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Graphs and Properties

Graph property = a collection of graphs.

Monotone = adding edges cannot violate it.

Gn,p = random order-n graph with edge probability p.

Whp = with high probability (approaching 1 as n → ∞).

Markov’s Inequality:
for a random variable X ≥ 0 and a real a > 0

Pr [ X ≥ a ] ≤
E [ X ]

a
.
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Monotone Properties

Theorem For any monotone A and p1 ≤ p2

Pr [Gn,p1
∈ A ] ≤ Pr [Gn,p2

∈ A ] .

Proof Define p0 ∈ [0, 1] by

p1 + (1 − p1) p0 = p2.

Let G1 ∈ Gn,p1
and G0 ∈ Gn,p0

. Then G1 ∪ G0 ∼ Gn,p2
.

Pr [ G1 ∈ A ] ≤ Pr [ G1 ∪ G0 ∈ A ] .

Basic Thresholds – p.3



Monotone Properties

Theorem For any monotone A and p1 ≤ p2

Pr [Gn,p1
∈ A ] ≤ Pr [Gn,p2

∈ A ] .

Proof Define p0 ∈ [0, 1] by

p1 + (1 − p1) p0 = p2.

Let G1 ∈ Gn,p1
and G0 ∈ Gn,p0

. Then G1 ∪ G0 ∼ Gn,p2
.

Pr [ G1 ∈ A ] ≤ Pr [ G1 ∪ G0 ∈ A ] .

Basic Thresholds – p.3



Thresholds

p0 = p0(n) is a threshold for a monotone property A if ∀p(n)

Pr [Gn,p ∈ A ] →

{

0, if p/p0 → 0,

1, if p/p0 → ∞.

Example p0 = 1
n is a threshold for having a cycle. Indeed,

if p = o(1/n), then

Pr [ ∃ cycle ] ≤ E [ #cycles ] =
n

∑

i≥3

(

n

i

)

(i − 1)!

2
pi ≤

∑

i≥3

(np)i → 0.

if p > 2+ε
n , then E [ e(G) ] = p

(n
2

)

> (2 + ε) n−1
2 .

By Chernoff’s bound, whp e(G) ≥ n.
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Monotone ⇒ ∃ Threshold

Theorem (Bollobás-Thomason’87) Every non-trivial
monotone property A has a threshold.

Proof Choose p0 = p(1/2), i.e.

Pr [Gn,p0
∈ A ] = 1/2.

p0 exists as f(p) = Pr [Gn,p ∈ A ] is a polynomial with
f(0) = 0 and f(1) = 1.
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p0 = p(1/2) is a threshold

Given ε > 0, let (1 − ε)m < 1/2. Let p < p0/m. Let
G1, . . . , Gm ∈ Gn,p and

H = G1 ∪ · · · ∪ Gm ∼ Gn,1−(1−p)m .

As 1 − (1 − p)m ≤ pm ≤ p0,

1

2
≤ Pr [ H 6∈ A ] ≤ Pr [ ∀i Gi 6∈ A ] =

(

1 − Pr [Gn,p ∈ A ]
)m

.

⇒ Pr [Gn,p ∈ A ] < ε.

Other direction: take Gn,p0
∪ · · · ∪ Gn,p0

.
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Connectivity Property C

Idea 1: Connectivity = ∃ spanning tree

E [ # spanning trees ] = nn−2 · pn−1.

The “window” is

p = (1 + o(1))
1

n
.

E [ # spanning trees ] → 0 ⇒ G 6∈ C.
E [ # spanning trees ] → ∞ 6⇒ G ∈ C.
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Idea 2: Look at Cuts

Cut:

Cuts or Isolated Components?

Ck = # k-components

Observation: G ∈ C iff Ck = 0 ∀k ∈ [1, n/2].
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Connectivity Threshold

Theorem (Erdős-Renyi’60) Let

p =
log n

n
+

c

n
.

