v}$.

A question of Erdós

Pigeon-hole: $K_{5} \rightarrow\left(K_{3}\right)_{2}^{v}$.
Easy: $K_{1}+C_{7}^{2} \rightarrow\left(K_{3}\right)_{2}^{v}$.

A question of Erdós

Pigeon-hole: $K_{5} \rightarrow\left(K_{3}\right)_{2}^{v}$.
Easy: $K_{1}+C_{7}^{2} \rightarrow\left(K_{3}\right)_{2}^{v}$. Note: $K_{1}+C_{7}^{2} \not \supset K_{5}$.

A question of Erdós

Pigeon-hole: $K_{5} \rightarrow\left(K_{3}\right)_{2}^{v}$.
Easy: $K_{1}+C_{7}^{2} \rightarrow\left(K_{3}\right)_{2}^{v}$. Note: $K_{1}+C_{7}^{2} \not \supset K_{5}$.
Erdős: Does there exist an F such that $F \not \supset K_{4}$ and $F \rightarrow\left(K_{3}\right)_{2}^{v}$?

A question of Erdós

Pigeon-hole: $K_{5} \rightarrow\left(K_{3}\right)_{2}^{v}$.
Easy: $K_{1}+C_{7}^{2} \rightarrow\left(K_{3}\right)_{2}^{v}$. Note: $K_{1}+C_{7}^{2} \not \supset K_{5}$.
Erdős: Does there exist an F such that $F \not \supset K_{4}$ and $F \rightarrow\left(K_{3}\right)_{2}^{v}$?

YES!!! (Erdős, Rogers (1962) and Folkman (1970)).

A question of Erdós

Pigeon-hole: $K_{5} \rightarrow\left(K_{3}\right)_{2}^{v}$.
Easy: $K_{1}+C_{7}^{2} \rightarrow\left(K_{3}\right)_{2}^{v}$. Note: $K_{1}+C_{7}^{2} \not \supset K_{5}$.
Erdős: Does there exist an F such that $F \not \supset K_{4}$ and $F \rightarrow\left(K_{3}\right)_{2}^{v}$?

YES!!! (Erdős, Rogers (1962) and Folkman (1970)).
Set $p=C n^{-2 / 3}$, so that
$\mathbf{P}\left(G(n, p) \rightarrow\left(K_{3}\right)_{2}^{v}\right)=1-o(1)$.

A question of Erdós

Pigeon-hole: $K_{5} \rightarrow\left(K_{3}\right)_{2}^{v}$.
Easy: $K_{1}+C_{7}^{2} \rightarrow\left(K_{3}\right)_{2}^{v}$. Note: $K_{1}+C_{7}^{2} \not \supset K_{5}$.
Erdős: Does there exist an F such that $F \not \supset K_{4}$ and $F \rightarrow\left(K_{3}\right)_{2}^{v}$?

YES!!! (Erdős, Rogers (1962) and Folkman (1970)).
Set $p=C n^{-2 / 3}$, so that
$\mathbf{P}\left(G(n, p) \rightarrow\left(K_{3}\right)_{2}^{v}\right)=1-o(1)$.
We know: $\mathbf{P}\left(X_{K_{4}}=0\right) \sim e^{-\lambda} \sim c_{0}>0$

A question of Erdós

Pigeon-hole: $K_{5} \rightarrow\left(K_{3}\right)_{2}^{v}$.
Easy: $K_{1}+C_{7}^{2} \rightarrow\left(K_{3}\right)_{2}^{v}$. Note: $K_{1}+C_{7}^{2} \not \supset K_{5}$.
Erdős: Does there exist an F such that $F \not \supset K_{4}$ and $F \rightarrow\left(K_{3}\right)_{2}^{v}$?

YES!!! (Erdős, Rogers (1962) and Folkman (1970)).
Set $p=C n^{-2 / 3}$, so that
$\mathbf{P}\left(G(n, p) \rightarrow\left(K_{3}\right)_{2}^{v}\right)=1-o(1)$.
We know: $\mathbf{P}\left(X_{K_{4}}=0\right) \sim e^{-\lambda} \sim c_{0}>0$
Switching to the model $G(n, M)$: about $c_{0}\binom{\binom{n}{2}}{(C / 2) n^{4 / 3}}$ graphs with n vertices and $M=(C / 2) n^{4 / 3}$ edges are such.

Ramsey properties

$F \rightarrow(G)_{r}^{e}$ means that every r-coloring of the edges of F results in a monochromatic copy of G.

Ramsey properties

$F \rightarrow(G)_{r}^{e}$ means that every r-coloring of the edges of F results in a monochromatic copy of G.

Theorem (Rödl, Ruciński (1995)) For every $r \geq 2$, $p_{0}=n^{-1 / m_{G}^{(2)}}$ is the threshold for the property $G(n, p) \rightarrow(G)_{r}^{e}$.

Ramsey properties

$F \rightarrow(G)_{r}^{e}$ means that every r-coloring of the edges of F results in a monochromatic copy of G.

Theorem (Rödl, Ruciński (1995)) For every $r \geq 2$,
$p_{0}=n^{-1 / m_{G}^{(2)}}$ is the threshold for the property
$G(n, p) \rightarrow(G)_{r}^{e}$.
Proof: see J. AMS (1995)

Ramsey properties

$F \rightarrow(G)_{r}^{e}$ means that every r-coloring of the edges of F results in a monochromatic copy of G.

Theorem (Rödl, Ruciński (1995)) For every $r \geq 2$, $p_{0}=n^{-1 / m_{G}^{(2)}}$ is the threshold for the property $G(n, p) \rightarrow(G)_{r}^{e}$.
Proof: see J. AMS (1995)
Theorem (Friedgut,Rödl, Ruciński,Tetali (2005)) The property $G(n, p) \rightarrow\left(K_{3}\right)_{2}^{e}$ has a sharp threshold.

Ramsey properties

$F \rightarrow(G)_{r}^{e}$ means that every r-coloring of the edges of F results in a monochromatic copy of G.

Theorem (Rödl, Ruciński (1995)) For every $r \geq 2$, $p_{0}=n^{-1 / m_{G}^{(2)}}$ is the threshold for the property $G(n, p) \rightarrow(G)_{r}^{e}$.
Proof: see J. AMS (1995)
Theorem (Friedgut,Rödl, Ruciński,Tetali (2005)) The property $G(n, p) \rightarrow\left(K_{3}\right)_{2}^{e}$ has a sharp threshold. Proof: 99 pages long proof omitted.

