Let \(n \in \mathbb{Z}^+ \) be given. Let \(\mathbb{F} \) be a field and \(V \) be a vector space over \(\mathbb{F} \) with \(\dim V = n \). Let \(v_1, v_2, \ldots, v_n \) be a basis for \(V \). We denote by \(\mathbb{F}^{n \times 1} \) the set of all \(n \times 1 \) matrices with entries from \(\mathbb{F} \). Consider the linear mapping \(C : V \to \mathbb{F}^{n \times 1} \) defined by\
\[C v_i = e^t_i \quad i = 1, 2, \ldots, n \]
where \(e^t_i \) is the \(n \times 1 \) matrix whose \(i \)th entry (row) is 1 and all other entries are 0. Notice that if \(v = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n \) then\
\[Cv = \left(\begin{array}{c} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{array} \right) \]
We call \(C \) the component mapping for the basis \(v_1, v_2, \ldots, v_n \).

I. Matrix for \(T \in L(V, V) \):

Let \(T \in L(V, V) \) be given. We want to find an \(n \times n \) matrix \(A \) such that\
\[C(Tv) = A(Cv) \quad \text{for all } v \in V. \]
Notice that if we have such a matrix, then we can compute \(Tv \) for a given \(v \in V \) as follows: Choose \(\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{F} \) such that\
\[v = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n \]
and let\
\[\left(\begin{array}{c} c_1 \\ c_2 \\ \vdots \\ c_n \end{array} \right) = A \left(\begin{array}{c} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{array} \right). \]
Then we have

\[T v = c_1 v_1 + c_2 v_2 + \ldots + c_n v_n. \]

Let \(x \in \mathbb{F}^{n \times 1} \) be given. If we put \(v = C^{-1} x \) in (3) we obtain

\[Ax = C(TC^{-1} x) \]

In particular, we have

\[Ae_j^t = C(TC^{-1} e_j^t) = C(Tv_j) \quad j = 1, 2, \ldots, n. \]

Notice that \(Ae_j^t \) is simply the \(j \)th column of \(A \). Therefore, the \(j \)th column of \(A \) simply consists of the coefficients needed to express \(Tv_j \) as a linear combination of \(v_1, v_2, \ldots, v_n \).

Change of Basis for \(T \in L(V, V) \):

Let \(T \in L(V, V) \) be given and let \(A \) be the matrix for \(T \) relative to the basis \(v_1, v_2, \ldots, v_n \). Let \(w_1, w_2, \ldots, w_n \) be a second basis for \(V \) satisfying

\[w_i = \sum_{j=1}^{n} \mu_{ji} v_j, \quad i = 1, 2, \ldots, n. \]

Let \(B \) be the matrix for \(T \) relative to \(w_1, w_2, \ldots, w_n \). We want to find the relationship between \(A \) and \(B \).

Let \(S \) be the \(n \times n \) matrix whose \(ij \) entry is \(\mu_{ij} \). Then, by (9), \(S \) is the matrix relative to \(v_1, v_2, \ldots, v_n \) of the linear transformation \(S \in L(V, V) \) characterized by

\[Sv_i = w_i, \quad i = 1, 2, \ldots, n. \]

Let \(D \) be the component mapping for \(w_1, w_2, \ldots, w_n \) and observe that

\[Bx = DTD^{-1} x \quad \text{for all } x \in \mathbb{F}^{n \times 1}. \]
by virtue of Part I. It follows from (10) that

(12) \[DSv = Cv \quad \text{for all } v \in V \]

which yields

(13) \[Sv = D^{-1}Cv \quad \text{for all } v \in V. \]

Using the results of Part I, we find that

\[
Sx = CD^{-1}CC^{-1}x \\
= CD^{-1}x.
\]

Moreover, by (3), we have

(15) \[Tv = C^{-1}ACv \quad \forall v \in V. \]

Substitution of (15) into (11) yields

(16) \[Bx = D(C^{-1}AC)D^{-1}x \\
= S^{-1}ASx \]

by virtue of (14).

III. Matrix for \(T \in L(V, W) \):

Let \(m \in \mathbb{Z}^+ \) be given and let \(W \) be a vector space over \(\mathbb{F} \) with \(\dim W = m \). Let \(u_1, u_2, \ldots, u_m \) be a basis for \(W \) and let \(E \in L(W, \mathbb{F}^{m \times 1}) \) be the component mapping for \(u_1, u_2, \ldots, u_m \).

Let \(T \in L(V, W) \) be given. We want to find an \(m \times n \) matrix \(A \in \mathbb{F}^{m \times n} \) such that

(17) \[ETv = ACv \quad \forall v \in V. \]
Let $x \in \mathbb{F}^{n \times 1}$ be given. If we put $v = C^{-1}x$ in (17) we get

(18) \hspace{1cm} ET C^{-1}x = Ax \hspace{.5cm} \forall x \in \mathbb{F}^{n \times 1}.

To understand what the matrix A looks like, we set $x = e^t_j$ in (18) to get

(19) \hspace{1cm} ET C^{-1}e^t_j = Ae^t_j \hspace{1cm} ET v_j = Ae^t_j

which says that the jth column of A consists of the coefficients required to express Tv_j as a linear combination of $u_1, u_2, \ldots u_m$. We call A the matrix for T relative to the bases $v_1, v_2, \ldots v_n$ and $u_1, u_2, \ldots u_m$.

IV. Inner Product Spaces:

Suppose that $\mathbb{F} = \mathbb{R}$, $(\cdot, \cdot) : V \times V \to \mathbb{R}$ is an inner product, and that $u_1, u_2, \ldots u_n$ is an orthonormal basis for V. Since

(20) \hspace{1cm} v = \sum_{i=1}^{n} (v, u_i)u_i \hspace{.5cm} \forall v \in V,

it follows that

(21) \hspace{1cm} Cv = \begin{pmatrix} (v, u_1) \\ (v, u_2) \\ \vdots \\ (v, u_n) \end{pmatrix}

Let $T \in L(V, V)$ be given. It follows from (8) and (21) that if A is the matrix for T relative to $u_1, u_2, \ldots u_n$ then

(22) \hspace{1cm} A_{ij} = (Tu_j, u_i),

where A_{ij} is the entry of A from row i and column j.