Then Pr [Gn,p ∈ C ] →











e−e−c

, |c| = O(1),

0, c → −∞,

1, c → +∞.

In particular, p0(n) = log n
n is a threshold for connectivity.
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p = log n
n + O(1)

n

Let
∑

:=
∑bn/2c

k=2 .

Pr
[

∑

Ck ≥ 1
]

≤ E
[

∑

Ck

]

=
∑

E [ Ck ] ≤
∑

(

n

k

)

(1 − p)k(n−k)kk−2pk−1

[

(

n

k

)

≤ (en/k)k & (1 − x) ≤ e−x
]

≤ n
∑

(

O(log n) e−np+kp
)k

→ 0.

Thus whp C2 = · · · = Cbn/2c = 0.
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p = log n
n + O(1)

n (cont.)

Thus, whp Gn,p ∈ C iff C1 = 0 (i.e. no isolated vertices).

It is enough to prove Pr [ C1 = 0 ] → e−e−c

because

0 ≤ Pr [ C1 = 0 ] − Pr [ C ∈ C ]

≤ Pr [ ∃i ∈ [2, n/2] Ci > 0 ] → 0.
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Poisson Distribution with Mean µ

n independent trials, Pr [ success ] = µ
n , constant µ.

Poisson(µ) = # successes as n → ∞.

E [ # successes ] = n ×
µ

n
= µ

Pr [ i successes ] =

(

n

i

)

pi (1 − p)n−i →
µi e−µ

i!
.
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Isolated Vertices

E [ C1 ] = n(1 − p)n−1 → e−c.

The k-th Factorial Moment:

Mk[X] = E [ (X)k ] = E [ X(X − 1) . . . (X − k + 1) ] .

For fixed k

Mk[C1] = (n)k (1 − p)k(n−1)−(k
2) → (e−c)k = Mk[Poisson(e−c)].

This is known to imply that C1 → Poisson(e−c). In particular,

Pr [ C1 = 0 ] → e−e−c

.
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Sharp Threshold

Connectivity Threshold

p0 is a sharp threshold for a monotone A if ∀ ε > 0 whp

Gn,(1−ε)p0
6∈ A and Gn,(1+ε)p0

∈ A.

Examples,

connectivity: sharp,

having a triangle: not sharp,

having a cycle: ‘one-sided sharp’.
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Friedgut’s Theorem

Note: Sharp threshold ⇒ ∂
∂pPr [Gn,p ∈ A ] 6= O

(

1
p

)

.

Theorem (Friedgut’99) If for a monotone A

∂

∂p
Pr [Gn,p ∈ A ] = O

(

1

p

)

,

then ∀ ε > 0 there is a finite family F of graphs such that
∀n, p

Pr [Gn,p ∈ A4 {an F-subgraph} ] ≤ ε.
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Applying Friedgut’s Theorem

Difficult to apply: the type of A ∪ B depends on which one
appears ‘earlier’.

Theorem (Achlioptas-Friedgut’99) For fixed k ≥ 3
k-colorability has a sharp threshold.

Basic Thresholds – p.16



Applying Friedgut’s Theorem

Difficult to apply: the type of A ∪ B depends on which one
appears ‘earlier’.

Theorem (Achlioptas-Friedgut’99) For fixed k ≥ 3
k-colorability has a sharp threshold.

Basic Thresholds – p.16



Model Gn,M

Gn,M : random M edges.

Gn,p: edge probability p.

Theorem For a monotone A,

Pr
[

Gn,M ∈ A
]

is a non-decreasing function of M .
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Relating Gn,p and Gn,M

Theorem For any non-trivial monotone A, there is a
threshold M0, that is,

Pr
[

Gn,M ∈ A
]

→

{

0, if M/M0 → 0,

1, if M/M0 → ∞.

Theorem Let M = log n+c
n

(n
2

)

. Then

Pr
[

Gn,M ∈ C
]

→











e−e−c

, |c| = O(1),

0, c → −∞,

1, c → +∞.