Turán properties

$$
\begin{aligned}
e x(n, G) & =\max \left\{e_{F}: G \nsubseteq F \subseteq K_{n}\right\} \\
& =
\end{aligned}
$$

Turán properties

$$
\begin{aligned}
e x(n, G) & =\max \left\{e_{F}: G \nsubseteq F \subseteq K_{n}\right\} \\
& =\left(1-\frac{1}{\chi(G)-1}+o(1)\right)\binom{n}{2}
\end{aligned}
$$

Turán properties

$$
\begin{aligned}
e x(n, G) & =\max \left\{e_{F}: G \nsubseteq F \subseteq K_{n}\right\} \\
& =\left(1-\frac{1}{\chi(G)-1}+o(1)\right)\binom{n}{2}
\end{aligned}
$$

(Turán, Erdős, Stone, Simonovits 1941-1966)

Turán properties

$$
\begin{aligned}
e x(n, G) & =\max \left\{e_{F}: G \nsubseteq F \subseteq K_{n}\right\} \\
& =\left(1-\frac{1}{\chi(G)-1}+o(1)\right)\binom{n}{2}
\end{aligned}
$$

(Turán, Erdős, Stone, Simonovits 1941-1966)
If $p \ll n^{-1 / m_{G}^{(2)}}$ then $\min _{H} \Psi_{H} \ll n^{2} p$

Turán properties

$$
\begin{aligned}
e x(n, G) & =\max \left\{e_{F}: G \nsubseteq F \subseteq K_{n}\right\} \\
& =\left(1-\frac{1}{\chi(G)-1}+o(1)\right)\binom{n}{2}
\end{aligned}
$$

(Turán, Erdős, Stone, Simonovits 1941-1966)
If $p \ll n^{-1 / m_{G}^{(2)}}$ then $\min _{H} \Psi_{H} \ll n^{2} p$ and for some $H \subseteq G$, a.a.s $X_{H} \ll n^{2} p$.

Turán properties

$$
\begin{aligned}
e x(n, G) & =\max \left\{e_{F}: G \nsubseteq F \subseteq K_{n}\right\} \\
& =\left(1-\frac{1}{\chi(G)-1}+o(1)\right)\binom{n}{2}
\end{aligned}
$$

(Turán, Erdős, Stone, Simonovits 1941-1966)
If $p \ll n^{-1 / m_{G}^{(2)}}$ then $\min _{H} \Psi_{H} \ll n^{2} p$ and for some $H \subseteq G$, a.a.s $X_{H} \ll n^{2} p$.
It is then possible to destroy all copies of G by deleting $o\left(n^{2} p\right)$ edges

Turán properties

$$
\begin{aligned}
e x(n, G) & =\max \left\{e_{F}: G \nsubseteq F \subseteq K_{n}\right\} \\
& =\left(1-\frac{1}{\chi(G)-1}+o(1)\right)\binom{n}{2}
\end{aligned}
$$

(Turán, Erdős, Stone, Simonovits 1941-1966)
If $p \ll n^{-1 / m_{G}^{(2)}}$ then $\min _{H} \Psi_{H} \ll n^{2} p$ and for some $H \subseteq G$, a.a.s $X_{H} \ll n^{2} p$.
It is then possible to destroy all copies of G by deleting $o\left(n^{2} p\right)$ edges - the Turán property does not hold for $G(n, p)$ in this case.

Turán properties for $G(n, p)$

Conjecture For every $\eta>0$ there is $C>0$ such that if $p \geq C n^{-1 / m_{G}^{(2)}}$ then a.a.s. every subgraph of $G(n, p)$ with at least

$$
\left(1-\frac{1}{\chi(G)-1}+\eta\right)\binom{n}{2} p
$$

edges contains a copy of G.

Turán properties for $G(n, p)$

Conjecture For every $\eta>0$ there is $C>0$ such that if
$p \geq C n^{-1 / m_{G}^{(2)}}$ then a.a.s. every subgraph of $G(n, p)$ with at least

$$
\left(1-\frac{1}{\chi(G)-1}+\eta\right)\binom{n}{2} p
$$

edges contains a copy of G.

True for $G=K_{3}, K_{4}, K_{5}, K_{6}$ and for all cycles $G=C_{k}$.

Turán properties for $G(n, p)$

Conjecture For every $\eta>0$ there is $C>0$ such that if
$p \geq C n^{-1 / m_{G}^{(2)}}$ then a.a.s. every subgraph of $G(n, p)$ with at least

$$
\left(1-\frac{1}{\chi(G)-1}+\eta\right)\binom{n}{2} p
$$

edges contains a copy of G.

True for $G=K_{3}, K_{4}, K_{5}, K_{6}$ and for all cycles $G=C_{k}$. (Frankl, Füredi, Gerke, Haxell, Kohayakawa, Kreuter, Łuczak, Rödl, Sabo, Schacht, Steger, Taraz, Vu, ...)

Upper tails - early results (Vu 2001)

$\mathbf{P}\left(X_{G} \geq t \mathbf{E} X_{G}\right)$

Upper tails - early results (Vu 2001)

$$
\mathbf{P}\left(X_{G} \geq t \mathbf{E} X_{G}\right)
$$

For all balanced graphs G

$$
\mathbf{P}\left(X_{G} \geq t \mathbf{E} X_{G}\right) \leq \exp \left\{-c_{\epsilon} \Psi_{G}^{1 /\left(v_{G}-1\right)}\right\}
$$

Upper tails - early results (Vu 2001)

$$
\mathbf{P}\left(X_{G} \geq t \mathbf{E} X_{G}\right)
$$

For all balanced graphs G

$$
\mathbf{P}\left(X_{G} \geq t \mathbf{E} X_{G}\right) \leq \exp \left\{-c_{\epsilon} \Psi_{G}^{1 /\left(v_{G}-1\right)}\right\}
$$

For all graphs G

$$
\mathbf{P}\left(X_{G} \geq t \mathbf{E} X_{G}\right) \geq \exp \left\{-C_{\epsilon} \Psi_{G}^{1 / \alpha_{G}^{*}} \log (1 / p)\right\}
$$

Upper tails - early results (Vu 2001)

$$
\mathbf{P}\left(X_{G} \geq t \mathbf{E} X_{G}\right)
$$

For all balanced graphs G

$$
\mathbf{P}\left(X_{G} \geq t \mathbf{E} X_{G}\right) \leq \exp \left\{-c_{\epsilon} \Psi_{G}^{1 /\left(v_{G}-1\right)}\right\}
$$

For all graphs G

$$
\mathbf{P}\left(X_{G} \geq t \mathbf{E} X_{G}\right) \geq \exp \left\{-C_{\epsilon} \Psi_{G}^{1 / \alpha_{G}^{*}} \log (1 / p)\right\}
$$

where α_{G}^{*} is the fractional independence number of G.

