Exam 2 Solutions

1. (18 points) True or False. (Don’t need to justify)

(a) The set of all vectors of the form \(\begin{pmatrix} 3a + b \\ 4 \\ a - 5b \end{pmatrix} \), where \(a, b \) represent arbitrary real numbers, is a vector space.

 Solution. False. The zero vector \(\mathbf{0} \) doesn’t belong to the set.

(b) \(\mathbb{R}^2 \) is a subspace of \(\mathbb{R}^3 \).

 Solution. False. \(\mathbb{R}^2 \) is not a subset of \(\mathbb{R}^3 \).

(c) If \(U \) is the echelon form of \(A \), then \(\text{Col} U = \text{Col} A \).

 Solution. False. A simple counter-example: \(A = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}, U = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \).

(d) The kernel of an \(m \times n \) matrix is in \(\mathbb{R}^m \).

 Solution. False. The kernel of an \(m \times n \) matrix is in \(\mathbb{R}^n \), while the range is in \(\mathbb{R}^m \).

(e) A positive definite quadratic form \(q \) satisfies \(q(\mathbf{x}) > 0 \) for all \(\mathbf{x} \) in \(\mathbb{R}^n \).

 Solution. False. \(q(\mathbf{0}) = 0 \).

(f) If \(A \) is a square matrix, \(\mathbf{u} \in \text{Col} A, \mathbf{v} \in \ker A \), then \(\mathbf{u} \perp \mathbf{v} \).

 Solution. False. For example, \(A = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}, \mathbf{u} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \in \text{Col} A, \mathbf{v} = \begin{pmatrix} 2 \\ 2 \end{pmatrix} \in \ker A \). But \(\mathbf{u} \cdot \mathbf{v} \neq 0 \), so, \(\mathbf{u} \not\perp \mathbf{v} \). \(\square \)

2. (15 points) Find the value(s) of \(h \) for which the vectors \(\begin{pmatrix} 1 & -2 & 3 \\ 5 & -9 & h \end{pmatrix} \) are linearly dependent.

Solution. Let matrix \(A \) have the three vectors as its columns. Apply Gaussian to reduce \(A \) in the echelon form:

\[
\begin{pmatrix} 1 & -2 & 3 \\ 5 & -9 & h \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 3 \\ 0 & 0 & h - 15 \end{pmatrix}
\]

We see that \(A \) always has only 2 pivots regardless of the value of \(h \). Therefore, the three vectors are linearly dependent for any real number \(h \). \(\square \)

3. (18 points)

(a) Prove that the only element \(\mathbf{w} \) in an inner product space \(V \) that is orthogonal to every vector is the zero vector \(\mathbf{w} = \mathbf{0} \).

Proof. Since \(\mathbf{w} \) is orthogonal to every vector, it’s orthogonal to itself, namely \(\langle \mathbf{w}, \mathbf{w} \rangle = 0 \). By positivity, \(\mathbf{w} = 0 \). \(\square \)
(b) Prove that \(\|w\| \leq \|v\| + \|v + w\| \) for any \(v, w \in V \).

Proof. By the triangle inequality,

\[
\|w\| = \|(v + w) + (-v)\| \leq \|v + w\| + \|-v\| = \|v\| + \|v + w\|.
\]

\(\square \)

4. (16 points) Show that \(v_1 = \begin{pmatrix} 4 \\ 1 \\ 3 \end{pmatrix}, v_2 = \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix} \) and \(w_1 = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, w_2 = \begin{pmatrix} -6 \\ 2 \\ -1 \end{pmatrix} \) are two bases for the same two-dimensional subspace \(V \in \mathbb{R}^3 \).

Proof. Let \(A = (v_1 \ v_2), B = (w_1 \ w_2) \). We are to characterize \(\text{Col} A \) and \(\text{Col} B \). First consider the system \(Ax = b \), where the right hand side will remain unspecified for the moment. Apply Gaussian to the augmented matrix:

\[
\begin{pmatrix}
4 & 2 & b_1 \\
1 & -2 & b_2 \\
3 & -1 & b_3 \\
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & -2 & b_2 \\
0 & 4 & 2b_1 \\
0 & 3 & -1b_3 \\
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & -2 & b_2 \\
0 & 10 & b_1 - 4b_2 \\
0 & 5 & b_3 - 3b_2 \\
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & -2 & b_2 \\
0 & 10 & 0 \\
0 & 5 & -b_1 - 2b_2 + b_3 \\
\end{pmatrix}
\]

Hence, \(\text{Col} A = \{(b_1, b_2, b_3)^T | -\frac{1}{2}b_1 - b_2 + b_3 = 0\} \), a two-dimensional subspace of \(\mathbb{R}^3 \). Similarly,

\[
\begin{pmatrix}
2 & -6 & b_1 \\
0 & 2 & b_2 \\
1 & -1 & b_3 \\
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & -1 & b_3 \\
0 & 2 & 2b_2 \\
0 & -6 & b_1 \\
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & -1 & b_3 \\
0 & 2 & 0 \\
0 & 0 & b_1 + 2b_2 - 2b_3 \\
\end{pmatrix}
\]

So, \(\text{Col} B = \{(b_1, b_2, b_3)^T | b_1 + 2b_2 - 2b_3 = 0\} \). Clearly, \(\text{Col} A = \text{Col} B \), denoted by \(V \). Then \(\{v_1, v_2\} \) and \(\{w_1, w_2\} \) are two bases for \(V \), which is a two-dimensional subspace of \(\mathbb{R}^3 \). \(\square \)

5. (15 points) Show that the hyperplane \(x + 2y + z - w = 0 \) is a subspace of \(\mathbb{R}^4 \). Find the dimension of and a basis for the hyperplane.