In particular, M0 = n log n is a threshold for connectivity.
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Connectivity of Gn,M

Proof Enough to consider |c| = O(1). Take small ε > 0. Let

p =
log n + c − ε

n
.

Take G ∈ Gn,p. Let l = M − e(G). If l ≥ 0, let

H = G + l random edges; H ∼ Gn,M .

By Chernoff’s bound, Pr [ e(G) > M ] → 0. Hence,

Pr
[

Gn,M ∈ C
]

≥ Pr [ G ∈ C ]−Pr [ e(G) > M ] ≥ e−e−c+ε

− o(1).

Upper bound: remove edges from Gn,p, p = log n+c+ε
n .

Basic Thresholds – p.19



Connectivity of Gn,M

Proof Enough to consider |c| = O(1). Take small ε > 0. Let

p =
log n + c − ε

n
.

Take G ∈ Gn,p. Let l = M − e(G). If l ≥ 0, let

H = G + l random edges; H ∼ Gn,M .

By Chernoff’s bound, Pr [ e(G) > M ] → 0. Hence,

Pr
[

Gn,M ∈ C
]

≥ Pr [ G ∈ C ]−Pr [ e(G) > M ] ≥ e−e−c+ε

− o(1).

Upper bound: remove edges from Gn,p, p = log n+c+ε
n .

Basic Thresholds – p.19



Connectivity of Gn,M

Proof Enough to consider |c| = O(1). Take small ε > 0. Let

p =
log n + c − ε

n
.

Take G ∈ Gn,p. Let l = M − e(G). If l ≥ 0, let

H = G + l random edges; H ∼ Gn,M .

By Chernoff’s bound, Pr [ e(G) > M ] → 0. Hence,

Pr
[

Gn,M ∈ C
]

≥ Pr [ G ∈ C ]−Pr [ e(G) > M ] ≥ e−e−c+ε

− o(1).

Upper bound: remove edges from Gn,p, p = log n+c+ε
n .

Basic Thresholds – p.19



Hitting Time Version

Random graph process:

G0 = n isolated vertices;

GM+1 = GM + a random edge.

Hitting time τ [A ] = min{M : GM ∈ A}.

Theorem (Erdős-Renyi’60) Whp τ [ δ ≥ 1 ] = τ [ C ].

Proof Let B = {H : δ ≥ 1 & H 6∈ C}.

Idea 1:

Pr [ ∃M : GM ∈ B ] ≤
∑

M

Pr
[

Gn,M ∈ B
]

6→ 0.

Basic Thresholds – p.20



Hitting Time Version

Random graph process:

G0 = n isolated vertices;

GM+1 = GM + a random edge.

Hitting time τ [A ] = min{M : GM ∈ A}.

Theorem (Erdős-Renyi’60) Whp τ [ δ ≥ 1 ] = τ [ C ].

Proof Let B = {H : δ ≥ 1 & H 6∈ C}.

Idea 1:

Pr [ ∃M : GM ∈ B ] ≤
∑

M

Pr
[

Gn,M ∈ B
]

6→ 0.

Basic Thresholds – p.20



Hitting Time Version

Random graph process:

G0 = n isolated vertices;

GM+1 = GM + a random edge.

Hitting time τ [A ] = min{M : GM ∈ A}.

Theorem (Erdős-Renyi’60) Whp τ [ δ ≥ 1 ] = τ [ C ].

Proof Let B = {H : δ ≥ 1 & H 6∈ C}.

Idea 1:

Pr [ ∃M : GM ∈ B ] ≤
∑

M

Pr
[

Gn,M ∈ B
]

6→ 0.

Basic Thresholds – p.20



Idea 2: Using GM ⊂ GM+1

Fix large c > 0. Let m± = b log n±c
n c.