Upper tails - early results (Vu 2001)

$$
\mathbf{P}\left(X_{G} \geq t \mathbf{E} X_{G}\right)
$$

For all balanced graphs G

$$
\mathbf{P}\left(X_{G} \geq t \mathbf{E} X_{G}\right) \leq \exp \left\{-c_{\epsilon} \Psi_{G}^{1 /\left(v_{G}-1\right)}\right\}
$$

For all graphs G

$$
\mathbf{P}\left(X_{G} \geq t \mathbf{E} X_{G}\right) \geq \exp \left\{-C_{\epsilon} \Psi_{G}^{1 / \alpha_{G}^{*}} \log (1 / p)\right\}
$$

where α_{G}^{*} is the fractional independence number of G. These bounds are far apart (they essentially match each other only for stars $K_{1, k}$).

Fractional independence number

α_{G}^{*} is the largest value of $\sum_{v} \alpha_{v}$ over all weightings $\alpha_{v} \in[0,1]$ of $V(G)$ satisfying:

$$
\alpha_{v}+\alpha_{w} \leq 1 \quad \text { for all } v w \in E(G)
$$

Fractional independence number

α_{G}^{*} is the largest value of $\sum_{v} \alpha_{v}$ over all weightings $\alpha_{v} \in[0,1]$ of $V(G)$ satisfying:

$$
\alpha_{v}+\alpha_{w} \leq 1 \quad \text { for all } v w \in E(G)
$$

Properties (assume $e_{G}>0$):

Fractional independence number

α_{G}^{*} is the largest value of $\sum_{v} \alpha_{v}$ over all weightings $\alpha_{v} \in[0,1]$ of $V(G)$ satisfying:

$$
\alpha_{v}+\alpha_{w} \leq 1 \quad \text { for all } v w \in E(G)
$$

Properties (assume $e_{G}>0$):

- for regular $G, \alpha_{G}^{*}=v_{G} / 2$

Fractional independence number

α_{G}^{*} is the largest value of $\sum_{v} \alpha_{v}$ over all weightings $\alpha_{v} \in[0,1]$ of $V(G)$ satisfying:

$$
\alpha_{v}+\alpha_{w} \leq 1 \quad \text { for all } v w \in E(G)
$$

Properties (assume $e_{G}>0$):

- for regular $G, \alpha_{G}^{*}=v_{G} / 2$
- for bipartite $G, \alpha_{G}^{*}=\alpha_{G}$

Fractional independence number

α_{G}^{*} is the largest value of $\sum_{v} \alpha_{v}$ over all weightings $\alpha_{v} \in[0,1]$ of $V(G)$ satisfying:

$$
\alpha_{v}+\alpha_{w} \leq 1 \quad \text { for all } v w \in E(G)
$$

Properties (assume $e_{G}>0$):

- for regular $G, \alpha_{G}^{*}=v_{G} / 2$
- for bipartite $G, \alpha_{G}^{*}=\alpha_{G}$
- for all G,

$$
1 \leq \frac{1}{2} v_{G} \leq \alpha_{G}^{*} \leq v_{G}-\frac{e_{G}}{\Delta_{G}} \leq v_{G}-1
$$

Toward a general, tight upper tail

$N(F, G)$ - the number of copies of G in F

Toward a general, tight upper tail

$N(F, G)$ - the number of copies of G in F (so, $\left.N\left(K_{n}, G\right)=N(n, G)\right)$.

Toward a general, tight upper tail

$N(F, G)$ - the number of copies of G in F (so, $\left.N\left(K_{n}, G\right)=N(n, G)\right)$.
$N(n, m, G)$ - the maximum of $N(F, G)$ over all graphs
F with $v_{F} \leq n$ and $e_{F} \leq m$.

Toward a general, tight upper tail

$N(F, G)$ - the number of copies of G in F (so, $\left.N\left(K_{n}, G\right)=N(n, G)\right)$.
$N(n, m, G)$ - the maximum of $N(F, G)$ over all graphs
F with $v_{F} \leq n$ and $e_{F} \leq m$.

$$
\begin{aligned}
& M_{G}^{*}=M_{G}^{*}(n, p):= \\
& \left\{\begin{array}{lll}
\max \left\{m \leq\binom{ n}{2}: \forall H \subseteq G\right. & \left.N(n, m, H) \leq \Psi_{H}\right\} & p \geq n^{-2} \\
1 & & p<n^{-2}
\end{array}\right.
\end{aligned}
$$

Toward a general, tight upper tail

$N(F, G)$ - the number of copies of G in F (so, $\left.N\left(K_{n}, G\right)=N(n, G)\right)$.
$N(n, m, G)$ - the maximum of $N(F, G)$ over all graphs
F with $v_{F} \leq n$ and $e_{F} \leq m$.
$M_{G}^{*}=M_{G}^{*}(n, p):=$
$\left\{\begin{array}{lll}\max \left\{m \leq\binom{ n}{2}: \forall H \subseteq G\right. & \left.N(n, m, H) \leq \Psi_{H}\right\} & p \geq n^{-2} \\ 1 & & p<n^{-2} .\end{array}\right.$
Recall

$$
\Psi_{H}=n^{v_{H}} p^{e_{H}}
$$

Upper tail - new result

Theorem (Janson, Oleszkiewicz, Ruciński (2004))
For every graph G and for every $t>1$ there exist constants $c(t, G)>0$ and $C(t, G)>0$ such that for all $n \geq v_{G}$ and $p \in(0,1)$

Upper tail - new result

Theorem (Janson, Oleszkiewicz, Ruciński (2004))
For every graph G and for every $t>1$ there exist constants $c(t, G)>0$ and $C(t, G)>0$ such that for all $n \geq v_{G}$ and $p \in(0,1)$

$$
\mathbf{P}\left(X_{G} \geq t \mathbf{E} X_{G}\right) \leq \exp \left\{-c(t, G) M_{G}^{*}(n, p)\right\}
$$

Upper tail - new result

Theorem (Janson, Oleszkiewicz, Ruciński (2004))
For every graph G and for every $t>1$ there exist constants $c(t, G)>0$ and $C(t, G)>0$ such that for all $n \geq v_{G}$ and $p \in(0,1)$

$$
\mathbf{P}\left(X_{G} \geq t \mathbf{E} X_{G}\right) \leq \exp \left\{-c(t, G) M_{G}^{*}(n, p)\right\}
$$

and, provided $t \mathbf{E} X_{G} \leq N(n, G)$,

Upper tail - new result

Theorem (Janson, Oleszkiewicz, Ruciński (2004))
For every graph G and for every $t>1$ there exist constants $c(t, G)>0$ and $C(t, G)>0$ such that for all $n \geq v_{G}$ and $p \in(0,1)$

$$
\mathbf{P}\left(X_{G} \geq t \mathbf{E} X_{G}\right) \leq \exp \left\{-c(t, G) M_{G}^{*}(n, p)\right\}
$$

and, provided $t \mathbf{E} X_{G} \leq N(n, G)$,

$$
\mathbf{P}\left(X_{G} \geq t \mathbf{E} X_{G}\right) \geq p^{C(t, G) M_{G}^{*}(n, p)}
$$