Solution. Denote the hyperplane by \(H \). Any vector in \(H \) is actually a solution to the homogeneous system

\[
x + 2y + z - w = 0.
\]

So we are to find a basis for the kernel of the coefficient matrix \(A = \begin{pmatrix} 1 & 2 & 1 & -1 \end{pmatrix} \), which is already in the echelon form. Clearly, \(y, z, w \) are free variables, and \(x = -2y - z + w \). So the general solution can be written as

\[
\begin{pmatrix}
x \\
y \\
z \\
w
\end{pmatrix}
= \begin{pmatrix}
-2y - z + w \\
y \\
z \\
w
\end{pmatrix}
= \begin{pmatrix}
-2y \\
y \\
0 \\
0
\end{pmatrix} + \begin{pmatrix}
-z \\
0 \\
z \\
0
\end{pmatrix} + \begin{pmatrix}
w \\
w \\
0 \\
0
\end{pmatrix} = y \begin{pmatrix}
-2 \\
1 \\
0 \\
0
\end{pmatrix} + z \begin{pmatrix}
-1 \\
0 \\
1 \\
0
\end{pmatrix} + w \begin{pmatrix}
1 \\
0 \\
0 \\
1
\end{pmatrix}.
\]
Therefore, $H = \text{span}\{(-2,1,0,0)^T, (-1,0,1,0)^T, (1,0,0,1)^T\}$. Since any span is a subspace, H is a subspace of \mathbb{R}^4. Moreover, the three vectors spanning H form a basis for H, and thus $\dim H = 3$. \qed

6. (18 points) Write the quadratic form $q(x) = 3x_1^2 + 5x_2^2 + 6x_3^2 + 4x_4^2 + 4x_1x_2 - 2x_1x_3 - 2x_2x_4 - x_3x_4$ in the form $q(x) = x^TKx$ for some symmetric matrix K. Determine if $q(x)$ is positive definite.

Solution. Matrix K can be directly written out from the coefficients of the quadratic form q:

$$K = \begin{pmatrix}
3 & 2 & -1 & 0 \\
2 & 5 & 0 & -1 \\
-1 & 0 & 6 & -\frac{1}{2} \\
0 & -1 & -\frac{1}{2} & 4
\end{pmatrix}$$

We apply Gaussian to K:

$$\begin{pmatrix}
3 & 2 & -1 & 0 \\
2 & 5 & 0 & -1 \\
-1 & 0 & 6 & -\frac{1}{2} \\
0 & -1 & -\frac{1}{2} & 4
\end{pmatrix} \xrightarrow{R_2 - \frac{4}{3}R_1} \begin{pmatrix}
3 & 2 & -1 & 0 \\
0 & \frac{11}{3} & \frac{2}{3} & -1 \\
0 & \frac{20}{3} & \frac{20}{3} & -\frac{1}{2} \\
0 & -1 & -\frac{1}{2} & 4
\end{pmatrix} \xrightarrow{R_3 + \frac{4}{11}R_1} \begin{pmatrix}
3 & 2 & -1 & 0 \\
0 & \frac{11}{3} & \frac{2}{3} & -1 \\
0 & 0 & \frac{72}{11} & -\frac{7}{11} \\
0 & 0 & 0 & \frac{1069}{288}
\end{pmatrix}$$

Hence, K is regular and has all positive pivots. Thus K is positive definite, so is $q(x)$. \qed

Bonus. This problem may be much more challenging than the others. Allocate your time wisely.

(7 points) Prove that $(a + 2b + 3c)^2 \leq 6(a^2 + 2b^2 + 3c^2)$ for any real numbers a, b, c.

Proof. Let $w_1 = (1,1,1)^T$, $w_2 = (a,b,c)^T$. Using weighted inner product $\langle u, v \rangle = u_1v_1 + 2u_2v_2 + 3u_3v_3$ on \mathbb{R}^3, we get

$$\langle w_1, w_2 \rangle = a + 2b + 3c, \quad \|w_1\|^2 = 6, \quad \|w_2\|^2 = a^2 + 2b^2 + 3c^2.$$

Apply Cauchy-Schwarz inequality, we obtain:

$$(a + 2b + 3c)^2 \leq 6(a^2 + 2b^2 + 3c^2).$$

(3 points) Prove the same inequality in a different way.

Proof. We can also prove the inequality by completing squares. Since

$$6(a^2 + 2b^2 + 3c^2) - (a + 2b + 3c)^2 = 5a^2 + 8b^2 + 9c^2 - 4ab - 12bc - 6ca = 2(a - b)^2 + 6(b - c)^2 + 3(c - a)^2 \geq 0,$$

we may obtain $(a + 2b + 3c)^2 \leq 6(a^2 + 2b^2 + 3c^2)$. Moreover, it’s clear that the equality holds if only and only if $a = b = c$. \qed