Pr [ ∃M : GM ∈ B ] ≤ Pr [ ∃M ≤ m− δ(GM ) ≥ 1 ]

+ Pr [ ∃M ∈ (m−, m+) GM ∈ B ]

+ Pr [ ∃M ≥ m+ GM 6∈ C ]

= p− + p0 + p+

Now,

p+ = Pr [Gn,m+
6∈ C ] = 1 − e−e−c

+ o(1),

p− = Pr [ δ(Gn,m
−

) ≥ 1 ] = e−ec

+ o(1).
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+ Pr [ ∃M ≥ m+ GM 6∈ C ]

= p− + p0 + p+

Now,

p+ = Pr [Gn,m+
6∈ C ] = 1 − e−e−c

+ o(1),

p− = Pr [ δ(Gn,m
−

) ≥ 1 ] = e−ec

+ o(1).
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The Old Trick

Recall: B = {H : δ ≥ 1 & H 6∈ C}.

Aim: Pr [ ∃M ∈ (m−, m+) GM ∈ B ] → 0.

Let

p =
log n − c − ε

n
,

G ∈ Gn,p.
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Counting Components (Again)

Lemma Whp C1 ≤ log n and C2 = · · · = Cbn/2c = 0, i.e. G

consists of at most log n isolated vertices and one
component.

Proof

E [ C1 ] = n(1 − p)n−1 ≤ ec+ε + o(1) = O(1).

So Pr [ C1 > log n ] < E[ C1 ]
log n → 0.

We already proved that whp C2 = · · · = Cbn/2c = 0.
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Process between m− and m+

Pr [ ∃M ∈ (m−, m+) : GM ∈ B ] ≤ Pr [ e(G) > m− ]

+ Pr [ C1 > log n ]

+ Pr [ ∃k ∈ [2, n/2] Ck = 0 ]

+ m+

(log n
2

)

(n
2

)

− o(n2)
→ 0.

Putting all together: whp τ [ C ] = τ [ δ ≥ 1 ].
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Some Spanning Subgraphs

Pr [Gn,p ∈ A ] →

{

0, c → −∞,

1, c → +∞,

Erdős & Renyi’66:
A = {perfect matching}, n even, p = log n+c

n .

Korshunov’83, Komlós & Szemerédi’83:
A = {Hamiltonian}, p = log n+log log n+c

n .

Riordan’00:
A = {d-dimensional cube}, n = 2d, p = 1

4 + c log d
d .
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Perfect Matchings

Gn,n,p: random subgraph of Kn,n, Pr [ edge ] = p

(or random n × n 0/1-matrix).

Theorem (Erdős & Renyi’64) Let p = log n+c
n and G ∈ Gn,n,p.

Then
Pr [ G has a matching ] → e−2e−c

.

In particular, p0 = log n
n is a sharp threshold.
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Using Hall’s Theorem

Proof No matching ⇔ ∃S s.t.

|S| = |Γ(S)| + 1,

|S| ≤ dn/2e,

∀x ∈ Γ(S) |Γ(x) ∩ S| ≥ 2.

Pr [ ∃ such S : |S| ≥ 2 ] ≤ E [ # such S ]

≤ 2

dn/2e
∑

s=2

(

n

s

)(

n

s − 1

)(

s

2

)s−1

p2s−2(1 − p)s(n−s+1) = o(ne−pn).

E [ C1 ] = 2n(1 − p)n → 2 e−c. As before C1 → Poisson(2e−c).

Basic Thresholds – p.27



Using Hall’s Theorem

Proof No matching ⇔ ∃S s.t.

|S| = |Γ(S)| + 1,

|S| ≤ dn/2e,

∀x ∈ Γ(S) |Γ(x) ∩ S| ≥ 2.

Pr [ ∃ such S : |S| ≥ 2 ] ≤ E [ # such S ]

≤ 2

dn/2e
∑

s=2

(

n

s

)(

n

s − 1

)(

s

2

)s−1

p2s−2(1 − p)s(n−s+1) = o(ne−pn).

E [ C1 ] = 2n(1 − p)n → 2 e−c. As before C1 → Poisson(2e−c).