Upper tail - new result

Theorem (Janson, Oleszkiewicz, Ruciński (2004))
For every graph G and for every $t>1$ there exist constants $c(t, G)>0$ and $C(t, G)>0$ such that for all $n \geq v_{G}$ and $p \in(0,1)$

$$
\mathbf{P}\left(X_{G} \geq t \mathbf{E} X_{G}\right) \leq \exp \left\{-c(t, G) M_{G}^{*}(n, p)\right\}
$$

and, provided $t \mathbf{E} X_{G} \leq N(n, G)$,

$$
\mathbf{P}\left(X_{G} \geq t \mathbf{E} X_{G}\right) \geq p^{C(t, G) M_{G}^{*}(n, p)}
$$

If $t \mathbf{E} X_{G}>N(n, G)$, the probability is trivially 0 .

Upper tail - new result

Theorem (Janson, Oleszkiewicz, Ruciński (2004))

For every graph G and for every $t>1$ there exist constants $c(t, G)>0$ and $C(t, G)>0$ such that for all $n \geq v_{G}$ and $p \in(0,1)$

$$
\mathbf{P}\left(X_{G} \geq t \mathbf{E} X_{G}\right) \leq \exp \left\{-c(t, G) M_{G}^{*}(n, p)\right\}
$$

and, provided $t \mathbf{E} X_{G} \leq N(n, G)$,

$$
\mathbf{P}\left(X_{G} \geq t \mathbf{E} X_{G}\right) \geq p^{C(t, G) M_{G}^{*}(n, p)}
$$

If $t \mathbf{E} X_{G}>N(n, G)$, the probability is trivially 0 .
If $t \mathbf{E} X_{G} \leq N(n, G)$ then $t p^{e_{G}} \leq 1$, so $p \leq t^{-1 / e_{G}}<1$.

$N(n, m, H)$ explicitly

Theorem For every graph H without isolated vertices, and for all $m \geq e_{H}$ and $n \geq v_{H}$, we have,

$N(n, m, H)$ explicitly

Theorem For every graph H without isolated vertices, and for all $m \geq e_{H}$ and $n \geq v_{H}$, we have,
$N(n, m, H)= \begin{cases}\Theta\left(m^{\alpha_{H}^{*}}\right) & \text { if } m \leq n(\text { Alon 1981) } \\ \end{cases}$

$N(n, m, H)$ explicitly

Theorem For every graph H without isolated vertices, and for all $m \geq e_{H}$ and $n \geq v_{H}$, we have,

$$
N(n, m, H)= \begin{cases}\Theta\left(m^{\alpha_{H}^{*}}\right) & \text { if } m \leq n(\text { Alon 1981 }) \\ \Theta\left(m^{v_{H}-\alpha_{H}^{*}} n^{2 \alpha_{H}^{*}-v_{H}}\right) & \text { if } n \leq m \leq\binom{ n}{2}\end{cases}
$$

$N(n, m, H)$ explicitly

Theorem For every graph H without isolated vertices, and for all $m \geq e_{H}$ and $n \geq v_{H}$, we have,

$$
N(n, m, H)= \begin{cases}\Theta\left(m^{\alpha_{H}^{*}}\right) & \text { if } m \leq n(\text { Alon 1981 }) \\ \Theta\left(m^{v_{H}-\alpha_{H}^{*}} n^{2 \alpha_{H}^{*}-v_{H}}\right) & \text { if } n \leq m \leq\binom{ n}{2} \\ \Theta\left(n^{v_{H}}\right) & \text { if } \left.m \geq\binom{ n}{2} \text { trivial }\right) .\end{cases}
$$

$N(n, m, H)$ explicitly

Theorem For every graph H without isolated vertices, and for all $m \geq e_{H}$ and $n \geq v_{H}$, we have,

$$
N(n, m, H)= \begin{cases}\Theta\left(m^{\alpha_{H}^{*}}\right) & \text { if } m \leq n(\text { Alon 1981 }) \\ \Theta\left(m^{v_{H}-\alpha_{H}^{*}} n^{2 \alpha_{H}^{*}-v_{H}}\right) & \text { if } n \leq m \leq\binom{ n}{2} \\ \Theta\left(n^{v_{H}}\right) & \text { if } \left.m \geq\binom{ n}{2} \text { trivial }\right) .\end{cases}
$$

Theorem For every graph G and $n \geq v_{G}$ we have

$$
M_{G}^{*}(n, p)=\left\{\begin{array}{l}
\Theta(1) \\
\end{array}\right.
$$

$$
\text { if } p \leq n^{-1 / m_{G}}
$$

$N(n, m, H)$ explicitly

Theorem For every graph H without isolated vertices, and for all $m \geq e_{H}$ and $n \geq v_{H}$, we have,

$$
N(n, m, H)= \begin{cases}\Theta\left(m^{\alpha_{H}^{*}}\right) & \text { if } m \leq n(\text { Alon 1981 }) \\ \Theta\left(m^{v_{H}-\alpha_{H}^{*}} n^{2 \alpha_{H}^{*}-v_{H}}\right) & \text { if } n \leq m \leq\binom{ n}{2} \\ \Theta\left(n^{v_{H}}\right) & \text { if } \left.m \geq\binom{ n}{2} \text { (trivial }\right) .\end{cases}
$$

Theorem For every graph G and $n \geq v_{G}$ we have

$$
M_{G}^{*}(n, p)= \begin{cases}\Theta(1) & \text { if } p \leq n^{-1 / m_{G}} \\ \Theta\left(\min _{H \subseteq G} \Psi_{H}^{1 / \alpha_{H}^{*}}\right) & \text { if } n^{-1 / m_{G}} \leq p \leq n^{-1 / \Delta_{G}}\end{cases}
$$

$N(n, m, H)$ explicitly

Theorem For every graph H without isolated vertices, and for all $m \geq e_{H}$ and $n \geq v_{H}$, we have,

$$
N(n, m, H)= \begin{cases}\Theta\left(m^{\alpha_{H}^{*}}\right) & \text { if } m \leq n(\text { Alon 1981 }) \\ \Theta\left(m^{v_{H}-\alpha_{H}^{*}} n^{2 \alpha_{H}^{*}-v_{H}}\right) & \text { if } n \leq m \leq\binom{ n}{2} \\ \Theta\left(n^{v_{H}}\right) & \text { if } \left.m \geq\binom{ n}{2} \text { (trivial }\right) .\end{cases}
$$

Theorem For every graph G and $n \geq v_{G}$ we have

$$
M_{G}^{*}(n, p)= \begin{cases}\Theta(1) & \text { if } p \leq n^{-1 / m_{G}} \\ \Theta\left(\min _{H \subseteq G} \Psi_{H}^{1 / \alpha_{H}^{*}}\right) & \text { if } n^{-1 / m_{G}} \leq p \leq n^{-1 / \Delta_{G}} \\ \Theta\left(n^{2} p^{\Delta_{G}}\right) & \text { if } p \geq n^{-1 / \Delta_{G}} .\end{cases}
$$

Special cases: regular graphs, stars

Corollary If G is a k-regular graph, then $M_{G}^{*}=\Theta\left(n^{2} p^{k}\right)$ for all $p \geq n^{-1 / m_{G}}=n^{-2 / k}$.

