XII. Some Remarks on Eigenvectors and Generalized Eigenvectors

Let \(A \in \mathbb{C}^{n \times n} \) be given. A complex number \(\lambda \) is called an eigenvalue of \(A \) if the null space of \(\lambda I - A \) is nontrivial, i.e. if \(\mathcal{N}(\lambda I - A) \neq \{0\} \). Here \(I \) is the \(n \times n \) identity matrix, and for each \(B \in \mathbb{C}^{n \times n} \), \(\mathcal{N}(B) = \{ \xi \in \mathbb{C}^n : B\xi = 0 \} \). If \(\lambda \) is an eigenvalue of \(A \) the nonzero elements of \(\mathcal{N}(\lambda I - A) \) are called eigenvectors associated with \(\lambda \). The set of all eigenvalues of \(A \) is called the spectrum of \(A \) and is denoted by \(\sigma(A) \). The eigenvalues of \(A \) are precisely the roots of the characteristic equation.

\[
(12.1) \quad P_A(\lambda) = 0,
\]

where \(P_A : \mathbb{C} \to \mathbb{C} \) is the characteristic polynomial and is defined by

\[
(12.2) \quad P_A(\lambda) = \det(\lambda I - A) \quad \text{for all } \lambda \in \mathbb{C}.
\]

\(P_A \) is a polynomial of degree \(n \) and consequently \(\sigma(A) \) is nonempty and contains at most \(n \) elements. The algebraic multiplicity of an eigenvalue \(\lambda \) of \(A \) is defined to be its multiplicity as a root of (12.1) and is denoted by \(m_A(\lambda) \).

Proposition 12.1:

(i) \(tr(A) = \sum_{\lambda \in \sigma(A)} m_A(\lambda) \lambda \)

(ii) \(\det(A) = \prod_{\lambda \in \sigma(A)} \lambda^{m_A(\lambda)} \)

Notice that if \(\lambda \) is an eigenvalue of \(A \) and \(\xi \) is an associated eigenvector then \(e^{tA} \xi = e^{\lambda t} \xi \) for all \(t \in \mathbb{R} \). Consequently, if \(A \) has \(n \) linearly independent eigenvectors then we have a simple representation for \(e^{tA} \).

Proposition 12.2: Assume that \(\sigma(A) \) contains exactly \(n \) elements (i.e. that \(m_A(\lambda) = 1 \) for every \(\lambda \in \sigma(A) \)). Then \(\dim(\lambda I - A) = 1 \) for every \(\lambda \in \sigma(A) \) and there is a basis for \(\mathbb{C}^n \) consisting solely of eigenvectors of \(A \).

If \(\sigma(A) \) contains strictly less than \(n \) elements there may or may not be \(n \) linearly independent eigenvectors. However, there is always a basis that can be used to obtain a convenient representation for \(e^{tA} \).

Definition 12.3: Let \(\lambda \) be an eigenvalue of \(A \). A nonzero vector \(\xi \in \mathbb{C}^n \) is called a generalized eigenvector associated with \(\lambda \) if there is a positive integer \(k \) such that \(\xi \in \mathcal{N}((\lambda I - A)^k) \).
Remark 12.3: Let \(\lambda \) be an eigenvalue of \(A \) and \(\xi \) be an associated generalized eigenvector, and choose a positive integer \(k \) such that \((\lambda I - A)^k \xi = 0\). Notice that \((\lambda I - A)^m \xi = 0\) for all integers \(m \geq k \). Therefore, we have

\[
e^{tA} \xi = e^{t\lambda I} e^{t(A - \lambda I)} \xi = e^{t\lambda} e^{t(A - \lambda I)} \xi
\]

\[
= e^{t\lambda} \left(\sum_{m=0}^{\infty} \frac{t^m}{m!} (A - \lambda I)^m \right) \xi
\]

\[
= e^{t\lambda} \left(\xi + t(A - \lambda I)\xi + \ldots + \frac{t^{k-1}}{(k-1)!}(A - \lambda I)^{k-1}\xi \right)
\]

Theorem 12.4: For each \(\lambda \in \sigma(A) \) there is exactly one integer \(r_A(\lambda) \) satisfying

(i) \(1 \leq r_A(\lambda) \leq m_A(\lambda) \)

(ii) \(\dim \mathcal{N}((\lambda I - A)^{r_A(\lambda)}) = m_A(\lambda) \)

(iii) \(\mathcal{N}((\lambda I - A)^m) = \mathcal{N}((\lambda I - A)^{r_A(\lambda)}) \) for all \(m \in \mathbb{N} \) with \(m \geq r_A(\lambda) \)

(iv) \(\mathcal{N}((\lambda I - A)^{r_A(\lambda)-1}) \neq \mathcal{N}((\lambda I - A)^{r_A(\lambda)}) \)

Theorem 12.5: There is a basis \(\mathcal{B} \) for \(\mathbb{C}^n \) with the following properties.

(i) Every element of \(\mathcal{B} \) is a generalized eigenvector of \(A \).

(ii) For every \(\lambda \in \sigma(A) \) there are exactly \(m_A(\lambda) \) elements of \(\mathcal{B} \) that belong to \(\mathcal{N}((\lambda I - A)^{r_A(\lambda)}) \).