Basic Thresholds – p.27



Using Hall’s Theorem

Proof No matching ⇔ ∃S s.t.

|S| = |Γ(S)| + 1,

|S| ≤ dn/2e,

∀x ∈ Γ(S) |Γ(x) ∩ S| ≥ 2.

Pr [ ∃ such S : |S| ≥ 2 ] ≤ E [ # such S ]

≤ 2

dn/2e
∑

s=2

(

n

s

)(

n

s − 1

)(

s

2

)s−1

p2s−2(1 − p)s(n−s+1) = o(ne−pn).

E [ C1 ] = 2n(1 − p)n → 2 e−c. As before C1 → Poisson(2e−c).

Basic Thresholds – p.27



Model Gn,n,M

Gn,n,M : random M edges of Kn,n.

Theorem Let M = log n+c
n n2 and G ∈ Gn,n,p. Then

Pr [ G has a matching ] → e−2e−c

.

In particular, M0 = n log n is a sharp threshold.
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Random Graph Process GM ⊂ Kn,n

Hitting time version: τ [ matching ] = τ [ δ ≥ 1 ].

Proof Take large c and m± = b log n±c
n c.

Interesting interval: M ∈ (m−, m+)

Pr [ ∃|S| : |S| ≥ 3 ] ≤ m+ E [ # such S ] → 0.

Pr [ ∃|S| : |S| = 2 ] ≤ Pr [ Gm
−

has such 2-element S ]

+ Pr [ C1(Gm
−

) > log n ]

+ log n Pr [ such 2-element S is created ]

→ 0.
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General Spanning Subgraphs

Theorem (Alon-Füredi’92) Let v(H) = n, ∆(H) ≤ d

D = d2 + 1 and G ∈ Gn,p.

If npd

D − log n → ∞, then whp H ⊂ G.

Proof Let F = H2; ∆(F ) < D.

Lemma (Hajnal-Szemerédi’70):
∃ F -stable sets V1 ∪ · · · ∪ VD = V (F ), each |Vi| = n

D ± 1.

Take V (G) = U1 ∪ · · · ∪ UD with |Ui| = |Vi|.
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Partial H-Embeddings

Build fi : V1 ∪ · · · ∪ Vi → U1 ∪ · · · ∪ Ui inductively.
Let m = |Vi+1| = |Ui+1| and

F = { (u, v) : u ∈ Ui+1, v ∈ Vi+1 ΓH(v) ⊂ fi(ΓG(u)) }.

Observe F ∼ Gm,m,≥pd.

Pr [ FAIL ] = Pr [ no matching ]

= O(m e−pm) = o(1/D).

So, whp fi exists ∀ i ∈ [D], i.e. H ⊂ G.
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Random Edge-Weights

The model: Random independent weights we, e ∈
([n]

2

)

,
each uniformly distributed in (0, 1).

T = the minimal spanning tree.

Let ζ(3) =
∑∞

i=1 i−3.

Theorem (Frieze’85)

1. E [ w(T ) ] → ζ(3).

2. ∀ε > 0 Pr [ |w(T ) − ζ(3)| > ε ] → 0.

Proof of 1. Let Gp =
(

[n], {e : we ≤ p}
)

∼ Gn,p.
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An Expression for w(T )

w(T ) =
∑

e∈T

we

=
∑

e∈T

∫ 1

p=0
1we>p dp

=

∫ 1

p=0

∑

e∈T

1we>p dp

=

∫ 1

p=0

∣

∣

∣
{e ∈ T : e 6∈ Gp}

∣

∣

∣
dp

=

∫ 1

p=0
(κ(Gp) − 1)) dp.

where κ(G) = # components of G.
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Computing E [ w(T ) ]

E [ w(T ) ] =

∫ 1

p=0
E [ κ(Gp) − 1) ] dp

→

∫
3 log n

n

p=0
E [ κ(Gp) ] dp

→

∫
3 log n

n

p=0

n1/3

∑

k≥1

(

n

k

)

kk−2 pk−1 (1 − p)k(n−k) (1 + O(k2p)) dp

→
n1/3

∑

k≥1

nkkk−2

k!