Special cases: regular graphs, stars

Corollary If G is a k-regular graph, then

$$
M_{G}^{*}=\Theta\left(n^{2} p^{k}\right) \text { for all } p \geq n^{-1 / m_{G}}=n^{-2 / k} .
$$

Corollary Let G be the k-armed star $K_{1, k}$, with $k \geq 1$, and assume $p \geq n^{-1 / m_{G}}=n^{-1-1 / k}$. Then

$$
M_{G}^{*}= \begin{cases}\Theta\left(n^{1+1 / k} p\right) & \text { if } \quad p \leq n^{-1 / k} \\ \Theta\left(n^{2} p^{k}\right) & \text { if } \quad p \geq n^{-1 / k}\end{cases}
$$

Special cases: paths

Corollary Let P_{k} be the path on k vertices and assume
$p \geq n^{-1 / m_{P_{k}}}=n^{-1-1 /(k-1)}$. Then, if $k \geq 3$ is odd,

$$
M_{P_{k}}^{*}=\left\{\begin{array}{lll}
\Theta\left(n^{2 \frac{k}{k+1}} p^{2 \frac{k-1}{k+1}}\right) & \text { if } & p \leq n^{-1 / 2} \\
\Theta\left(n^{2} p^{2}\right) & \text { if } & p \geq n^{-1 / 2}
\end{array}\right.
$$

Special cases: paths

Corollary Let P_{k} be the path on k vertices and assume $p \geq n^{-1 / m_{P_{k}}}=n^{-1-1 /(k-1)}$. Then, if $k \geq 3$ is odd,

$$
M_{P_{k}}^{*}=\left\{\begin{array}{lll}
\Theta\left(n^{2 \frac{k}{k+1}} p^{2 \frac{k-1}{k+1}}\right) & \text { if } & p \leq n^{-1 / 2} \\
\Theta\left(n^{2} p^{2}\right) & \text { if } & p \geq n^{-1 / 2}
\end{array}\right.
$$

and, if $k \geq 4$ is even,

$$
M_{P_{k}}^{*}=\left\{\begin{array}{lll}
\Theta\left(n^{2} p^{2 \frac{k-1}{k}}\right) & \text { if } & p \leq n^{-1} \\
\Theta\left(n^{2 \frac{k-1}{k}} 2^{2 \frac{k-2}{k}}\right) & \text { if } & n^{-1} \leq p \leq n^{-1 / 2} \\
\Theta\left(n^{2} p^{2}\right) & \text { if } & p \geq n^{-1 / 2}
\end{array}\right.
$$

Graphs with many phases

Let T^{k} be the tree obtained by taking k stars $K_{1, i}$, $i=1, \ldots k$, and tying them up by merging one pendant vertex from each star into one vertex.

Graphs with many phases

Let T^{k} be the tree obtained by taking k stars $K_{1, i}$, $i=1, \ldots k$, and tying them up by merging one pendant vertex from each star into one vertex.

Graphs with many phases

Let T^{k} be the tree obtained by taking k stars $K_{1, i}$, $i=1, \ldots k$, and tying them up by merging one pendant vertex from each star into one vertex.

Proposition For every $k \geq 2$, the graph T^{k} described above has $k+1$ phases for the upper tail.

Idea of proof : lower bound

$\mathbf{P}\left(X_{G} \geq t \mathbf{E} X_{G}\right) \geq p^{C(t, G) M_{G}^{*}(n, p)}$

Idea of proof : lower bound

$$
\mathbf{P}\left(X_{G} \geq t \mathbf{E} X_{G}\right) \geq p^{C(t, G) M_{G}^{*}(n, p)}
$$

By the definition of M_{G}^{*} there is $H \subseteq G$:
$N\left(n, M_{G}^{*}+1, H\right)>\Psi_{H} \quad \Rightarrow \quad N\left(n, C_{t} M_{G}^{*}, H\right)>t \Psi_{H}$

Idea of proof : lower bound

$$
\mathbf{P}\left(X_{G} \geq t \mathbf{E} X_{G}\right) \geq p^{C(t, G) M_{G}^{*}(n, p)}
$$

By the definition of M_{G}^{*} there is $H \subseteq G$:
$N\left(n, M_{G}^{*}+1, H\right)>\Psi_{H} \quad \Rightarrow \quad N\left(n, C_{t} M_{G}^{*}, H\right)>t \Psi_{H}$
For simplicity, say, $H=G$, and take $m=C_{t} M_{G}^{*}$.

Idea of proof : lower bound

$$
\mathbf{P}\left(X_{G} \geq t \mathbf{E} X_{G}\right) \geq p^{C(t, G) M_{G}^{*}(n, p)}
$$

By the definition of M_{G}^{*} there is $H \subseteq G$:
$N\left(n, M_{G}^{*}+1, H\right)>\Psi_{H} \quad \Rightarrow \quad N\left(n, C_{t} M_{G}^{*}, H\right)>t \Psi_{H}$
For simplicity, say, $H=G$, and take $m=C_{t} M_{G}^{*}$. Then

$$
\exists F \subseteq K_{n}, e_{F} \leq m: \quad N(F, G)>t \Psi_{G}>t \mathbf{E} X_{G}
$$

Idea of proof : lower bound

$$
\mathbf{P}\left(X_{G} \geq t \mathbf{E} X_{G}\right) \geq p^{C(t, G) M_{G}^{*}(n, p)}
$$

By the definition of M_{G}^{*} there is $H \subseteq G$:
$N\left(n, M_{G}^{*}+1, H\right)>\Psi_{H} \quad \Rightarrow \quad N\left(n, C_{t} M_{G}^{*}, H\right)>t \Psi_{H}$
For simplicity, say, $H=G$, and take $m=C_{t} M_{G}^{*}$. Then

$$
\exists F \subseteq K_{n}, e_{F} \leq m: \quad N(F, G)>t \Psi_{G}>t \mathbf{E} X_{G}
$$

Finally,

$$
\mathbf{P}\left(X_{G} \geq t \mathbf{E} X_{G}\right) \geq \mathbf{P}(G(n, p) \supseteq F)=p^{e_{F}} \geq p^{m}
$$

Idea of proof : upper bound

By Markov's inequality, with $\lambda_{G}=\mathbf{E} X_{G}$, for every $m \geq 1$

$$
\mathbf{P}\left(X_{G} \geq t \lambda_{G}\right)=\mathbf{P}\left(X_{G}^{m} \geq t^{m} \lambda_{G}^{m}\right) \leq \frac{\mathbf{E}\left(X_{G}^{m}\right)}{t^{m} \lambda_{G}^{m}}
$$

Idea of proof : upper bound

By Markov's inequality, with $\lambda_{G}=\mathbf{E} X_{G}$, for every $m \geq 1$

$$
\mathbf{P}\left(X_{G} \geq t \lambda_{G}\right)=\mathbf{P}\left(X_{G}^{m} \geq t^{m} \lambda_{G}^{m}\right) \leq \frac{\mathbf{E}\left(X_{G}^{m}\right)}{t^{m} \lambda_{G}^{m}}
$$

For suitable choice of c^{\prime}, with $m=c^{\prime} M_{G}^{*}$,

$$
\mathbf{E}\left(X_{G}^{m}\right) \leq \lambda_{G}^{m} t^{m / 2},
$$

Idea of proof : upper bound

By Markov's inequality, with $\lambda_{G}=\mathbf{E} X_{G}$, for every $m \geq 1$

$$
\mathbf{P}\left(X_{G} \geq t \lambda_{G}\right)=\mathbf{P}\left(X_{G}^{m} \geq t^{m} \lambda_{G}^{m}\right) \leq \frac{\mathbf{E}\left(X_{G}^{m}\right)}{t^{m} \lambda_{G}^{m}}
$$

For suitable choice of c^{\prime}, with $m=c^{\prime} M_{G}^{*}$,

$$
\mathbf{E}\left(X_{G}^{m}\right) \leq \lambda_{G}^{m} t^{m / 2},
$$

so
$\mathbf{P}\left(X_{G} \geq t \lambda_{G}\right) \leq t^{-m / 2}=\exp \{-(m / 2) \log t\}=\exp \left\{-c M_{G}^{*}\right\}$ where $c=\left(c^{\prime} / 2\right) \log t$.

The m th moment

We will show by induction on m that

$$
\mathbf{E}\left(X_{G}^{m}\right) \leq \lambda_{G}^{m}\left(1+2 v_{G}!\sum_{H \subseteq G} \frac{N\left(n,(m-1) e_{G}, H\right)}{\Psi_{H}}\right)^{m-1}
$$

The m th moment

We will show by induction on m that
$\mathbf{E}\left(X_{G}^{m}\right) \leq \lambda_{G}^{m}\left(1+2 v_{G}!\sum_{H \subseteq G} \frac{N\left(n,(m-1) e_{G}, H\right)}{\Psi_{H}}\right)^{m-1}$
This is trivially true for $m=1$.

The m th moment

We will show by induction on m that
$\mathbf{E}\left(X_{G}^{m}\right) \leq \lambda_{G}^{m}\left(1+2 v_{G}!\sum_{H \subseteq G} \frac{N\left(n,(m-1) e_{G}, H\right)}{\Psi_{H}}\right)^{m-1}$
This is trivially true for $m=1$. Assume true for $m-1$.

The m th moment

We will show by induction on m that
$\mathbf{E}\left(X_{G}^{m}\right) \leq \lambda_{G}^{m}\left(1+2 v_{G}!\sum_{H \subseteq G} \frac{N\left(n,(m-1) e_{G}, H\right)}{\Psi_{H}}\right)^{m-1}$
This is trivially true for $m=1$. Assume true for $m-1$.
Let $G_{1}, \cdots, G_{N(n, G)}$ be all copies of G in $G(n, p)$ and let I_{i} be the indicator of presence of G_{i} in $G(n, p)$.

The m th moment

We will show by induction on m that
$\mathbf{E}\left(X_{G}^{m}\right) \leq \lambda_{G}^{m}\left(1+2 v_{G}!\sum_{H \subseteq G} \frac{N\left(n,(m-1) e_{G}, H\right)}{\Psi_{H}}\right)^{m-1}$
This is trivially true for $m=1$. Assume true for $m-1$.
Let $G_{1}, \cdots, G_{N(n, G)}$ be all copies of G in $G(n, p)$ and let I_{i} be the indicator of presence of G_{i} in $G(n, p)$. For $m \geq 2$,

$$
\mathbf{E}\left(X_{G}^{m}\right)=\sum_{i_{1}, \ldots, i_{m}} \mathbf{E}\left(I_{i_{1}} \cdots I_{i_{m}}\right)=\sum_{i_{1}, \ldots, i_{m}} p^{e\left(G_{i_{1}} \cup \cdots \cup G_{i_{m}}\right)}
$$

Induction step

$$
\text { Set } F=F\left(i_{1}, \ldots, i_{m-1}\right)=G_{i_{1}} \cup \cdots \cup G_{i_{m-1}} .
$$

Induction step

Set $F=F\left(i_{1}, \ldots, i_{m-1}\right)=G_{i_{1}} \cup \cdots \cup G_{i_{m-1}}$.

$$
\sum_{i_{1}, \ldots, i_{m}} p^{e\left(G_{i_{1}} \cup \cdots \cup G_{i_{m}}\right)}=\sum_{i_{1}, \ldots, i_{m-1}} p^{e(F)} \sum_{i_{m}} p^{e_{G}-e\left(F \cap G_{i_{m}}\right)}
$$

Induction step

Set $F=F\left(i_{1}, \ldots, i_{m-1}\right)=G_{i_{1}} \cup \cdots \cup G_{i_{m-1}}$.

$$
\begin{aligned}
& \sum_{i_{1}, \ldots, i_{m}} p^{e\left(G_{i_{1}} \cup \cdots \cup G_{i_{m}}\right)}=\sum_{i_{1}, \ldots, i_{m-1}} p^{e(F)} \sum_{i_{m}} p^{e_{G}-e\left(F \cap G_{i_{m}}\right)} \\
\leq & \sum_{i_{1}, \ldots, i_{m-1}} p^{e(F)}\left(N(n, G) p^{e_{G}}+\sum_{H \subseteq G} \sum_{G_{i} \cap F \cong H} p^{e_{G}-e_{H}}\right)
\end{aligned}
$$

Induction step

Set $F=F\left(i_{1}, \ldots, i_{m-1}\right)=G_{i_{1}} \cup \cdots \cup G_{i_{m-1}}$.