∫ 1

p=0
pk−1 (1 − p)k(n−k) dp

=
n1/3

∑

k≥1

nkkk−2

k!
×

(k − 1)! (k(n − k))!

(k(n − k + 1))!
→

∑

k≥1

1

k3
.

Basic Thresholds – p.34



Computing E [ w(T ) ]

E [ w(T ) ] =

∫ 1

p=0
E [ κ(Gp) − 1) ] dp

→

∫
3 log n

n

p=0
E [ κ(Gp) ] dp

→

∫
3 log n

n

p=0

n1/3

∑

k≥1

(

n

k

)

kk−2 pk−1 (1 − p)k(n−k) (1 + O(k2p)) dp

→
n1/3

∑

k≥1

nkkk−2

k!

∫ 1

p=0
pk−1 (1 − p)k(n−k) dp

=
n1/3

∑

k≥1

nkkk−2

k!
×

(k − 1)! (k(n − k))!

(k(n − k + 1))!
→

∑

k≥1

1

k3
.

Basic Thresholds – p.34



Computing E [ w(T ) ]

E [ w(T ) ] =

∫ 1

p=0
E [ κ(Gp) − 1) ] dp

→

∫
3 log n

n

p=0
E [ κ(Gp) ] dp

→

∫
3 log n

n

p=0

n1/3

∑

k≥1

(

n

k

)

kk−2 pk−1 (1 − p)k(n−k) (1 + O(k2p)) dp

→
n1/3

∑

k≥1

nkkk−2

k!

∫ 1

p=0
pk−1 (1 − p)k(n−k) dp

=
n1/3

∑

k≥1

nkkk−2

k!
×

(k − 1)! (k(n − k))!

(k(n − k + 1))!
→

∑

k≥1

1

k3
.

Basic Thresholds – p.34



Computing E [ w(T ) ]

E [ w(T ) ] =

∫ 1

p=0
E [ κ(Gp) − 1) ] dp

→

∫
3 log n

n

p=0
E [ κ(Gp) ] dp

→

∫
3 log n

n

p=0

n1/3

∑

k≥1

(

n

k

)

kk−2 pk−1 (1 − p)k(n−k) (1 + O(k2p)) dp

→
n1/3

∑

k≥1

nkkk−2

k!

∫ 1

p=0
pk−1 (1 − p)k(n−k) dp

=
n1/3

∑

k≥1

nkkk−2

k!
×

(k − 1)! (k(n − k))!

(k(n − k + 1))!
→

∑

k≥1

1

k3
.

Basic Thresholds – p.34



Computing E [ w(T ) ]

E [ w(T ) ] =

∫ 1

p=0
E [ κ(Gp) − 1) ] dp

→

∫
3 log n

n

p=0
E [ κ(Gp) ] dp

→

∫
3 log n

n

p=0

n1/3

∑

k≥1

(

n

k

)

kk−2 pk−1 (1 − p)k(n−k) (1 + O(k2p)) dp

→
n1/3

∑

k≥1

nkkk−2

k!

∫ 1

p=0
pk−1 (1 − p)k(n−k) dp

=
n1/3

∑

k≥1

nkkk−2

k!
×

(k − 1)! (k(n − k))!

(k(n − k + 1))!
→

∑

k≥1

1

k3
.

Basic Thresholds – p.34



Above the Connectivity Threshold

Lemma Let p = 3 log n
n . Then

Pr [Gn,p 6∈ C ] = o(1/n).

Proof As before, we argue that

bn/2c
∑

k=1

E [ Ck ] = O(n e−pn) = o(1/n).

Hence, E
[

w(T \ G3 log n/n)
]

≤ n × o(1/n) → 0.
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