$$
\begin{aligned}
& \sum_{i_{1}, \ldots, i_{m}} p^{e\left(G_{i_{1}} \cup \ldots \cup G_{i_{m}}\right)}=\sum_{i_{1}, \ldots, i_{m-1}} p^{e(F)} \sum_{i_{m}} p^{e_{G}-e\left(F \cap G_{i_{m}}\right)} \\
\leq & \sum_{i_{1}, \ldots, i_{m-1}} p^{e(F)}\left(N(n, G) p^{e_{G}}+\sum_{H \subseteq G} \sum_{G_{i} \cap F \cong H} p^{e_{G}-e_{H}}\right) \\
\leq & \sum_{i_{1}, \ldots, i_{m-1}} p^{e(F)}\left(\lambda_{G}+\sum_{H \subseteq G} N\left(n,(m-1) e_{G}, H\right) \frac{\Psi_{G}}{\Psi_{H}}\right)
\end{aligned}
$$

Induction step

Set $F=F\left(i_{1}, \ldots, i_{m-1}\right)=G_{i_{1}} \cup \cdots \cup G_{i_{m-1}}$.

$$
\begin{aligned}
& \sum_{i_{1}, \ldots, i_{m}} p^{e\left(G_{i_{1}} \cup \ldots \cup G_{i_{m}}\right)}=\sum_{i_{1}, \ldots, i_{m-1}} p^{e(F)} \sum_{i_{m}} p^{e_{G}-e\left(F \cap G_{i_{m}}\right)} \\
\leq & \sum_{i_{1}, \ldots, i_{m-1}} p^{e(F)}\left(N(n, G) p^{e_{G}}+\sum_{H \subseteq G} \sum_{G_{i} \cap F \cong H} p^{e_{G}-e_{H}}\right) \\
\leq & \sum_{i_{1}, \ldots, i_{m-1}} p^{e(F)}\left(\lambda_{G}+\sum_{H \subseteq G} N\left(n,(m-1) e_{G}, H\right) \frac{\Psi_{G}}{\Psi_{H}}\right) \\
\leq & \mathbf{E}\left(X_{G}^{m-1}\right) \cdot \lambda_{G}\left(1+2 v_{G}!\sum_{H \subseteq G} \frac{N\left(n,(m-1) e_{G}, H\right)}{\Psi_{H}}\right) .
\end{aligned}
$$

Bounding the m th moment

With $m=c^{\prime} M_{G}^{*}$,

Bounding the m th moment

With $m=c^{\prime} M_{G}^{*}$,

$$
N\left(n,(m-1) e_{G}, H\right) \leq c^{\prime \prime} N\left(n, M_{G}^{*}, H\right)<c^{\prime \prime} \Psi_{H}
$$

Bounding the m th moment

With $m=c^{\prime} M_{G}^{*}$,

$$
N\left(n,(m-1) e_{G}, H\right) \leq c^{\prime \prime} N\left(n, M_{G}^{*}, H\right)<c^{\prime \prime} \Psi_{H}
$$

and for $c^{\prime}=c^{\prime}(G, t)$ small enough

$$
\left(1+2 v_{G}!\sum_{H \subseteq G} \frac{N\left(n,(m-1) e_{G}, H\right)}{\Psi_{H}}\right) \leq \sqrt{t}
$$

Bounding the m th moment

With $m=c^{\prime} M_{G}^{*}$,

$$
N\left(n,(m-1) e_{G}, H\right) \leq c^{\prime \prime} N\left(n, M_{G}^{*}, H\right)<c^{\prime \prime} \Psi_{H}
$$

and for $c^{\prime}=c^{\prime}(G, t)$ small enough

$$
\left(1+2 v_{G}!\sum_{H \subseteq G} \frac{N\left(n,(m-1) e_{G}, H\right)}{\Psi_{H}}\right) \leq \sqrt{t}
$$

which proves that

$$
\mathbf{E}\left(X_{G}^{m}\right) \leq \lambda_{G}^{m} t^{m / 2} .
$$

Estimating $N(n, m, H)$

To prove:

Estimating $N(n, m, H)$

To prove:

$$
N(n, m, H)=\Theta\left(m^{v_{H}-\alpha_{H}^{*}} n^{2 \alpha_{H}^{*}-v_{H}}\right) \text { if } n \leq m \leq\binom{ n}{2}
$$

Estimating $N(n, m, H)$

To prove:

$$
N(n, m, H)=\Theta\left(m^{v_{H}-\alpha_{H}^{*}} n^{2 \alpha_{H}^{*}-v_{H}}\right) \text { if } n \leq m \leq\binom{ n}{2}
$$

Consider LP: $\quad \max \sum_{v \in V} x_{v}$ given
$0 \leq x_{v} \leq \log n \quad$ and $\quad \forall v w \in E: x_{v}+x_{w} \leq \log m$.

Estimating $N(n, m, H)$

To prove:

$$
N(n, m, H)=\Theta\left(m^{v_{H}-\alpha_{H}^{*}} n^{2 \alpha_{H}^{*}-v_{H}}\right) \text { if } n \leq m \leq\binom{ n}{2}
$$

Consider LP: $\quad \max \sum_{v \in V} x_{v}$ given

$$
0 \leq x_{v} \leq \log n \quad \text { and } \quad \forall v w \in E: x_{v}+x_{w} \leq \log m
$$

Let γ be the value of an optimal solution $\left(x_{v}\right)$.

Computing γ

We have $x_{v} \geq \log m-\log n$.

Computing γ

We have $x_{v} \geq \log m-\log n$. Write:

$$
x_{v}=\log m-\log n+(2 \log n-\log m) \alpha_{v}
$$

Computing γ

We have $x_{v} \geq \log m-\log n$. Write:

$$
x_{v}=\log m-\log n+(2 \log n-\log m) \alpha_{v}
$$

where $0 \leq \alpha_{v} \leq 1$, and $\forall v w \in E: \quad \alpha_{v}+\alpha_{w} \leq 1$.

Computing γ

We have $x_{v} \geq \log m-\log n$. Write:

$$
x_{v}=\log m-\log n+(2 \log n-\log m) \alpha_{v}
$$

where $0 \leq \alpha_{v} \leq 1$, and $\forall v w \in E: \quad \alpha_{v}+\alpha_{w} \leq 1$. Then

$$
\gamma=\sum_{v} x_{v}=(\log m-\log n) v_{H}+(2 \log n-\log m) \sum_{v} \alpha_{v}
$$

Computing γ

We have $x_{v} \geq \log m-\log n$. Write:

$$
x_{v}=\log m-\log n+(2 \log n-\log m) \alpha_{v}
$$

where $0 \leq \alpha_{v} \leq 1$, and $\forall v w \in E: \quad \alpha_{v}+\alpha_{w} \leq 1$. Then
$\gamma=\sum_{v} x_{v}=(\log m-\log n) v_{H}+(2 \log n-\log m) \sum_{v} \alpha_{v}$
so

$$
e^{\gamma}=\left(\frac{m}{n}\right)^{v_{H}}\left(\frac{n^{2}}{m}\right)^{\alpha_{H}^{*}}
$$

Relating γ to $N(n, m, H)$

Proposition $N(n, m, H)=\Theta\left(e^{\gamma}\right)$

Relating γ to $N(n, m, H)$

Proposition $N(n, m, H)=\Theta\left(e^{\gamma}\right)$
 Proof: (only from below)

Relating γ to $N(n, m, H)$

Proposition $N(n, m, H)=\Theta\left(e^{\gamma}\right)$
Proof: (only from below) based on an optimal solution $\left(x_{v}\right)$, construct F rich in copies of H.

Relating γ to $N(n, m, H)$

Proposition $N(n, m, H)=\Theta\left(e^{\gamma}\right)$
Proof: (only from below) based on an optimal solution $\left(x_{v}\right)$, construct F rich in copies of H. How?

Relating γ to $N(n, m, H)$

Proposition $N(n, m, H)=\Theta\left(e^{\gamma}\right)$
Proof: (only from below) based on an optimal solution $\left(x_{v}\right)$, construct F rich in copies of H. How?
Blow up H, replacing each v by $n_{v}=e^{x_{v}} / v_{H}$ vertices and each $v w \in E$ by $K\left(n_{v}, n_{w}\right)$.

Relating γ to $N(n, m, H)$

Proposition $N(n, m, H)=\Theta\left(e^{\gamma}\right)$
Proof: (only from below) based on an optimal solution $\left(x_{v}\right)$, construct F rich in copies of H. How?
Blow up H, replacing each v by $n_{v}=e^{x_{v}} / v_{H}$ vertices and each $v w \in E$ by $K\left(n_{v}, n_{w}\right)$. Then $v_{F}=\sum_{v} n_{v} \leq n$

Relating γ to $N(n, m, H)$

Proposition $N(n, m, H)=\Theta\left(e^{\gamma}\right)$
Proof: (only from below) based on an optimal solution $\left(x_{v}\right)$, construct F rich in copies of H. How?
Blow up H, replacing each v by $n_{v}=e^{x_{v}} / v_{H}$ vertices and each $v w \in E$ by $K\left(n_{v}, n_{w}\right)$. Then $v_{F}=\sum_{v} n_{v} \leq n$ and

$$
e_{F}=\sum_{v w \in E} n_{v} n_{w} \leq \sum_{v w \in E} m / v_{H}^{2}<m
$$

Relating γ to $N(n, m, H)$

Proposition $N(n, m, H)=\Theta\left(e^{\gamma}\right)$
Proof: (only from below) based on an optimal solution $\left(x_{v}\right)$, construct F rich in copies of H. How?
Blow up H, replacing each v by $n_{v}=e^{x_{v}} / v_{H}$ vertices and each $v w \in E$ by $K\left(n_{v}, n_{w}\right)$. Then $v_{F}=\sum_{v} n_{v} \leq n$ and

$$
e_{F}=\sum_{v w \in E} n_{v} n_{w} \leq \sum_{v w \in E} m / v_{H}^{2}<m
$$

But

$$
N(F, H) \geq \prod n_{v}=c^{v_{H}} e^{\gamma}
$$

Open problem

Determine the order of magnitude for

$$
-\log \mathbf{P}\left(X_{G} \geq t \mathbf{E} X_{G}\right)
$$

Open problem

Determine the order of magnitude for

$$
-\log \mathbf{P}\left(X_{G} \geq t \mathbf{E} X_{G}\right)
$$

It is between $\Theta\left(M_{G}^{*}\right)$ and $\Theta\left(M_{G}^{*} \log (1 / p)\right)$.

Open problem

Determine the order of magnitude for

$$
-\log \mathbf{P}\left(X_{G} \geq t \mathbf{E} X_{G}\right)
$$

It is between $\Theta\left(M_{G}^{*}\right)$ and $\Theta\left(M_{G}^{*} \log (1 / p)\right)$. For $G=K_{2}$, it is $\Theta\left(M_{G}^{*}\right)$ (Chernoff).

Open problem

Determine the order of magnitude for

$$
-\log \mathbf{P}\left(X_{G} \geq t \mathbf{E} X_{G}\right)
$$

It is between $\Theta\left(M_{G}^{*}\right)$ and $\Theta\left(M_{G}^{*} \log (1 / p)\right)$.
For $G=K_{2}$, it is $\Theta\left(M_{G}^{*}\right)$ (Chernoff).
For $G=K_{4}$ and $n^{-2 / 3} \log ^{1 / 6} n \ll p \leq n^{-1 / 2-\varepsilon}$, there is an upper bound

$$
\mathbf{P}\left(X_{G} \geq 2 \mathbf{E} X_{G}\right) \leq \exp \left\{-c M_{G}^{*}(n, p) \log ^{1 / 2} n\right\}
$$

Open problem

Determine the order of magnitude for

$$
-\log \mathbf{P}\left(X_{G} \geq t \mathbf{E} X_{G}\right)
$$

It is between $\Theta\left(M_{G}^{*}\right)$ and $\Theta\left(M_{G}^{*} \log (1 / p)\right)$. For $G=K_{2}$, it is $\Theta\left(M_{G}^{*}\right)$ (Chernoff).
For $G=K_{4}$ and $n^{-2 / 3} \log ^{1 / 6} n \ll p \leq n^{-1 / 2-\varepsilon}$, there is an upper bound

$$
\mathbf{P}\left(X_{G} \geq 2 \mathbf{E} X_{G}\right) \leq \exp \left\{-c M_{G}^{*}(n, p) \log ^{1 / 2} n\right\}
$$

by the deletion method (Janson, Ruciński (2004)).

Open problem

Determine the order of magnitude for

$$
-\log \mathbf{P}\left(X_{G} \geq t \mathbf{E} X_{G}\right)
$$

It is between $\Theta\left(M_{G}^{*}\right)$ and $\Theta\left(M_{G}^{*} \log (1 / p)\right)$.
For $G=K_{2}$, it is $\Theta\left(M_{G}^{*}\right)$ (Chernoff).
For $G=K_{4}$ and $n^{-2 / 3} \log ^{1 / 6} n \ll p \leq n^{-1 / 2-\varepsilon}$, there is an upper bound

$$
\mathbf{P}\left(X_{G} \geq 2 \mathbf{E} X_{G}\right) \leq \exp \left\{-c M_{G}^{*}(n, p) \log ^{1 / 2} n\right\}
$$

by the deletion method (Janson, Ruciński (2004)).
Thus, neither end is sharp!

